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Abstract
An adaptive Cartesian grid (ACG) concept is presented for the fast and robust numerical solution
of the 3D Poisson-Boltzmann Equation (PBE) governing the electrostatic interactions of large-
scale biomolecules and highly charged multi-biomolecular assemblies such as ribosomes and
viruses. The ACG offers numerous advantages over competing grid topologies such as regular 3D
lattices and unstructured grids. For very large biological molecules and multi-biomolecule
assemblies, the total number of grid-points is several orders of magnitude less than that required in
a conventional lattice grid used in the current PBE solvers thus allowing the end user to obtain
accurate and stable nonlinear PBE solutions on a desktop computer. Compared to tetrahedral-
based unstructured grids, ACG offers a simpler hierarchical grid structure, which is naturally
suited to multigrid, relieves indirect addressing requirements and uses fewer neighboring nodes in
the finite difference stencils. Construction of the ACG and determination of the dielectric/ionic
maps are straightforward, fast and require minimal user intervention. Charge singularities are
eliminated by reformulating the problem to produce the reaction field potential in the molecular
interior and the total electrostatic potential in the exterior ionic solvent region. This approach
minimizes grid-dependency and alleviates the need for fine grid spacing near atomic charge sites.
The technical portion of this paper contains three parts. First, the ACG and its construction for
general biomolecular geometries are described. Next, a discrete approximation to the PBE upon
this mesh is derived. Finally, the overall solution procedure and multigrid implementation are
summarized. Results obtained with the ACG-based PBE solver are presented for: (i) a low
dielectric spherical cavity, containing interior point charges, embedded in a high dielectric ionic
solvent – analytical solutions are available for this case, thus allowing rigorous assessment of the
solution accuracy; (ii) a pair of low dielectric charged spheres embedded in a ionic solvent to
compute electrostatic interaction free energies as a function of the distance between sphere
centers; (iii) surface potentials of proteins, nucleic acids and their larger-scale assemblies such as
ribosomes; and (iv) electrostatic solvation free energies and their salt sensitivities – obtained with
both linear and nonlinear Poisson-Boltzmann equation – for a large set of proteins. These latter
results along with timings can serve as benchmarks for comparing the performance of different
PBE solvers.
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Introduction
The efficient and accurate implicit solvent-based electrostatic modeling of large complex
and highly charged biomolecules in aqueous electrolyte solution at finite ionic strengths
remains an important and difficult challenge in computational molecular biophysics.
Considerable success in modeling the long-range and nonspecific electrostatic interactions
of biomolecules in ionic solution has been achieved on the basis of the Poisson-Boltzmann
equation (PBE), which provides the electrostatic potential and other important derived
quantities (e.g., electrostatic solvation free energies, electrostatic binding free energies,
forces and pK shifts) at varying ionic conditions1. Nevertheless, two challenges persist in the
numerical calculation of such systems. First, for large molecules the mesh topologies used to
date – regular lattices and unstructured tetrahedral grids – are subject to various
inefficiencies and/or mesh generation challenges that can be improved upon by considering
an alternate mesh structure as well as selecting a representation of the solution that reduces
the mesh resolution demands. In the current development the PBE is solved upon a
hierarchical mesh structure variously referred to as an adaptive Cartesian grid (ACG), or
octree or simply a Cartesian mesh. The ACG terminology is adopted here to distinguish it
from regular lattices which are also commonly called Cartesian grids. The second challenge
is achieving reliable and rapid solution convergence for highly charged biomolecular
systems. The current article describes a methodology that addresses both challenges
resulting in a robust nonlinear PBE analysis capable of properly modeling salt-mediated and
non-specific electrostatic effects in nucleic acids and their associations with charged ligands
such as cationic drugs, peptides and larger proteins.

One goal of the ACG-based PBE solver is to facilitate computation of electrostatic
properties for large-scale biomolecular systems at the atomic level of detail using readily
accessible computational resources. For example, a recent experimental study suggests that
the electrostatic interactions in the ribosomal exit tunnel can modulate the elongation rates
of nascent peptides2. For such large-scale ribosomal systems, most Poisson-Boltzmann
studies have necessarily been based on coarse-grained molecular models due to memory
constraints and convergence issues3. The PBE solver described here provides the variable
mesh spacing necessary to efficiently accommodate such nanoscale biomolecular
assemblies. Moreover, it contains robust iterative procedures that reliably converges the
electrostatic solution at comparable rates for both the linear and nonlinear PBE of highly
charged complex biomolecular systems such as ribosomes. This property is used to obtain a
high resolution (0.3 Å) surface potential map of the highly charged large 50S ribosomal
subunit. To the best of our knowledge, nonlinear PBE calculations for such a highly charged
and large biomolecular system have not been previously performed on a serial platform – at
least at such a fine grid resolution. Moreover, with the computational tools developed here,
nonlinear PB calculations can be conducted in nearly the same computer times as linear ones
as borne out in the Supplementary Materials that provide such timings for a collection of
proteins.

Solution Methods for the PBE
Numerical solutions to the PBE can be obtained using either finite difference (FD)
techniques, which here includes finite element (e.g., unstructured tetrahedral meshes) and
finite volume-based discretizations, or boundary element methods (BEM). Each approach
has inherent advantages as reviewed in 1, 4. Briefly, when solving the linear PBE using the
BEM: (i) only a surface mesh is required since the solution is expressed entirely in terms of
surface distributions; (ii) far-field boundary conditions are automatically satisfied; (iii) the
constraints upon the electrostatic potential and its normal gradient at the molecular surface
are explicitly imposed; (iv) the potential fields associated with point charges are expressed
analytically, thereby circumventing problems relating to representing singular solutions
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upon grids; and (v) the interactions between distant elements are evaluated using the exact
expressions thus conferring high accuracy. With the introduction of fast multipole methods,
computational costs have been reduced from O(N2) to O(NlogN) (N being the number of
boundary elements), thus allowing much larger problems to be addressed. The first PBE
solvers utilizing fast multipole-accelerated BEM were limited to zero salt conditions5–7. The
extension to finite salt concentrations was first achieved by Boschitsch & Fenley4, 8 and
subsequently by Lu and co-workers using a different form of the fast multipole
expansion9, 10.

A major limitation of BEM-based approaches is the forfeiture of a pure surface-based
solution representation and the attendant increase in computational effort when solving the
nonlinear form of the PBE. Our experience11 has consistently shown that even for very
simple cases, computation times can easily increase by O(10)-(100) when using the BEM
for the linear part and nonlinear terms expressed as source distributions, where the latter
appear as volume integrals over the entire computational domain. Hybrid schemes offer one
venue for retaining the advantages of a BEM while allowing the nonlinear PBE to be
addressed11.

In the FD method, the differential form of the equations is solved on a volume mesh that
fills the region of interest. The discrete equations can be derived according to variational
principles which underlie the finite element (FE) method or by classical finite difference
schemes based on the Taylor series expansions about a given mesh point. The FE method
provides a general and systematic approach for developing the discrete model upon a variety
of meshes including unstructured (tetrahedral) and curvilinear grids. In some instances
however, the FD method offers a more efficient approximation. For example, when adopting
a regular lattice mesh the FD approximation to the Laplacian operator at a mesh point is
both second order accurate and involves only six neighboring mesh points whereas a FE
model is only first order accurate (at least in the most common implementations12, 13 using
linear order tetrahedral elements) and involves all 26 neighboring mesh points thus
increasing computational requirements.

