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ABSTRACT

The nucleotide sequence of Dictyostelium discoideum rDNA
extending over almost the entire transcribed region and a part of
the 5' non-transcribed spacer region has been determined.
Computer analysis revealed that there were several conserved
sequences in the 17S, 5.8S and 26S coding regions when compared
with the sequences at analogous positions in some eukaryotic rRNA
genes. The data also showed that the D. discoideum rDNA contains
several extra sequences, which have not been found in other
eukaryotes' rDNAs, near the 3' terminus of the 17S coding region
and the 5' terminus of the 26S coding region.

INTRODUCTION

Cytoplasmic ribosomes of eukaryotes contain 25-28S (large
subunit), 17-18S (small subunit), 5.8S and 5S rRNAs. Over the
past few years, data on the primary structures of several
eukaryotic and prokaryotic rRNA genes have accumulated (1-17).
Comparative analysis of the nucleotide sequences of these genes
has suggested that there are some eukaryote-specific and
evolutionally conserved sequences in the transcribed regions of
the eukaryotic rDNAs, and that these conserved sequences may be
important for the ribosome structure in connection with its
function (9).

More recently, Olsen et al. (17) reported the secondary
structure of D. discoideum 17S rRNA inferred from the nucleotide
sequence of the cloned 17S rRNA gene. In the present study, we
have determined almost all the nucleotide sequence of the
transcribed and 5' non-transcribed regions of D. discoideum rDNA.
Our data on the 17S coding sequence were somewhat different from
those of Olsen et al. (16), suggesting that the D. discoideum
rRNA genes of about 180 copies per haploid genome are not
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homogeneous. The evolutionally conserved sequences were found by
comparison of the D. discoideum and other eukaryotic rDNAs using
a computer program.

MATERIALS AND METHODS
DNA preparation and DNA sequencing

Recombinant plasmid pDd 507 was provided by R. A. Firtel
(18), which contains the 5' non-transcribed spacer and entire
transcribed regions except the 3' terminal sequence in the 26S
coding region.

Preparation of the recombinant plasmid and the DNA fragments
from the restriction endonuclease-digested plasmid were the same
as described previously (1). For DNA sequencing, the fragments
were 5'-end labeled with [Y-¥P]ATP and T4 polynucleotide kinase
after alkaline phosphatase treatment. The cleavage sites for
restriction endonucleases on the rDNA fragment were determined as
described by Smith & Birnstiel (19). DNA sequencing was carried
out by the method of Maxam and Gilbert (20) with slight
modifications (21) according to the strategy shown in Fig. 1.
Preparation of cytoplasmic rRNA

Cytoplasmic total rRNA and 17S rRNA were extracted from
partially purified ribosomes prepared from D. discoideum A3 cells
and purified by two cycles of sucrose gradient centrifugation.

S1 nuclease mapping

S1 nuclease protection mapping was carried out as described
by Berk and Sharp (22). The 32P-5'- or 3'- end 1labeled rDNA
fragments were hybridized with cytoplasmic rRNA or 17S rRNA,
followed by S1 nuclease treatment. The DNA-RNA hybrids protected
from S1 nuclease digestion were extracted, denatured and
electrophoresed on sequencing gels. 3'-end labeling of the DNA
fragments was performed using [a-2P]ddATP and terminal transferase.
Enzymes and radioisotopes

Restriction endonucleases were purchased from Takara Shuzo,
Bethesda Research Laboratories Inc. and Boehringer Mannheim;
bacterial alkaline phosphatase and T4 polynucleotide kinase from
Takara Shuzoj;and S1 nuclease from Boehringer Mannheim. [Y-%P]ATP,
[a-3P]ddATP and the 3'-end labeling kit were obtained from
Amersham.
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Figure 1. Schematic representation of the structure of D.
discoideum rDNA cloned in recombinant plasmid pDd 507 and the
sequencing strategy. NTS, ETS and ITS denote the non-

transcribed, external transcribed and internal transcribed spacer
regions, respectively. Arrows indicate the direction of
sequencing and the size of the sequenced DNA fragment. Greek
letters denote the restriction site at which the fragment was *2P-
5'- or 3'- end labeled. The fragments denoted as (a)-(e) were
also used as probes in the S1 mapping analysis to determine the
nucleotides at the 5' and 3' termini of the coding region: (a)
and (b) were the probes to map the 5' and 3' ends of the 17S rRNA
gene, respectively; (c) and (d), those to map the 5' and 3' ends
of the 5.8S rRNA gene, respectively; (e), that to map the 5' end
of the 26S rRNA gene.

