Blood coagulation factor X mRNA encodes a single polypeptide chain containing a prepro leader sequence

Marion R.Fung, Rob M.Campbell and Ross T.A.MacGillivray

Department of Biochemistry, University of British Columbia, Vancouver, BC V6T 1W5, Canada

Received 7 March 1984; Revised and Accepted 11 May 1984

ABSTRACT

Thirty thousand colonies of a bovine liver cDNA library were screened with a mixture of synthetic oligodeoxyribonucleotides coding for bovine factor X. Five positive colonies were identified, and plasmid DNA was isolated. Cleavage with restriction endonucleases showed that these plasmids (designated pBX1-5) contained inserts of 1530bp, 770bp, 700bp, 1100bp and 930bp. DNA sequence analysis of the plasmid with the largest insert (pBX1) confirmed that bovine factor X cDNAs had been cloned. The cDNA sequence predicts that factor X is synthesized as a single chain precursor in which the light and heavy chains of plasma factor X are linked by the dipeptide Arg-Arg. The cDNA sequence also predicts that factor X is synthesized with a prepro leader peptide. We propose that at least five specific proteolytic events occur during the conversion of prepro-factor X to plasma factor Xa.

INTRODUCTION

The intrinsic and extrinsic clotting pathways converge at the activation of factor X (Stuart factor) (1). In the intrinsic pathway, factor IXa in the presence of factor VIIIa, calcium ions and phospholipid cleaves a single peptide bond in factor X (2). This limited proteolysis converts factor X from an inactive zymogen to the active serine protease factor Xa. In the extrinsic pathway, the same peptide bond in factor X appears to be cleaved by factor VIIa in the presence of tissue factor, calcium ions and phospholipid (2). Following the formation of factor Xa, both pathways share a common series of reactions leading to the formation of a fibrin clot. Plasma factor X consists of two polypeptide chains (a light chain and a heavy chain) joined by a disulfide bond (see ref. 1). The light chain contains a y-carboxyglutamic acid-containing region that functions in binding calcium ions, while the heavy chain contains the catalytic region, including the active site serine residue. These two regions are homologous to the NH,-terminal and COOH-terminal regions of prothrombin, respectively. However, prothrombin is found in plasma as a single polypeptide chain (1). This has led several investigators to propose that factor X is synthesized as a single chain precursor comprised of both the light and heavy chains (see (1)). Single chain forms of bovine (3), human (4) and rat (5) factor X have been reported, but these preparations have not been well characterized mainly because their isolation from plasma in large amounts has been impossible.

Recombinant DNA technology offers an alternative strategy for analyzing protein structure, as the complete amino acid sequence of a protein can be predicted from a cloned cDNA sequence. This strategy has the advantage that it is possible to predict the structure of the primary translation product encoded by a mRNA. In this way, cloned cDNAs coding for prothrombin (6,7) and factor IX (8,9) have predicted that these coagulation factors are synthesized as precursors having amino-terminal extensions of 43 and 46 amino acid residues respectively.

In this paper, we report the isolation and characterization of a cDNA clone coding for bovine factor X. From nucleotide sequence data, we show that factor X mRNA encodes a single polypeptide chain consisting of the light and heavy chains of plasma factor X linked by the dipeptide Arg-Arg. We also predict that at least five specific proteolytic events occur during the conversion of this single chain precursor to factor Xa.

MATERIALS AND METHODS

Preparation of an oligodeoxyribonucleotide probe for bovine factor X

The oligonucleotide mixture:

$$5'-d(AT_T^CTT_G^ATCGATCCA_T^CTT)-3'$$

coding for residues 274-279 of the heavy chain of bovine factor X (10) was supplied by Applied Biosystems Inc. Computer analysis showed that this oligonucleotide mixture represents the minimum number of heptadecanucleotides required to encode a region of bovine factor X mRNA, as predicted from the amino acid sequence. The location of this oligonucleotide mixture in the factor X cDNA sequence is shown in Figure 3 (nucleotides 1450-1466). The oligonucleotide mixture was labeled with $\gamma - [^{32}P]$ ATP and T4 polynucleotide kinase (11) to a specific activity of 1.5 x 10⁶ cpm/pmole, and the unincorporated $\gamma - [^{32}P]$ ATP removed by chromatography on a column of Sephadex G-25 equilibrated with 5mM EDTA pH 7.5. The excluded fraction was pooled and added to the hybridization mixture directly.