The mesh structure employed in a FD method directly influences the performance and the
quality of the results obtained. Historically, FD-based PBE modeling has employed two
basic grid structures:

Regular 3D lattice—This is the grid arrangement adopted in the popular PBE solvers such
as APBS14, UHBD15, PBEQ16, MEAD17, ZAP18, DelPhi19 and the PBSA-Amber20–22 and
consists of a uniformly spaced rectangular grid superimposed over the biomolecule of
interest. While no attempt is made to align the mesh with the molecular surface, good
estimates of the electrostatic potential solution are nevertheless obtained because this
solution is continuous across the surface. Regular lattices allow one to readily develop a
simple and efficient discretization of the differential operators and to implement effective
multigrid procedures. However, the lack of a variable or adaptive grid spacing capability
leads to a restrictive tradeoff between accuracy and storage constraints as larger
biomolecules are considered. Furthermore, to minimize errors generated at the outer
boundary of the grid (such errors introduce biases in computed electrostatic potential and
energies), the grid must be extended sufficiently far from the molecule so that the potential
at the outer boundaries is negligible. Nonlinear PBE calculations of highly charged
biomolecular systems are especially challenging in this regard since consistent outer
boundary treatments for the nonlinear PBE have only recently become available 23. To
reduce calculation effort and maintain good accuracy, the focusing24 procedure is invoked
where the solution obtained on a global mesh with large mesh spacing is interpolated onto a
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collection of finer, localized grids. This approach improves local accuracy, but entails
multiple PBE calculations for a given molecular configuration.

Unstructured Grids—To address the shortcomings of regular lattice grids, efforts have
been directed at the use of unstructured tetrahedral grids for biomolecules [e.g., 25]. Such
grids can achieve good resolution over a wide range of length scales and also offer the
opportunity for solution-dependent mesh adaptation. Unstructured grids have been used in
the finite element solution of the PBE to produce accurate predictions of biomolecular
electrostatic properties12, 13, 25. A useful feature of unstructured grids is the ability to
conform to the molecular surface so that no edges or elements intersect the surface. This
allows for inherently more accurate estimates of surface properties, particularly the
electrostatic field which is essential for reliable prediction of electrostatic PBE forces. On
the other hand, unstructured meshes are subject to several limitations: (i) The generation of
good quality meshes is complex and time consuming especially for grids that conform to the
molecular boundary; however active research in this area is expected to reduce the
associated computation times26. (ii) Neighboring nodes must be explicitly identified thus
increasing storage costs (each node has approximately 14 neighbors, compared to 6 on a
regular lattice grid). (iii) Mesh adaptation procedures are complex and expensive due to the
large number of refinement possibilities in 3D. (iv) Multigrid implementation is challenging
because defining coarser level meshes and linear order accurate (the minimum order needed
for second order PDEs) interpolation procedures between multigrid levels, are non-trivial.
(v) The discrete approximation to the PBE equation generally has first order errors (errors
are O(h) where h is the local mesh spacing) compared to the approximation on a regular
lattice which is second order accurate (errors are O(h2)) so that slower convergence with
mesh spacing is obtained.

Herein an alternate grid structure is proposed that combines the adaptation and variable
resolution features of unstructured grids with the simple cube geometry and multigrid
capabilities enjoyed by regular lattice methods. This mesh, referred to here as an adaptive
Cartesian grid, derives from the hierarchical decomposition of the computational domain
known as an octree27 which is obtained by recursive and selective subdivision of a cube into
smaller nested cubes (e.g., see for example Figure 2). It is noted that an article utilizing the
ACG concept to solve the nonlinear PBE has recently appeared 28 to model supercapacitor
behavior of porous electrodes. Their approach embodies several of the same methodology
details described below including the derivation of the finite difference formulae. Their
applications do not appear to call for a decomposition of the solution to eliminate singular
behavior at charge sites and applications were limited to comparatively simple geometries.
ACG has been widely used in fluid mechanics applications to model flows about complex
geometries29, 30. Often, the most time-consuming and challenging task in such applications
is constructing a good quality mesh (for a complex geometry, this can require several man-
months) and ACGs were developed in response to the need for a fast and fully automated
grid-generation capability31–33. Like unstructured grids, the ACG allows the analysis to
‘zoom’ in to regions where the solution is varying rapidly – e.g., near the molecular surface.
Elsewhere, where variations are more gradual, fewer, larger cells may be used for optimal
computational efficiency. Outer boundaries can be placed far from the molecular boundary
to minimize the influence of boundary errors without incurring appreciable computational
cost. Compared to unstructured grids, the ACG generation and adaptation procedures are
both simpler and less expensive computationally (for example, a mesh containing a million
nodes is easily generated in under a minute using standard non-optimized code on a readily
accessible PC hardware). Finally, ACG facilitates implementation of multigrid schemes
since the underlying octree data structure already prescribes a complete hierarchy of coarser
level meshes and linearly accurate interpolation between levels is readily achieved.

Boschitsch and Fenley Page 4

J Chem Theory Comput. Author manuscript; available in PMC 2012 May 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In addition to using an ACG, the PBE solution methodology presented here adopts a
decomposition of the electrostatic potential field similar to that in 34 to eliminate the
singularities at fixed atomic charge sites. In the exterior regions the usual total electrostatic
potential is computed. Inside the molecule one develops the reaction field potential which
contains no singularities and so is accurately resolved on a mesh. The interior and exterior
solutions are connected by calculating the Coulombic potential for nodes near the molecular
boundary using fast multipole acceleration methods8. By eliminating the singularities, this
decomposition: (i) increases overall accuracy, and reduces sensitivity to grid translations/
rotations; (ii) alleviates mesh spacing requirements (no refinement near charge sites is
required); and (iii) allows one to directly and accurately compute total electrostatic free
energies (the grid-dependent self-energies35 are completely absent) and forces. An
interesting consequence of (i) is that the regions where the computed solution varies most
rapidly are at the molecular surface rather than at atomic charge sites. This implies that the
finest mesh spacing is warranted at the surface and coarser elements can be employed away
from the surface.

The sections below describe the generation of the ACG mesh; the discrete approximation of
the Poisson-Boltzmann equation on this grid including the decomposition of the solution
into the full and reaction field potentials and the imposition of outer boundary conditions;
the solution procedure using Gauss-Seidel iteration and multigrid; and post-processing
operations. Results are obtained using the ACG-based PBE solver for classical idealized
problems involving one and two low dielectric spheres, containing interior charges to affirm
the overall accuracy of the method; high resolution calculations of the electrostatic potential
and other important derived electrostatic properties for medium-size biomolecules; and
demonstration calculations for a selected large-scale and highly charged ribosome. In the
Supplementary Materials ACG-PB predictions of electrostatic solvation free energies are
provided for a variety of proteins with varying size, shape and charge density along with
timing information for both linear and nonlinear PB solutions.

Methodology
Generation of the ACG

Generation of the ACG grid for a given molecular structure presumes availability of the
atomic coordinates (ρk), radii (σk) and partial charges (Qk). The atomic coordinates can be
obtained from structural biology databases such as the RCSB Protein Data Bank (PDB files)
or Nucleic Acid Database (NDB files). The atomic radii can be assigned using one of many
available atomic radii sets (e.g., Bondi36). Assigning atomic charges is more involved
especially when proper protonation state assignment is required, but typically either a formal
charge set is adopted or partial atomic charges derived from molecular mechanics force
fields, such as AMBER37 or CHARMM38, are used in this study. In addition to this
structural description, a molecular surface definition must also be specified. Common
surface definitions available in the ACG generation software include the van der Waals
(vdW) surface, which is the exposed surface of the collection of overlapping spheres and
solvent excluded (SE) surface (also commonly referred to as the molecular or Connolly
surface) is obtained by rolling a probe sphere of radius, rprobe (usually, rprobe=1.4Å for
water), over the van der Waals surface and identifying the points which can be reached by
the probe (exterior points) and which ones can’t (interior). Other surface definitions, such as
various Gaussian function-based descriptions (e.g., 39), can also be used and are available in
the ACG software. Developing the ACG and assigning the dielectric map to the resulting
mesh nodes requires the ability to determine whether a given point lies within the molecular
surface. For the vdW surface, this determination is straightforward using an inside-sphere
test. For the SE surface, the test is somewhat more involved – here, the procedures described
by Chan et al40 are employed.
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The ACG generation process begins by placing an initial cube over the entire molecule. This
initial cube is sized to be several times larger than the maximum dimension of the molecule
so that the boundary condition at the outer boundary can be accurately imposed (see below).
The cube is then uniformly subdivided a fixed number of times, L, to produce a uniform
lattice starting mesh containing (2L+1)3 nodes (or 8L cube-shaped cells).