RESULTS AND DISCUSSION
The primary structure of D. discoideum rDNA.

We
transcriptional initiation site of D.

previously reported the nucleotide sequence around the
discoideum rDNA (1). Here,
the
same

we determined the nucleotide sequence of the remaining part,
of the
DNA sequencing was performed according to
Fig. 2 shows the compiled data on
6.6 kb)

transcribed and 5' non-transcribed spacer regions,
cloned rDNA (pDd 507).
the strategy
the

shown in Fig. 1.

nucleotide sequences determined here (ca. and
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Figure 3. S1 nuclease mapping of the 5' and 3' ends of D.
discoideum 17S, 5.8S and 26S rRNAs on the cloned rDNA. The *?P-
5'- or 3'-end 1labeled coding strand of the restricted DNA
fragments, (a)-(e) in Fig. 1, was hybridized with whole
cytoplasmic rRNA or partially purified 17S rRNA in 0.1 ml of a
solution of 807 formamide and 2 x SSC at 50°C for 36 hr. The
reaction mixture was diluted 1 : 10 with cold 50 mM sodium
acetate (pH 4.5) containing 250 mM NaCl and 0.1 mM ZnSO and then
digested with 3000 units (lane 1) or 4500 units (lane 2) of S1
nuclease at 37°C for 30 min. The Sl-treated DNA-RNA hybrids were
denatured and electrophoresed on 8 or 10% sequencing gels in
parallel with the same 5'- or 3'-end labeled coding strand
cleaved by nucleoside-specific chemical reactions. The large
arrow head indicates the presumed 5' or 3' terminal nucleotide on
the coding strand of the rRNA gene (for details, see RESULTS AND
DISCUSSION). A and B, the 5' and 3' ends of the 17S rRNA gene,
respectively; C and D, the 5' and 3' ends of the 5.8S rRNA gene,
respectively; E, the 5' end of the 26S rRNA gene.

previously (ca. 1.3 kb). The nucleotides at the 5' and 3'
termini of the 17S and 5.8S coding sequences and that at the 5'
terminus of the 26S coding one were determined in the S1 mapping
experiment. As the autoradiographic patterns in Fig. 3 show,
multiple S1 protection bands were observed. The appearance of
these multiple bands, which were probably due to nibbling and
under-digestion of the DNA-RNA hybrids in the S1 nuclease
treatment, made the results of end determination of the rRNA
genes ambiguous. Therefore, referring to the data reported for
the nucleotide sequences at the 5' and 3' terminal positions of
the 17S, 5.85 and 26S rRNAs (15, 16, 23), we determined
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Table 1. Comparison of the coding and internal transcribed
spacer regions of eukaryotic rDNA as to nucleotide length and A-T
content (represented as % in parentheses).

17-18S ITS-1 5.8S 1TS-2 26-28S

D.discoideum 1871(57) 331(74) 162(57) 575(57) 3241(57)**
%.ce:evisia? 1789(55) 355(64)* 158%54) 234(62)* 3392(52)
_.?o ycephalum 155(45) 492(50) 3788(46)
X.laevis 1825(46) 557(16) 162(40) 262(12) 4110(34)
Rat 1869(44) 1067(25) 156(42) 765(20) 4718(33)

Data are cited from ; S. cerevisiae (4-6), X. laevis (7-9),

P. Eglzceggglun (13,14) and rat (10-12).

*, ta on S. carlsbergensis (25,26).