Screening of a bovine liver cDNA library

Thirty thousand bacterial colonies of a bovine liver cDNA library (6) were spread on six cellulose nitrate filters (Millipore HATF 82mm filters, 5000 colonies per filter), and grown on LB-tetracycline (12.5µg/mL) plates until the colonies were 1-2mm in diameter. Two replica filters were prepared (12), the filters placed on fresh tetracycline plates and incubated until the colonies were 2-3mm in diameter. At this point, the master filters were stored at 4°C, while the replica filters were placed on LB-chloramphenicol (250µg/mL) plates and incubated at 37°C for 16 hrs. The replica filters were then prepared for hybridization (13), and prehybridized for 16 hrs. at 68°C in a sealed bag containing 6 x SSC (1 x SSC is 0.015M sodium citrate, 0.15M sodium chloride, pH 7), 2 x Denhardt's solution (1 x Denhardt's solution is 0.02% of each of bovine albumin, ficoll and polyvinyl pyrrolidone). The prehybridization solution was then replaced with hybridization solution containing 6 x SSC, 2 x Denhardt's solution, 0.5% SDS, and the [³²P]-labeled mixture of oligonucleotides at a concentration of 6.6mM. After hybridization at 37°C for 18hr., the filters were rinsed briefly in 6 x SSC at room temperature. The filters were then washed at 35°C (four times, 5min. per wash), and the damp filters exposed to X-ray film with intensifying screens at room temperature for 68hr.

Areas of the master filters corresponding to positive colonies were cut out, and resuspended in LB-tetracycline. The colonies were replated at low colony density, and rescreened as before. Positive colonies from the second screen were streaked out to give single colonies, and plasmid DNA isolated.

Restriction endonuclease mapping

Plasmid DNA was digested with one or more restriction endonucleases under conditions recommended by the manufacturers (BRL and NEBiolabs). DNA fragments were analyzed by agarose and polyacrylamide gel electrophoresis.

DNA sequence analysis

DNA sequence analysis was carried out by the chemical cleavage method (14), and the chain termination method (15) using the single-stranded phage M13 as a cloning vector (16). Restriction endonuclease fragments were ligated either individually or in mixtures into M13mp8 and M13mp9. This DNA was then used to transform <u>E. coli</u> strain JM103. Single stranded DNA was isolated from recombinant phage as described (16). DNA sequence

analysis was performed using a synthetic pentadecanucleotide (PL Biochemicals) as a primer. Reaction products were analyzed by electrophoresis on denaturing polyacrylamide gels (17). After electrophoresis, gels were dried prior to autoradiography. Under these conditions, some M13 ambiguous sequence data, presumably because of templates gave non-denatured secondary structure in the DNA fragments. In these cases, the sequence analysis was repeated except that deoxyinosine triphosphate was substituted for dGTP in each reaction (18).

RESULTS

Isolation of bovine factor X cDNA clones

A bovine liver cDNA library has recently been constructed (6). The library consists of 90,000 independent recombinants each containing cDNA inserts greater than 1,000 + 200 base pairs (bp) cloned into the Pst-1 site of pBR322 by homopolymeric dG:dC tailing. Thirty thousand bacterial colonies of the library were screened at high colony density (12) with a mixture of 24 synthetic oligonucleotides that coded for residues 274-279 of the heavy chain of bovine factor X (10). Screening with a mixture of oligonucleotides was necessary because of the degeneracy of the genetic After hybridization with the [32P]-labeled oligonucleotides, code. nine positive colonies were detected in corresponding positions on duplicate filters. An example of a positive colony is shown in Figure Because it was not possible to identify single colonies from this 1. high density screen, positive colonies were replated at low density, and rescreened as before. An example of the second screen is shown in Figure After hybridization with the [32P]-labeled oligonucleotides, 1B-D. excess probe was removed by several short washes at 23°C (Figure 1B). A single positive colony was detected in both replica filters, but other colonies on the filter were also weakly positive. To test the specifi-

<u>Figure 1</u>: Autoradiograph of bovine liver cDNA library screened with a mixture of synthetic oligodeoxyribonucleotides coding for factor X. For each of panels A-D, duplicate filters are shown, X represents marks used to orient the filters, and the arrows point to colonies that were positive on both replica filters. <u>Panel A</u>: high density screen of 5,000 colonies. Hybridization and washing conditions are described in Materials and Methods. <u>Panel B</u>: the positive colony from panel A was rescreened at low colony density. After hybridization, the filters were washed four times in 6 x SSC at 23°C and exposed to X-ray film for 18hr. <u>Panel C</u>: The filters from panel B were washed four times in 6 x SSC at 38°C and re-exposed to X-ray film for 22hr. <u>Panel D</u>: The filters from panel C were washed four times in 6 x SSC at 46°C and re-exposed to X-ray film for 18hr.