Recursive adaptation of this initial mesh then proceeds by identifying which individual mesh
cells intersect the molecular surface. Each intersected cell is tested to determine whether one
of the following refinement criteria is satisfied:

i. The user-specified finest mesh spacing, Δmin, is reached or

ii. The intersected cell lies more than a prescribed distance from the nearest atomic
charge site.

Each intersected cell that does not meet either of these criteria is uniformly subdivided into
eight smaller cells. The resulting ACG is then again subjected to these mesh intersection and
refinement tests and the grid generation process continued. The refinement process naturally
terminates since eventually all intersected cells meet the refinement criteria (i) or (ii).

To prevent excessive cell size variation that can be detrimental to solutions accuracy, the
ACG is smoothed by requiring that no terminal cell (a cell that has not been refined into
smaller ones) be larger than twice any of its neighbors. This requirement also facilitates
development of the finite difference procedures and implementation of multigrid. If
requested, a Stern or ion exclusion layer of specified thickness, t, is defined by appropriately
marking all nodes that are outside the molecule and less than a distance, t, away from the
nearest interior node.

When conducting electrostatic interaction or binding energy calculations where the
electrostatic energy of, say, a charged ligand-nucleic acid complex is subtracted from the
electrostatic energies of the charged ligand and nucleic acid considered in isolation, all three
calculations (charged ligand, nucleic acid and charged ligand-nucleic acid pair) are
conducted on the same mesh. This is because the electrostatic interaction or binding energy
is often several orders of magnitude smaller than the individual electrostatic energy
contributions so that small errors (e.g., due to finite mesh size) in the individual electrostatic
energies appear large relative to the electrostatic interaction energy. In such calculations, the
ACG is generated with respect to all three geometries as if the molecule actually consisted
of the superposition of all three molecular surfaces. The same mesh is then employed for all
three energy calculations using the respective dielectric maps.

Finite Differencing on the ACG
The ACG contains 'hanging' nodes which are nodes that neighbor an element but are not a
vertex of that element (for example, a node that lies on a mid-edge or the face of an
element). The presence of hanging nodes complicates application of a variational or finite
element framework for deriving the governing equations (specifically, compatibility
between different size elements is not easily enforced). For this reason a finite difference
approach is adopted to obtain a discrete expression of the PBE on the ACG. In developing a
FD approximation to the weighted Laplacian, ∇·(ε∇Φ), it is desirable to simultaneously
achieve the following properties: (i) Compactness - to ensure robust convergence and
numerical stability, the formula should be compact (i.e., only involve immediately
neighboring nodes). (ii) Consistency – as mesh spacing is reduced, the difference formula
should converge to the exact analytical result. (iii) Positive weights – the final expression
relates the potential at a point, i, to the weighted sum of the neighboring node potentials;
ensuring that the associated weights are positive is important for stable convergence and
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conformance with maximum principles for elliptic PDEs41. An additional consideration for
continuum electrostatic modeling is that the dielectric ‘constant’ changes discontinuously at
the molecular surface (MS). This makes it difficult to develop formally consistent FD rules.
However, the errors committed in applying the FD formulae near the MS can be viewed as
perturbations of the surface geometry. Also, the success of FD applied upon regular lattices
indicates that good PBE predictions can be obtained with simple interpolation of the
dielectric/ionic map (e.g., as currently done in any of the lattice code such as APBS). Here
we will adopt such interpolation schemes and confirm their effectiveness by subsequent
numerical studies. Current work is being directed at addressing accurate interpolation at the
surface.

The FD method begins by distinguishing between various types of nodes. Denoting the
collection of terminal octree cells, ib, that touch a node, i, by: {Ni}={ib: ib incident to node,
i} (this implies that node i lies on the surface of ib), then three types of mesh nodes can be
distinguished.

Type 0 Node i is a vertex of all terminal cells, ib ∈ {Ni}, which implies that it is not a hanging node. Type 0 nodes are
further distinguished into two sub-types:

        Type 0A All ib ∈ {Ni} are of equal size.

        Type 0B The members ib ∈ {Ni} differ in size.

Type 1 The node lies on the mid-edge of at least one terminal cell, ib ∈ {Ni}.

Type 2 The node lies on the center of a terminal cell face of exactly one terminal cell,
ib∈ {Ni}.

Examples of these nodes are shown in Figure 1. Note that Type 1 and 2 nodes are
necessarily adjacent to cells of differing size. Also, in all cases, the members of {Ni} differ
by no more than a factor of two in size. Finally, each node can only be of one type (e.g., it
cannot simultaneously lie on a mid-edge and a face center). This is a result of the size
constraint between neighboring cells. Under these constraints, the finite difference

expressions for the differential operator, , are now developed for each of the node
types.

The finite differencing expression for type 0A nodes is the same as that used on a regular
lattice. Along the x-direction, the contribution to ∇·(ε∇ϕ) is:

(1)

where Ri is the position of node, i, ϕi=ϕ(Ri), Ri±1=Ri ± î (Δx), î is the unit vector along x
and Δx is the size of the surrounding cells. The second order error estimate, O(Δx2),
formally only applies when the dielectric constant is not changing which is the case away
from the molecular surface. The dielectric constant, ε̅i,i+1, is evaluated at the connecting
edge mid-point.

Referring to Figure 1, the unique consistent finite difference formula at a type 0B node
involving the triplet of collinear nodes, {0, 1, 2}, is:

(2)

Boschitsch and Fenley Page 7

J Chem Theory Comput. Author manuscript; available in PMC 2012 May 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where Φi is the value of Φ at the indicated vertex. Note that the formula is only first order
accurate.

The FD formulas for type 1 and type 2 nodes are developed by identifying the neighboring
nodes, developing Taylor series expansions for these nodes and then considering how to
combine these series so that only the desired second order derivatives remain. For type 1
nodes such as node M in Figure 1, this process leads to the first order formula:

(3)

where the center of the face formed from nodes 1-2-3-4,

(4)

For a type 2 node such as node F in Figure 1, one obtains the first order accurate formula:

(5)

where the cell center,

(6)

and the central difference approximation to ∂Φ/∂x at Rc2 is:

(7)

This form is preferred over other options since it promotes positive weights in the final
assembled Laplacian approximation (8).

Summary of the FD Formulae
The FD formulae are first order accurate (errors are of O(Δx)) for other than type 0A nodes.
It is possible to extend them to higher order by including additional nearby points, but this
invites other problems such as non-positive weights and numerical instability associated
with the stronger influence from the more distant neighbors. The finite element method
applied using linear elements is also first order accurate (this is easily demonstrated in 1D
when computing ∂2Φ/∂x2 upon an unevenly spaced grid), whereas the regular lattice
methods are second order accurate. The ACG-based FD method offers intermediate
accuracy since, depending upon the degree of smoothing, the grid is populated mostly with
type 0A nodes. Hence, the discretization is second order accurate over most of the mesh and
thus approaches the order of accuracy of a regular lattice.