%%, The about 0.7kb sequence 5' to the 3' terminus is not
included because it was not sequenced.

the putative 5' and 3' nucleotides in the coding region of rDNA
and their positions are indicated by the large arrow-heads in
Fig.3. When the results obtained here were put in order together
with our previously reported ones, it became possible to assign
the NTS (non-transcribed spacer), ETS (external transcribed
spacer), 17S, ITS (internal transcribed spacer)-1, 5.8S, ITS-2
and 26S regions in the rDNA sequence of about 7.9 kb long.

The lengths and A-T contents of the coding, ITS-1 and ITS-2
regions of D. discoideum rDNA were compared with those of the
corresponding regions of several eukaryotic rDNAs. As can be
seen from the data summarized in Table 1, in D. discoideum the
17S and 5.8S coding regions tended to be somewhat larger compared
to those of other eukaryotes, and the A-T content was similar to
that of Saccharomyces cerevisiae but quite different from those

of Xenopus laevis, Physarum polycephalum and rat. In general,
there was the tendency that the A-T content of rDNA of the lower
eukaryotes such as yeast, Dictyostelium and Physarum was higher

than that of higher eukaryotes, and the ITS-1 region was
extremely A-T rich.

More recently, McCarroll et al. (16) who had already
reported the 5.8S rRNA sequence of D. discoideum (15), determined
the DNA sequence of the D. discoideum 17S rRNA gene. Our
sequencing data on the 17S and 5.8S rRNA genes are almost the
same as those of Olsen et al. (15) and McCarroll et al. (16)
except for some minor differences (Table 2). Since it is known
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Table 2. Differences of the nucleotide sequences of the 17S and 5.8S
coding regions between two different D. discoideum rDNA clones.

17S rDNA 5.85 rDNA

Position*| Qur data Other data** Position*| Our data Other data***

277
543
564
587
786-787
787-788
952
1258
1573-1574

- 31 T C
N (G) 36 c T
R (A)

TOO 1 1 4>0>

DOP—HA>—

*, Nucleotide positions mumbered according to our sequencing data.

**, Data of McCarroll et al. (16).

**%, Data inferred from the nucleotide sequence of 5.8S rRNA determined
by Olsen et al. (15).

that in D. discoideum there are rRNA genes of about 180 copies
per haploid genome, these differences may reflect the
heterogeneity of the rRNA genes, if no point mutation had
occurred on keeping the two recombinant plasmids containing the
rDNA insert, and if there had been no misreading of the sequence
ladder on the autoradiogram.

Comparison of the primary structure of the small subunit rRNA

genes.

Computer analysis was performed to compare the nucleotide
sequence of the D. discoideum 17S rRNA gene with those of the S.
cerevisiae (4), X. laevis (7) and rat (10) 18S rRNA genes. The
nucleotide sequences of the 17-18S rRNA genes in D. discoideum
and the above species were aligned with insertion of some
deletions at appropriate positions according to the computer
program designed to give the maximum homology by Iida
(unpublished). The sequence homology was calculated every 50
nucleotides from the 5' end using the formula proposed by Iida
(unpublished) and expressed as the percentage of the conserved
nucleotides.

The overall sequence homology of the 17-18S rRNA genes
between D. discoideum and S. cerevisiae, X. laevis and rat was
70, 67 and 667%, respectively. However, in both the 5' and 3'
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Figure 4. Schematic representation for comparison of the sequence
homology of the rRNA genes between D. discoideum and other
species. The open and filled boxes represent regions showing
70-80 and 80-100% homology, respectively, when compared with the
corresponding region of the D. discoideum rRNA gene. A, small
subunit rRNA gene; B, 5.8S rRNA gene; C, large subunit rRNA
gene. The vertical arrow indicates the insertion site of the
introns of the P. polycephalum 26S rRNA gene. The 3' regions of
the large subunit rRNA genes are not compared because the about
0.7 kb sequence 5' to the 3' terminus of the D. discoideum 26S
rRNA gene could not be sequenced.

terminal regions the sequence homology was more than 85%,
suggesting that the sequence of the terminal region of the small
subunit rRNA gene may be highly conserved in eukaryotes. Several
sequences showing relatively high sequence homology (70% or more)
were dispersedly located at comparable regions throughout the
lengths of the 17-18S rRNA genes in these four eukaryotes. The
results are schematically summarized in Fig. 4A. Therefore, it
is conceivable that these conserved regions play certain
important roles in connection with the structure and function of
ribosomes, although we have no direct evidence of this.