Figure 2: Restriction map and sequencing strategy for bovine factor X cDNA.

The bars below the restriction map represent the clones pBX1-pBX5. The 5' non-coding region is represented by a dotted bar, the region coding for the leader peptide by the slashed bar, the region coding for the light chain of plasma factor X by the solid bar, and the region coding for the heavy chain of plasma factor X by the open bar. The extent of sequencing of pBX1 is indicated by the length of the arrow. DNA sequence determined on the coding strand is indicated by an arrow pointing right; sequence determined on the non-coding strand is indicated by an arrow pointing left. DNA sequence determined by the chain termination method (15) is indicated by the light arrows; DNA sequence determined by the chemical cleavage method (14) is indicated by the heavy arrows. The scale at the bottom represents nucleotides in kilobases.

city of the hybridization, the filters were washed at 38°C (Figure 1C). Although this washing step removed some of the background hybridization, a further washing step at 46°C was required to remove all of the background hybridization, leaving a single positive colony that hybridized specifically to the mixture of synthetic oligonucleotides (Figure 1D). Five of the nine positives from the first screen were positive in the low density second screen.

Restriction endonuclease mapping of factor X cDNA clones

Plasmid DNA was isolated from each of the five positives, designated pBX1-pBX5. Digestion with <u>Pst-1</u> showed that these plasmids contained bovine cDNA inserts of 1530bp, 770bp, 700bp, 1100bp, and 930bp. Prelim-

inary restriction mapping showed that the inserts contained overlapping DNA (Figure 2). The plasmid containing the largest cDNA insert (pBX1) was chosen for further study.

DNA sequence analysis of pBX1

The complete nucleotide sequence of the cDNA insert of pBX1 was determined using the strategy shown in Figure 2. Restriction endonuclease fragments of pBX1 were subcloned into phage M13, followed by DNA sequence analysis by the chain termination method (Figure 2, light arrows). This resulted in the determination of 90% of the sequence of the pBX1 insert. The sequence analysis was completed using the chemical cleavage method (Figure 2, heavy arrows).

The complete DNA sequence of the pBX1 insert is shown in Figure 3. Nucleotides 196-615 of pBX1 code for the light chain of factor X (19), and nucleotides 622-1537 code for most of the heavy chain of factor X The factor X cDNA sequence predicts that factor X mRNA encodes a (10). single polypeptide chain precursor, in which the light and heavy chains are linked by the dipeptide Arg-Arg (encoded by nucleotides 616-621 in Figure 3). None of the factor X clones contains DNA complementary to the 3' end of factor X mRNA. Comparison with the amino acid sequence of the heavy chain shows that pBX1 is probably lacking 14 nucleotides of coding sequence, a presumed stop codon, the 3' non-coding region and the poly-A tail. As cDNA synthesis was primed with oligo (dT), this lack of 3'sequences may have been the result of subsequent exonuclease activity or incomplete second strand synthesis during the construction of the cDNA library. Analysis of the 5'end of factor X cDNA reveals the presence of a leader sequence (Figure 3). A single ATG codon (nucleotides 76-78) occurs in the same reading frame that codes for the single chain factor X. This suggests that factor X is synthesized as a precursor having an NH₂-terminal leader peptide of 40 amino acid residues. In that case, pBX1 contains a 5' untranslated region of 75 nucleotides.

DISCUSSION

From the cDNA sequence, it is clear that bovine factor X is synthesized as a single-chain precursor. Single chain species have been reported for bovine (3), human (4) and rat (5) factor X, although these preparations have not been well characterized. The cDNA sequence predicts that the conversion to the two chain form involves the removal of an Arg-Arg dipeptide. This type of processing is analagous to the