The FD approximations to the second order derivatives in the x-direction, extend naturally
to the y- and z-derivatives which, when assembled, yield the discrete approximation to ∇·
(ε∇Φ). At a node, i, this approximation can be cast in the form of a weighted sum:
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(8)

where ωij are the weights. For regions where the dielectric is constant, ωij>0. Across the
surface where dielectric changes however, some weights for type 1 and type 2 nodes at the
molecular surface may become negative, but no convergence issues have occurred in our
PBE calculations to date. It is easy to show that this discrete approximation of ∇·(ε∇Φ) upon
the ACG is: compact, consistent, satisfies a discrete maximum principle (all weights, ωij ,
are positive42), and reverts to the classical finite difference expressions when implemented
upon a regular lattice.

Application to the Poisson-Boltzmann Equation
The PBE is expressed over three distinct regions: (i) the molecular interior or solute region,
Ω1, which contains the atomic point charges, has a low dielectric constant, ε1, and is
enclosed by the molecular surface defined previously; (ii) the exterior or ionic solvent
region, Ω2 , which has a high dielectric constant, ε2, and contains the dissolved ions, and
(iii) a charge-free Stern layer (or ion exclusion region where no mobile ions are present), Ω3,
of specified thickness about the molecular surface with dielectric constant ε3=ε2. The Stern
layer can be used to account for the ion size and its thickness corresponds roughly to the
hydrated radius of the ion. In all PB calculations below the Stern layer thickness is set to
zero.

The reduced (or dimensionless) electrostatic potential of any arbitrary 3D complex-shaped
biopolyelectrolyte, Φ, at location R in the computational domain, is governed by:

(9)

where the volume charge density in the different regions is given by:

(10a)

(10b)

(10c)

Note that the expression for ρm(R) in (10b) pertains to a 1:1 electrolyte solvent (e.g., NaCl)
which is assumed here for ease of presentation. The extension to more general salt
environments is straightforward and the ACG-based PBE solver currently accommodates
mixtures of 1:1 and 2:1 salts11, 43 and asymmetric salts.

Introducing the Debye-Hückel screening parameter, κ, as:

(11)
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allows one to rewrite the PBE in the exterior domain, Ω2 , as:

(12)

The linearized form of (12), valid for small electrostatic potentials, Ф≪1, is obtained by
setting, f(Ф)≈fL(Ф)=ε2κ2Ф.

In the ACG-based FD implementation, a discrete approximation of (9) is solved at every
mesh node. The discretization of the dielectric-weighted Laplacian, ∇·(ε∇Ф) is given by (8).
For nodes outside the molecule (in Ω2 and Ω3 ), evaluation of the charge density in (9)
according to (10b) or (10c) is straightforward. However, evaluation of the charge density
within the molecular interior presents numerical difficulties because the potential becomes
singular at the fixed solute charge sites (i.e., atomic centers), ρk. To eliminate this singular
behavior, an alternate representation of the interior potential field is adopted.

Representation of the Interior Electrostatic Potential
The interior total electrostatic potential can be expressed as the sum, Φ=Φrf+Φc, where Φrf is
the reaction field potential satisfying:

(13)

and Φc is the singular Coulombic potential given by,

(14)

Here, the reduced charge centered at position ρk is qk=(4πe/ε1kBT)Qk. The reaction field
potential contains no singularities and therefore can be accurately resolved on the ACG.
Thus, at all interior points the analysis solves for Φrf governed by (13) rather than, Φ. This
approach closely resembles the one implemented by Zhou35 upon a regular lattice. In the
exterior region, Ω2∪Ω3, the full electrostatic potential, Φ, is retained and (9) is solved.

To connect these two representations, Φrf and Φ, at the dielectric interface first distinguish
between the following four possible arrangements for a grid point, i, and its neighbors, j:

a. The point, i, and all of its neighbors, j, lie inside the molecular interior, Ω1.

b. The point, i, and all of its neighbors, j, lie inside the molecular exterior, Ω2∪Ω3.

c. Point, i, lies in the exterior region, Ω2∪Ω3, but at least one of its neighbors lies
inside the molecule in Ω1.

d. Point, i, lies inside Ω1, but at least one of its neighbors lies outside the molecule in
Ω2∪Ω3.

Cases (a) and (b) pose no difficulty since the discrete approximation (8) can be directly
applied without modification. In Case (c) one solves (9) and thus seeks to evaluate, ∇·(ε∇Ф).
Here, the total electrostatic potential is available at node, i, and all neighbors lying in the
exterior domain. However, for those neighbors located inside the interior region, Ω1, one has
only the reaction field potential. Hence, the Coulombic potential, evaluated according to
(14) must be added to these interior grid points before evaluating the weighted Laplacian.
Thus, (8), is modified to:
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(15)

Case (d) is treated similarly. One can solve (13) and subtract Φc from all exterior neighbors,
j. This option requires evaluating the Coulombic potential at exterior grid points.
Alternatively, if both i and its neighbors, j, are sufficiently distant from the nearest charge,
then one can instead solve the equation for the full potential, ∇·(ε∇Ф)=0. Then, as for Case
(c), the Coulombic potential must be added to each of the interior nodes (including node, i)
before evaluating the weighted Laplacian.

All cases can be expressed in terms of the generalized potential,

(16)

which is the discontinuous quantity actually represented upon the ACG mesh. The
evaluation of the Laplacian can then be expressed as a weighted summation over all
neighbors (without distinction as to whether they lie inside or outside the molecule):

(17)

where σi represents the source terms originating from the Coulombic potentials at
neighboring interior points such as those appearing in (15). Note that the source term is only
non-zero for points having one neighbor across the molecular surface. Thus the Coulombic
potential need only be evaluated at interior points lying adjacent to the molecular surface
thereby minimizing the number of Coulombic potential evaluations. To further expedite the
computation, Φc is evaluated using the fast multipole acceleration method4, 8, 44.

After including the ionic source contributions from the PBE in the exterior region, the final
discrete form of the PBE can be written,

(18)

where  at interior points since one is solving for the reaction field potential there.

Outer Boundary Conditions
The governing equations are closed by specifying the potential at the outer boundary. One
option is to set Φ=0 at the outer boundary and place the outer boundary sufficiently far away
to minimize the effects of outer boundary errors – this can be accomplished more readily
with the variable mesh spacing features of the ACG. Another option is to evaluate the outer
boundary potential using the Debye-Hückel approximation:

(19)
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which is useful when solving the linear PBE. Solutions to the nonlinear PBE however,
generally decay more quickly away from the surface (where, |Φ|>1) than their linear
counterparts. Thus, when considering the nonlinear PBE, (19) tends to overestimate the
boundary potentials which introduces a bias into the computed solution.

The approach23 adopted here is to approximate the electrostatic potential outside the
computational domain by the approximate monopole formula, Φb=Be−κ(r−h)/r where the
constant, B, is determined from electroneutrality conditions and 2h is the side length of the
overall grid. This approach is equally valid for both the linear and nonlinear forms of the
PBE and requires only that the magnitude of the potential at the outer boundaries, |Φ|≪1. An
explicit expression for B is given elsewhere23.