On comparison of the nucleotide sequences of the 17-18S
coding regions we observed several extra sequences in the non-
conserved regions, which were more than 10 nucleotides in length
and species-specific. These sequences are listed in Table 3. In
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Table 3. The extra sequences of the 17S coding region of D. discoideum rDNA.

Comparison with S.cerevisiae [Comparison with X.laevis|Comparison with Rat

Position* Extra sequence [Position* Extra sequence|Position* Extra sequence

982-991 GATCGAAGAC 1362-1375 TATAGACGATAG | 180-181 (CCCCCTTCCCGT
1349-1368 ATTTATTAGTCG cT GG)**
ATATAGAC 1383-1397 GGTTTGGAATGA | 211-212 (AAACCAACCCGG)**
1385-1398 TTGGAATGATTT 1403-1416 ATCTCCTGCTTC | 281-282 (CGCCCTCCGTG)**
C AA 1383-1396 GGTTTGGAATGA
1406-1451 TCCTGCTTCAAG 1421-1448 TGTGTAGTCTGA 7
GAGTGTGTAGTC CTCGATAGGTAC |1409-1450 TGCTTCAAGGAG
TGACTCGATAGG GAAT TGTGTAGTCTGA
TACGAATTAA CTCGATAGGTAC
GAATTA

*, Nucleotide positions numbered according to our sequencing data.
**  The extra nucleotide sequences in rat 18S rDNA (10) which is not seen in
the corresponding region of D. discoideum 17S rDNA.

D. discoideum, such extra sequences were localized near the 3'
terminal in the 17S coding region. Thus, it is suggested that
the existence of these extra sequences may be due to the minor
differences in nucleotide length of the 17-18S coding regions
among the four species as mentioned above.
Comparison of the primary structure in the 5.8S coding region.

We have compared the nucleotide sequences of the 5.8S rRNA
genes in five species in the same way as in the case of the 17-

18S rRNA genes, except that the sequence homology was computed
every 20 nucleotides from the 5' end. The overall sequence
homology of the D. discoideum 5.8S rRNA gene was 60% for S.
cerevisiae (6), 59% for X. Llaevis (8), 51% for P. polycephalum
(14) and 61% for rat (11). As indicated in Fig. 4B, however, the
sequences showing sequence homology of more than 70% were
distributed near the 5' terminal position in the 5.8S coding
regions of these 5 species. The comparative analysis also
revealed that in D. discoideum the sequence of the 5.8S rRNA
gene was less conserved relative to those of the 175 and 26S
rRNA genes. It has been pointed out (14, 24) that in some
eukaryotes, the entire nucleotide sequence of the 5.8S rRNA gene
is very similar to the 5' terminal sequence of the Escherichia
coli 23S rRNA gene (3). This was the case for the D. discoideum
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5.85S rRNA gene as well. Thus, it can be considered that the
eukaryotic 5.8S rRNA gene might be derived from the 5' terminal
region of the E. coli 23S rRNA gene, as suggested by some workers
(14, 24), and its function is probably analogous to that of the
bacterial 5' terminal sequence.

Comparison of the primary structure of the large subunit rRNA

genes.