Iterative Solution Scheme
The discrete system (18) comprises a sparse algebraic set of coupled equations to be solved
for the potentials, . For large numbers of nodes, direct inversion of the equation system is
not feasible and an iterative inversion method must be used. The choice of iteration method
has direct bearing upon the robustness and rate of solution convergence. Here, a standard
Gauss-Seidel iteration method and multigrid are combined to achieve the good convergence.
Gauss-Seidel iteration usually results in an initially rapid, but then slowed convergence rate.
This slackening in convergence is due to the persistence of long wavelength errors. Like
most simple iteration schemes, Gauss-Seidel updating effectively eliminates short
wavelength errors that fluctuate most rapidly between grid-points, but is less efficient at
removing long wavelength components. To promote faster convergence at moderate
computational expense (storage and CPU), multigrid acceleration is employed in the ACG-
based PBE solver.

Multigrid methods exploit the error smoothing properties of the Gauss-Seidel iteration
process. After several Gauss-Seidel iterations, the short wavelength errors are mostly
eliminated and only long wavelength errors remain. These errors can therefore be accurately
resolved upon a coarser grid. Moreover, because the mesh spacing is larger, the errors
fluctuate more rapidly between grid points on the coarser mesh. Therefore, Gauss-Seidel
applied on the coarser level is more effective at eliminating those errors. This basic insight
motivates the multigrid concept which attempts to eliminate errors over all wavelengths by
projecting the solution onto a hierarchy of increasingly coarser meshes. Descriptions of the
multigrid method are available elsewhere45 (including applications to the PBE46, 47).
Therefore, only a brief description of the overall method is presented here with emphasis
reserved for those implementation details that are specific to the use of an ACG.

The multigrid algorithm begins by defining a sequence of nested meshes, {Mℓ: ℓ=0, nlev}
where M0 is the finest level mesh. Next, interpolation procedures for transferring solutions
and errors between successive levels are defined. In multigrid terminology, these are
referred to as ‘restriction’ (transferring a solution from the finer grid, Mℓ−1, to the coarser
level mesh, Mℓ) and ‘prolongation’ (transferring from Mℓ to Mℓ−1) operators. Here bilinear
interpolation is employed for the prolongation step and its adjoint operator (full weighting45)
used for restriction.

In a two-level multigrid implementation the solution process begins by conducting a series
of single level Gauss-Seidel iterations on the finest level, M0. The errors (or residuals), λi
from (18) are then evaluated and restricted to the next coarser level, ℓ=1, using full weighted
averaging. A discrete approximation to the PBE is then developed on this coarser level.
However, the Coulombic source terms, σi, on this coarser level are set to zero and replaced
everywhere by the restricted errors which now 'drive' the coarser level solution. Gauss-
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Seidel iteration is then conducted on this coarser level to obtain a correction potential on this
level, {Φ1}. The final step is to linearly interpolate the corrections to the finer level, ℓ=0,
and add them to the existing solution, {Φ0}={Φg}. The extension to multiple levels is
straightforward and explained elsewhere45–47.

Post-Processing
The total electrostatic free energy expression is taken from Eq. 8 of 48. After integration by
parts of the last term and substituting using the governing equation (9) one obtains the total
electrostatic free energy, Gel , in kBT units11:

(20)

where,

(21a)

(21b)

(21c)

and the conversion factor to express the energies in kBT units is:

(22)

Here Gf is the energy due to fixed charges and Gm and ΔΠ are the electrostatic stress and
excess osmotic pressure terms, respectively. The excess osmotic pressure contribution has
special significance when assessing salt dependencies of the electrostatic free energies since
one can show 49, 50,

(23)

It is also useful to define the reaction field energy,

(24)

which is the difference between Gf and the Coulombic energy.

For interior points in Ω1 (e.g., the charge sites, ρk), Φ=Φc+Φg, is obtained by interpolating
the reaction field potential from the ACG and adding the Coulombic potential, Φc from (14).
The electrostatic energy contribution from the interior region, Gf, is computed by summing
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the product of charge times the electrostatic potential at the fixed charge sites. The volume
integrals over the exterior region, Ω2, are evaluated by looping over the cubic cells, ib, of the
ACG and approximating the volume integral of any function, g(Φ), by:

(25)

where the sum is taken over the exterior forming nodes, k, of cell, ib, and Φk is the potential
at forming node, k. In addition, a correction term is added to the volume integrals to account
for the contribution outside the computational domain. This correction term is based on the
same monopole approximation used for the outer boundary treatment and is developed fully
in 23.

Results
The results presented here serve two main objectives. The first is to assess error by
comparing ACG PBE predictions against analytical solutions or results obtained by alternate
highly accurate means11. In these studies, simple model geometries involving one or two
low dielectric spherical cavities, containing charges, embedded in a high dielectric ionic
solvent medium are considered. The second goal is to demonstrate the effectiveness of the
ACG-based PBE solver as a practical tool for modeling high resolution medium- and large-
scale biomolecules ranging from proteins to more highly charged nucleic acids and its large
and complex multi-molecular assemblies for which numerous X-ray crystal structures are
now available. This second goal is accomplished by computing the electrostatic potential
maps. Calculations were performed on a Dell Precision M2300 laptop (3GHz with 4 GB of
installed memory) or a dual-processor Intel Xeon Linux workstation (3 GHz with 1 GB of
memory).

In addition to the results below, the Supplementary Materials contain the computed
electrostatic (solvation) energies, timings and scaling with system size for proteins with
varying charge densities, shape and size and modeled both with the linear and the nonlinear
PBE. Those results show that for the same system the computation time to solve nonlinear
PBE is, on average, 6% more than that for the linear PBE.

Linear PBE Solved for a Low Dielectric Spherical Cavity with a Unit Charge Embedded in a
High Dielectric Ionic Solvent

The first model configuration studied solves the linear PBE for a unit radius low dielectric
spherical cavity, containing a single interior charge, embedded in 0M, 0.1M and 5M salt
solutions. The dielectric constants are set to ε1=2 and ε2=80, and the temperature set to
T=298.15K. No ion exclusion or Stern layer is modeled in this or subsequent PBE
calculations presented here. Since analytical expressions, developed by Kirkwood51, for the
solution of the linear Poisson-Boltzmann equation are available for all κ>051, 52 this case
constitutes a useful benchmark for establishing the overall accuracy of the ACG-PB solver.
The computational domain extends over four radii and the mesh is generated by requiring
that any surface-intersected cell whose size is larger than 0.125 times the distance to the
nearest charge, is subdivided. As the charge is displaced towards the surface, this
subdivision criterion produces an increasingly finer mesh about the surface point closest to
the unit charge (see Figure 2). The time to complete the calculation for all 15 charge
locations was 105 s on the PC laptop machine.

The mesh and contours of constant electrostatic potential for the case where the charge is
closest to the surface (1−ρ=3.125×10−3 Å so that the distance from the surface is 0.3% of
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the atom radius) are shown in Figure 2. With the variable mesh spacing capability the full
mesh involves only approximately 115K mesh points (a comparable resolution calculation
on a regular 3D lattice would entail over a trillion points). Note that the finest resolution
provided by the ACG PB solver is at the surface nearest the charge, not at the charge itself.
This is where the exterior full electrostatic potential and the interior reaction field
electrostatic potential vary most rapidly. The rapid variation in the solution about the charge
reflected in the contours is due to the analytically evaluated Coulombic potential
contribution. Both outside and inside the molecule the potential maps are smooth and well
behaved including near the unit charge placed inside the low dielectric sphere.

The numerical error defined as given by  is plotted as a function of
distance below the surface in Figure 3 and shows that the error remains small even when the
charge comes very close to the surface. For charges located within 99% of the spherical
cavity radius, errors remain 1% or less.

Nonlinear PBE for a Low Dielectric Spherical Cavity of Varying Central Charge in a Salt
Solution

The nonlinear behavior of a spherical cavity containing a centrally located charge is
considered to verify accurate recovery of nonlinear solutions and demonstrate stable
convergence at high net charge values. The governing PBE in this case reduces to a second
order ordinary differential equation (ODE) that can be solved by alternative means (e.g.,
Appendix A of11). Two cases are considered in this study. In the first, a centrally located
50e charge is placed inside a 20 Å radius sphere and the 1:1 salt concentration varied. The
dielectric constant inside and outside the sphere are 4 and 78.5, respectively, and the
temperature of the salt solution, T=300K. This case was examined by Zhou53 and his results
closely agree with the ones obtained here. The variation of the total electrostatic free energy,
Gel as a function of 1:1 salt concentration is also considered in Figure 4. According to (23)
the slope of the Gel vs. κ curve is related to the excess osmotic pressure energy contribution.
This relationship thus constitutes an internal consistency check valid for general molecular
geometries. The plot compares three different predictions of this electrostatic energy slope:
(i) the right hand side of (23) where the excess osmotic pressure, ΔΠ, is obtained using
ACG-PBE; (ii) differentiation of a piecewise quadratic fit to the Gel ~κ curve where Gel is
obtained from ACG-PBE; and (iii) the excess osmotic pressure predicted using the 1D
analysis11. Close agreement is established over the entire 1:1 salt concentration range. The
minor departure at the highest salt concentration appears to be due to the finite differencing
algorithm, the excess osmotic pressure energy contributions obtained with the 1D solver and
ACG-PBE remaining in close agreement.

Next, the net charge is increased from 1e, where the PBE solution is essentially linear, to
10,000e where nonlinear behavior dominates and the ability of the ACG solver to converge
the solution in a robust manner is put to the test. In all cases, the number of multigrid cycles
required to converge the solution ranged between 40 and 60. Figure 5 records the
electrostatic free energy contributions, normalized by Gf for the linear problem, Gf(lin.).
Note that Gf(lin.) can be expressed analytically and the resulting values are in close
agreement with the numerical predictions. Normalizing the electrostatic free energy
contributions this way highlights the relative importance of the various nonlinear
contributions. Again, good agreement between the 1D and ACG PB results are obtained.
The change in normalized fixed charge energy, ΔGf/Gf(lin.) (here ΔGf=Gf−Gf(lin.) and
Gf=Grf), is seen to be negligible at small charge values, but to dominate the nonlinear
contributions at higher charge values. Also, ΔGf/Gf(lin.) seems to asymptote to a constant
value at very high net charges. The opposite trend holds for the other two normalized
electrostatic free energy contributions, GNa/Gf(lin.) and ΔΠNa/Gf(lin.) which individually
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contribute a fixed fraction of total electrostatic energy at the low charge range. As net charge
increases however, their relative contributions diminish to zero. Also, since these two
electrostatic free energy terms have opposite sign their combined contribution is quite small
over the entire charge range.

Electrostatic Interaction Free Energies For Two Low Dielectric Charged Spherical Cavities
Embedded in an Aqueous Salt Medium

The long-range and non-specific electrostatic interactions can modulate the kinetic rates of
association of protein-protein and protein-nucleic acid association processes54. For instance,
changes in the ionic conditions and charge distribution of the binding partners have a
significant impact on the kinetic association rates of various biomolecular complexes55, 56.
The quantity of interest here is the electrostatic interaction free energy which is the
difference between the total electrostatic free energy of the complex and the summed total
electrostatic energies of the individual molecules considered in isolation. Simple model two
low dielectric spherical cavity systems have been studied previously using semi-analytical
treatments and are useful for validation purposes57. Electrostatic interaction or binding free
energies can be difficult to calculate because they are usually much smaller in magnitude
than the quantities being differenced. Therefore, the effects of truncation and other
discretization errors upon the electrostatic interaction energy may be much more pronounced
than for the total electrostatic energies of the two interacting partners.

Accurate electrostatic binding free energies for realistic and large-scale biomolecular
systems are given below and elsewhere using the ACG PBE solver58–62. Here the
electrostatic interaction between a pair of low dielectric spherical cavities, containing
interior charges is considered as a model problem for verifying the ability to accurately
calculate these interaction energies. The first sphere has radius 14Å and contains three
interior charges, {Qi}={−2.29, +8, +2.29}e, distributed along the x-axis at locations,
xi={−7.8, 0, +7.8}Å, relative to the center. The second sphere has radius 21Å and also
contains three interior charges, {Qi}={−2.21, −12, +2.21}e, distributed along the x axis at
locations, xi={X2−11.7, X2, X2 +11.7}Å, where the separation, X2, is the x-location of the
second sphere center. The dielectric constants chosen for this example are εin=4 and
εout=78.5. The Debye-Hückel screening parameter, κ=0.1316Å−1.

Figure 6 compares the electrostatic interaction free energy obtained using the ACG PBE
solver with semi-analytical predictions57 demonstrating excellent agreement when the same
(van der Waals) surface is used to define the solute boundary that separates the interior and
exterior dielectric regions. The total electrostatic free energies of the isolated 14Å and 21Å
low dielectric charged spheres are −199.3 kcal/mol and −283.2 kcal/mol, respectively.
Hence, the electrostatic interaction free energy is two orders of magnitude smaller than the
individual electrostatic free energies. As one would expect, the choice of molecular surface
affects the computed electrostatic interaction energy when spheres are closer than the
solvent probe diameter (2.8Å). Figure 6 also compares the electrostatic interaction energy
obtained using the solvent excluded molecular surface. The resulting curve deviates
significantly from the one using the van der Waals surface with a factor of four difference
being obtained at the 35Å separation.

High Resolution Surface Potential Maps of Nucleic Acids and Their Binding Partners
Surface potential maps are now routinely used to identify potential binding or recognition
sites on biomolecules at atomic resolution. For example, unique recognition or ion binding
sites in irregular RNA structures, that contain noncanonical base pairs (e.g., GU wobble base
pairs) and/or extruded (non)canonical bases, have been identified using the hybrid boundary
element and finite difference nonlinear PB solver11 and confirmed using the ACG-PB
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technology63, 64. Obtaining such quantitative or high resolution electrostatic potential maps
of large-scale biomolecules – especially highly charged ones like nucleic acids and its
complexes with various charged binding partners – is very challenging for any PB solver.
Surface potential maps are generated for three configurations: a small low charge RNA
binding protein along with it’s a single stranded (ss) RNA binding partner, and a more
highly charged noncanonical DNA structure using the nonlinear form of the PBE. The first
case examines the binding of the cationic Fox-1 protein (net charge =+3e) to the RNA
element UGCAUG (PDB id: 2err, model 1), where the latter is a simple single-stranded
RNA structure. The solute boundary is modeled using the solvent excluded surface with
atomic radii and charges specified using the CHARMM27 force field parameters38. As
previously, the ion exclusion region is omitted; also T=298K, ε1=2 and ε2=80. The surface
mesh spacing resolution is set to 0.3 Å and the outer boundary set to approximately three
times the largest molecule dimension. In this study the first model of the NMR ensemble
was employed to assess the error incurred in electrostatic potential calculations. The
histidine residues were considered unprotonated while other charged residues were assigned
protonation states based on a physiological pH value of 7. Thus, the Asp and Glu residues
had a charge of −1e whereas a charge of +1e was assigned to the Lys and Arg residues. The
1:1 (i.e., NaCl) salt concentration was fixed at 0.1 M.

The surface maps are obtained by first identifying the mesh edges intersected by the surface
(i.e., those edges with an end point in the interior and exterior domains) and then calculating
the intersection points. A triangulation of the intersection points is then developed and the
potentials at the intersection points developed by extrapolating the ACG solution to the
surface using the nearest exterior mesh nodes. All surface potential maps are produced using
the commercial program, TecPlot.