As mentioned above, we could not determine the about 0.7 kb

sequence 5' to the 3' end in the 26S coding region since the 3'
terminal sequence was not included in the recombinant plasmid
used here. So, we tried to compare the nucleotide sequence of
about 3.2 kb at the 5' side in the 26S coding region with that in
the corresponding regions of S. cerevisiae (5) and P.
polycephalum (13), using the same computer program as employed in
the analysis of the small subunit rRNA gene. The overall
sequence homology in the corresponding region of D. discoideum
for S. cerevisiae and P. polycephalum was 65 and 58%,
respectively. As Fig. 4C shows, the sequences showing sequence
homology of more than 70% were located at comparable portions
throughout the lengths of the 26S rRNA genes in the three
species. These conserved sequences may be situated at
structurally and functionally important regions of ribosomes. In
addition, we found several extra sequences consisting of 10
nucleotides or more in D. discoideum which were not seen in the
other two species. As can be seen from these sequences listed in
Table 4, they tended to be distributed at the 5' side in the
coding region. As can be seen on comparison of D. discoideum and
P. polycephalum, there were three extra sequences at the 3' side
in P. polycephalum which were not present in D. discoideum.
Furthermore, the comparative analysis revealed that two introns
present in the P. polycephalum 26S rRNA gene (13) are located in
highly conserved regions existing commonly in the two species
(see Fig.4C). Our unpublished data on the secondary structure of
D. discoideum 26S rRNA inferred from the DNA sequence suggested
that the sequence at the 5' terminal region of the 26S rRNA can
interact with the 5.8S rRNA to construct a stable secondary
structure, as has already been pointed out in other eukaryotes
(13, 26).
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Table 4. The extra sequences in a part of the 26S coding region of
D. discoideum rDNA.

Comparison with S.cerevisiae Comparison with P.polycephalum
Position* Extra sequence Position* Extra sequence
456-468 GTTTAGCTCTAAT 402-423 TATTTGACACCGTTTATGTG
531-553 GGTTATCGACGAGGAAGGTA GA
cTC 485-495 TAGAGTGTTAC
589-598 TTTATAAAAT 619-630 TTGCTGGTGGCT
687-709 TATTAGTGGTTATTAATTTT | 654-668 TTTCATCAAGATGC
GTT 1304-1318  TTTTAAAATTAAATT
725-743 TGTCTACAGGTTATCTTCG | 1586-1587 (CGGGCTTCGGCTCGCA)**
910-924 AAAGAATACTCCAAA 2805-2806 (CCGTAAAAGGTGGGGGAAGG
1302-1313  GATTTTAAAATT GATAGG)**
1844-1856  GTGACTTTATAGG 2881-2882 (CCGGCGAGTGC)**
2854-2863  GAAATCTGTG
2881-2907  TTGTATAGCAAAGTAGTCCC
TCAGGTC

*, Nucleotide positions numbered according to our sequencing data.

**%, The extra mucleotide sequences in P. polycephalum 26S rDNA (13)
which are not present in the corres ng regions of D.
discoideum 26S rDNA.

It is known that the eukaryotic mnuclear rRNA gene is
relatively well conserved among organisms and also that it has
some nucleotide sequences partially the same as those of the
bacterial (e.g., E. coli) rRNA gene. The results in the present
study suggest that the coding regions of eukaryotic rRNA genes
are roughly divided into two kinds of portions with highly
conserved and relatively less conserved sequences, and the former
sequences particularly tend to be located at comparable regions
throughout the 1length of rDNA. In order to discuss the
biological significance of the highly conserved sequences, it is
necessary to determine the secondary structure of rRNA on the
basis of the sequencing data on rDNA. Since the recent results
of Olsen et al. (17) have suggested that the highly conserved
nucleotide sequences present in D. discoideum 17S rRNA tend to
occupy important positions in the secondary structure of the
rRNA, the same thing can be considered for the highly conserved
sequences in the 26S coding region.

Transcribed spacer regions

It has been supposed that in the 5' and 3' transcribed
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spacer regions adjacent to the rRNA coding regions there may be
certain signal sequences involved in the processing of rRNA
precursor. So, we searched such sequences but could not find any
particular sequences in the ETS, ITS-1 and ITS-2 regions. 1In
addition, in rough comparison of the sequences of these three
regions of D. discoideum rDNA with those of the corresponding
regions of other eukaryotes' ones, there was 1little sequence
homology. The 1length of the sequence of the ITS-1 and ITS-2
regions varied from species to species (see Table 1). This was
also the case for the ETS region. Although we did not further
compare the sequence of the transcribed spacer regions, short
meaningful conserved sequences may be found if a lot of the data
has been accumlated and analyzed in more detail. At the moment,
it seems certain that the transcribed spacer regions are variable
compared with the coding regions.
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