As evident from Figure 7a, b the single RNA element lies in a distinct pocket of very
positive electrostatic potential on the RNA binding domain of Fox-1 protein. It has been
previously reported65, 66 – on the basis of linear PBE evaluations that the surface potential in
the RNA binding site of this protein is neutral. However, this is not borne out by the results
obtained here with the nonlinear PBE (Figure 7b), thus highlighting the drawbacks of
forming conclusions on the basis of linear PBE calculations. Predictions using the linear
ACG-PB solver also show a significantly different surface potential distribution for the
protein RNA binding domain of Fox-1 relative to the nonlinear one (see Figure 7b and 7c).
The electrostatic potential of the ssRNA is negative over most of its surface (Figure 7d),
whereas the negative potential regions of the RNA are attenuated with the presence of the
cationic protein (results not shown).

The second example is the deformed and nonlinear DNA structure in association with the
Tc3 transposase protein (PDB id: 1tc3). Charges and radii are assigned using the AMBER
force field37 and the solute boundary is represented using the solvent excluded molecular
surface. Also, T=298K, ε1=2 and ε2=80. The 1:1 salt concentration is set to 0.1 M. It is
desirable that the electrostatic potential maps for nucleic acids capture unique local sequence
dependent features and the intricate phosphate charge distribution (e.g., close clustering of
phosphate groups that occurs at helical junctions in RNA and DNA structures). Here high
resolution surface potential maps capturing these features are produced. As portrayed in
Figure 8a the G-stretch of the major groove side of the DNA structure and its locally
narrowed minor groove have a deep negative potential67. The extensive region of negative
potential along the G-stretch of the major groove is mostly due to the deformation of the
DNA structure. Figure 8b shows how the protein Tc3 transposase positions several
positively charged side chains along one side of the major groove and in the narrow minor
groove, forming numerous hydrogen bonds and salt bridges in these grooves. The linear PB
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solution produces much larger and more negative potential patches on the grooves (results
not shown).

High Resolution Surface Electrostatic Potential Maps of Large-Scale Biomolecular
Assemblies: Ribosomes

Due to the large-scale and highly charged nature of biomolecular assemblies such as
ribosomes, which can contain more than a million atoms, it is very challenging to obtain
stable and accurate electrostatic properties with standard 3D lattice nonlinear PB solvers. To
date, these calculations require access to supercomputers and special techniques such as
parallel focusing14, 68. Moreover, these calculations often encounter convergence issues
when using the nonlinear PBE necessary to properly model these highly charged systems at
the all-atom level and for resolutions finer than 0.6 Å69–72.

The computation of the surface potential can be computationally demanding for the large-
scale biomolecular assemblies here considered, making such computations inaccessible to
desktop computers and even large clusters. Thus, to the best of our knowledge the results
here shown represent the first nonlinear PB calculation done on a serial platform for such a
large-scale biomolecular system at a level of fine grid resolution of 0.3 Å using an all-atom
model of a ribosomal subunit. All other reported surface potential maps of large-scale
biomolecular assemblies, such as the small 30S ribosomal subunit or viruses, that were done
using serial computers were obtained with the linear PBE solution, coarser grid resolutions
or more approximate generalized Born-based approaches3, 69–76.

Here a high resolution electrostatic potential map of the large 50S ribosomal subunit
structure from H. marismortui (PDB id: 3cc4) was computed using the nonlinear PBE. This
large ribosomal subunit consists of 5S and 23S RNAs and numerous proteins with 150970
atoms and has a net charge of −2949e (see Figure 9a). The co-crystal structure of
anisomycin bound to the 50S ribosomal subunit was taken from the RCSB PDB Databank.
All co-factors including metals and drug were removed from the structure, and only the
protein and RNA chains retained. The CHARMM38 force field atomic radii and charges
were used for these PB calculations after the missing hydrogen atoms were added to the
structure using the pdb2pqr server77. The solvent excluded molecular surface was, the 1:1
salt concentration was 0.1M (κ=0.1030Å−1) and the dielectric constants, ε1=2 and ε2=80.

Using a finest mesh spacing of 0.3Å results in an ACG mesh with a total of 52.5 million
nodes. Meshing the minimum enclosing box using a regular lattice grid with the same finest
spacing would require 354 million nodes. Here the outer boundary side length is three times
larger than the longest molecular dimension and thus the complete mesh spans 1228 Å.
Solving the nonlinear PBE for this configuration produces stable and converged results
within 170 iterations. With the ACG-based PBE solver the nonlinear PBE solution for this
large-scale and highly charged biomolecular assembly took 13.5 hours using a 10-node 64-
bit SGI Altix workstation. Machines of this caliber are widespread in university research
departments and small businesses conducting computational biophysics research.

Figure 9b–d shows the electrostatic potential maps for the 50S ribosomal subunit (PDB id:
1CC4) and viewed from z-, y- and x-axes. The regions of positive and negative potential on
the molecular surface correspond to the locations of the proteins and RNA, respectively. The
presence of the proteins is essential in order to neutralize the close repulsive phosphate-
phosphate interactions and thus help stabilize this intricate large-scale protein-RNA
complex. A close up of a portion of the surface potential in Figure 9e reveals the resolution
and attendant quality of the surface potential map. The linear PB solution provides a
different potential distribution on the surface of this highly charged biomolecular entity
(results not shown). Thus, the nonlinear Poisson-Boltzmann solution should be used when
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modeling nonspecific electrostatic interactions of the ribosome, its assembly process and
associations with charged drug ligands.

Concluding Remarks and Future Directions
A finite difference method to solve the linear/nonlinear Poisson-Boltzmann equation has
been formulated and implemented on a new grid structure known as an adaptive Cartesian
mesh or octree. The generation of the mesh about a biomolecular structure, the construction
of the finite difference operators upon the mesh, the representation of the electrostatic
potential inside and outside the molecular surface, and preliminary computational results
have been presented in this paper. Properties and advantages of the ACG-based PBE
approach include:

• Fast mesh generation due to the simple fundamental shape of the ACG cells.

• Optimized grid spacing where fine cells are used where the potential gradients are
changing most rapidly (i.e., at the surface) and coarser elements used elsewhere.

• Use of compact finite difference formulas to evaluate the dielectric-weighted
Laplacian and tailored for implementation on the ACG

• A representation of the potential (total potential in the outside the molecule and
reaction field potential inside) which completely eliminates charge singularities and
numerically induced self-charging energies.

• A robust multigrid-accelerated convergence scheme.

• The incorporation of a recently developed outer boundary treatment to estimate the
boundary potential and provide first order (i.e., based on a monopole
approximation) corrections to computed energies.

Application of the method to idealized configurations involving charged and low dielectric
spheres embedded in high dielectric ionic solvent has confirmed that the method
successfully maintains high accuracy as a charge is placed near the surface, properly
predicts the electrostatic interaction energies for a pair of charged spheres, and reliably
converges solutions for very highly charged systems. Comparisons with semi-analytical
solutions to the nonlinear PBE have verified that the ACG-based method accurately
reproduces the salt-dependent behavior highly charged spheres immersed in 1:1 salt
solutions. PB calculations involving very complex biomolecular systems involving highly
charged nucleic acid assemblies including the 50S ribosomal subunit have also been carried
out successfully. The ACG-PB solver in conjuction with molecular dynamics or Brownian
dynamics techniques should allow more careful and systematic studies of the role of
nonspecific electrostatic interactions on the binding of various antibacterial drugs to the
ribosome, and ribosome and virus assembly processes at atomic resolution. An assessment
of the performance of the nonlinear and linear PB predictions of electrostatic solvation free
energies for a test set of 55 proteins – that vary in size, shape and charge distribution – are
also provided in order to establish benchmark test cases for comparisons with other PB
solvers.

Ongoing activity in the development of the ACG-based PBE solver includes: improved
treatment of the solution near the dielectric interface to obtain more accurate predictions of
the surface potential and normal gradients, and hence forces; incorporation of nonuniform
ion size effects, the calculation of electrostatic interaction energies between the two
molecules where the bound and unbound states differ, and validation/testing of all the above
new ACG-PB features for a variety of biomolecular systems.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Nomenclature

C energy conversion factor, as defined in (22)

e protonic charge

f(Φ) mobile ion charge function, as defined in (12)

Gel total electrostatic free energy, as defined in (20)

Gf fixed charged energy contribution, as defined in (21a)

Gm dielectric stress energy contribution, as defined in (21b)

Grf reaction field energy, as defined in (24)

i, j, k unit vectors along x, y and z, respectively

I1:1 ionic strength of the 1:1 (monovalent) salt

kB Boltzmann constant

Mℓ ℓ-th level mesh in multigrid scheme (M0 is the finest level mesh)

qk normalized charge, qk=(4πe/ε1kBT)Qk, where ε1 is the interior dielectric
constant

Qk value of the k-th charge, in units of e (electron charge)

Ri position of the i-th node in the ACG mesh

t Stern layer or ion-exclusion thickness, in Å

T absolute temperature of the aqueous salt solution, in K

δ(r) 3D Dirac delta function centered at r

Δi size (side length) of the i-th mesh cell

ΔΠ excess osmotic pressure energy, as defined in (21c)

ε dielectric constant

ε1, ε2 dielectric constant in the interior (Ω1 ) and exterior (Ω2 and Ω3 ) regions,
respectively

Φ reduced (or dimensionless) total electrostatic potential

Φc Coulombic potential, as defined in (14)

Φg potential field computed on the ACG grid and defined in (16)

Φrf reaction field potential, Φrf=Φ − Φc

κ Debye-Hückel screening parameter, as defined in (11), in Å−1

λi residual, as defined in (18)

ρ charge density, in e/Å3

ρf contribution of fixed solute charges to the total charge density, in e/Å3

ρm contribution of mobile ions to the total charge density, in e/Å3

ρk position of k-th charge
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σi Coulombic source term

ωij weights in the discrete approximation to the weighted Laplacian, e.g., (17)

Ωi volume domains corresponding to the molecule interior (Ω1), the Stern layer
(Ω3) and the remaining exterior region, Ω2=R3−Ω1−Ω3

ACG Adaptive Cartesian Grid

ACG-PBE ACG-based PBE solver

BEM Boundary Element Method

FD Finite Difference

FE Finite Element

PBE Poisson-Boltzmann Equation

PDB rotein Data Bank

PDE Partial Differential Equation

SA Solvent Accessible (surface)

SE Solvent Excluded (surface)

vdW van der Waals (surface)
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Figure 1.
ACG nodes lying on the interface between two different sized cells.
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Figure 2.
Cut through ACG for unit charge placed at ρ=0.9969i inside a low dielectric spherical
cavity. The lower graph provides a close-up of the mesh and solution near the charge site
inside the low dielectric spherical cavity.
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Figure 3.

Error, , plotted as a function of the distance of the interior unit charge,
from the surface of the sphere. The linear PBE is solved over a unit radius spherical cavity
with ε1=2 and ε2=80 at three different salt conditions: I1:1=0, 0.1M and 5.0M corresponding
to Debye-Hückel screening parameters, κ=0, 0.103Å−1 and 0.728Å−1, respectively.
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Figure 4.
Comparison of salt sensitivity, ∂Gel/∂κ, obtained from: (i) the osmotic pressure, ΔΠ,
computed with the ACG-PBE solver and relation (23)); (ii) finite differencing of the Gel vs.
κ curve obtained with the ACG-PBE solver and (iii) a 1D high resolution calculation.
Nonlinear energy contributions as a function of the Debye-Hückel parameter, κ, for the
single centrally located charge of 50e inside a 20 Å radius sphere. The dielectric constants
are ε1=4 and ε2=78.5.
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Figure 5.
Charge dependence of electrostatic free energy ratios for I=0.03M. Results are obtained
using the ACG scheme and the 1D finite element solution for the case of a spherical cavity
with centrally located charge. The plotted electrostatic free energies, ΔGf=Gf−Gf(lin.)), GNa
and ΔΠNa, are normalized by the fixed charge energy obtained from the linear PBE, Gf(lin.).
In this case this equals the reaction field energy, Grf, since the Coulombic energy is zero.
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Figure 6.
Electrostatic interaction energy for two low dielectric spherical cavities with interior charges
embedded in a high dielectric ionic solvent, as a function of separation distance between the
centers of the charged spherical cavities.

Boschitsch and Fenley Page 31

J Chem Theory Comput. Author manuscript; available in PMC 2012 May 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
Different depictions of the NMR structure of RNA binding domain (RBD) of Fox-1 in
complex with the single-stranded UGCAUGU RNA element (PDB id: 2err, model 1). (a)
RNA phosphate backbone depicted by the dark gray ribbon and the different bases colored
as: adenine= red, uracil=orange, guanine=green and cytosine=yellow. The protein peptide
backbone adopts an orange ribbon representation with positively and negatively charged
side chains shown as blue and red sticks, respectively. This view emphasizes the clustering
of various cationic protein residues at the RNA binding interface. (b) Surface electrostatic
potential (in kcal/mol/e) and overall shape of the RBD of Fox-1. A well defined and concave
region of positive potential, generated by the cationic protein residues and traced by the bent
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RNA structure, is clearly shown when the nonlinear PBE solution is employed. This cationic
protein (net charge=+3e) follows the electrostatic pattern of other RNA binding proteins that
have a distinct positive potential patch on their binding interface78. Thus, the RNA fills most
of concave blue/green protein surface to which it is complementary in both shape and
electrostatic potential. (c) Same view and color map as (b), but using the linear PBE. The
positive electrostatic potential is now overestimated and the positive region much broader
than in (b). (d) Electrostatic potential of the single-stranded bent and overall negatively
charged RNA structure. As expected an overall negative potential covers most of the RNA
surface due to the presence of the anionic phosphate groups.
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Figure 8.
(a) The surface potential of the deformed and non-linear DNA. Radii and atomic charges are
assigned using the Amber force field. This unique A/B junction DNA structure generates a
surface potential map with characteristics of an A-DNA major groove and B-DNA minor
groove. A continuous high negative potential band along the G-stretch along with
electropositive spots due to amino groups of cytosine is observed for this nonlinear DNA
structure. The electrostatic potential is given in units of kcal/mol/e. (b) The N-terminal
DNA-binding domain of Tc3 transposase bound to the DNA (PDB id: 1TC3). The ribbon or
tube-like representation of the DNA phosphate backbone is shown in light gray and that of
the peptide backbone in gold. The cationic residues that penetrate in the narrow minor
groove or face the G-stretch side of the major groove are shown in blue stick representation.
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Figure 9.
(a), Ribbon representation of the 50S ribosomal subunit (PDB id:3cc4; net charge: −2949e;
150970 atoms). The protein and rRNA molecules are shown in cyan and dark gray,
respectively. (b)–(d) Different views of the surface potential (in kcal/mol/e) of the whole
50S ribosomal subunit. Note that the red and blue patches correspond to regions where the
RNA and protein lie, respectively. (e) Close up view of a particular intricate region of the
complex 50S subunit showing the high quality of the generated surface potential map using
the ACG nonlinear PB solver at the required mesh spacing to resolve the surface geometry.
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