AGC	CTG	GGC	GAG	CGG 15	YCC	TTG	œc	TGG	AGG 30	CCT	GTT	GCG	GCA	GGG 45	ACT	CIAC	GGC	tgt	сст 60	ccc	AAG	GGC	ccc	ACC 75	-40 Met ATG	Ala GCG	G1y GGC	Leu CTG	Leu CTG 90	His Cat	Leu CTC	Val GTT	Leu CTG	Leu CTC 105
-30 Ser AGC	Thr ACC	Ala GCC	Leu CTG	Gly GGC 120	Gly GGC	Leu CTC	Leu CTG	Arg CGG	Pro CCG 135	-20 Ala GCG	Gly GGG	Ser AGC	Val GTG	Phe TTC 150	Leu CTG	Pro CCC	Arg CGG	Asp GAC	Gln CAG 165	-10 Ala GCC	His CAC	Arg CGT	Val GTC	Leu CTG 180	Gln CAG	Arg NGA	Ala GCC	Arg CGC	-1 Arg AGG 195	+1 Ala GCC	Asn AAC	Ser TCA	Phe TTC	Leu TTG 210
Glu GAG	Glu GNG	Val GTG	Lys AAG	10 Gln CAG 225	Gly GGA	Asn AAC	Leu CTG	Glu GAG	Arg CGA 240	Glu GAG	Cys TGC	Leu CTG	Glu GAG	20 Glu GAG 255	Ala GCC	Cys TGC	Ser TCA	Leu CTA	Glu GAG 270	Glu GAG	Ala GCC	Arg CGC	Glu GAG	30 Val GTC 285	Phe TTC	Glu GAG	Asp GAC	Ala GCA	Glu GAG 300	Gln C A G	Thr ACG	Asp Gat	Glu GAA	40 Phe TTC 315
Trp TGG	Ser AGT	Lys AAA	Tyr TAC	Lys AAA 330	Asp GAT	Gly GGA	Asp GAC	Gln CAG	50 Cys TGT 345	Glu GAA	Gly GGC	His CAC	Pro CCG	Cys TGC 360	Leu CTG	Asn AAT	Gln CAG	Gly GGC	60 His CAC 375	Cys TGT	Lys AAA	Asp GAC	Gly GGC	Ile ATC 390	Gly GGA	Азр GAC	Tyr TAC	Thr ACC	70 Cys TGC 405	Thr ACC	Cys TGT	Ala GCG	Glu GAA	Gly GGG 420
Phe TTT	Glu GAA	Gly GGC	Lys AAA	80 Asn AAC 435	Cys TGC	Glu GAG	Phe TTC	Ser TCC	Thr ACG 450	Arg CGT	Glu GAG	Ile ATC	Cys TGC	90 Ser AGC 465	Leu CTG	Asp GAC	ÀSN AAT	Gly GGA	Gly GGC 480	Cys TGC	Asp GAC	Gln CAG	Phe TTC	100 Cys TGC 495	Arg AGG	Glu GAG	Glu G A G	Arg CGC	Ser AGC 510	Glu GAG	Val GTG	Arg CGG	Cys TGC	110 Ser TCC 525
Cys TGC	Ala GCG	His CAC	Gly GGC	Tyr TAC 540	Val GTG	Leu CTG	Gly GGC	Asp GAC	120 Asp GAC 555	Ser AGC	Lys AAG	Ser TCC	Cys TGC	Val GTG 570	Ser TCC	Thr ACA	Glu GAG	Atg CGC	130 Phe TTC 585	Pro CCC	Cys TGT	61 y 666	Lys AAG	Phe TTC 600	Thr ACG	Gln CAG	Gly GGA	Arg CGC	140 Ser AGC 615	Arg CGG	Arg CGG	Trp TGG	Ala GCC	Ile ATC 630
His CAC	Thr ACC	Ser AGC	Glu G A G	150 Asp GAC 645	Ala GCG	Leu CTT	Asp GAC	Ala GCC	Ser AGC 660	Glu GAG	Leu CTG	Glu GAG	His CAC	160 Tyr TAC 675	Asp GAC	Pro CCT	Ala GCA	Asp GAC	Leu CTG 690	Ser AGC	Pro CCC	Thr ACA	Glu GAG	170 Ser AGC 705	Ser TCC	Leu TTG	Asp GAC	Leu CTG	Leu CTG 720	Gly GGC	Leu CTC	Asn AAC	Arg AGG	180 Thr ACC 735
Glu GAG	Pro CCC	Ser AGC	Ala GCC	G1y GGG 750	Glu G A G	Asp GAC	Gly GGC	Ser AGC	190 Gln CAG 765	Val GTG	Val GTC	Arg CGG	Ile ATA	Val GTG 780	Gly GGC	Gly GGC	Arg AGG	Asp GAC	200 Cys TGC 795	Ala GCG	Glu GAG	Gly GGC	Glu GAG	Cys TGC 810	Pro CCA	Trp TGG	Gln CAG	Ala GCT	210 Leu CTG 825	Leu CTG	Val GTC	Asn AAC	Glu GAA	Glu GAG 840
Asn AAC	Glu GMG	Gly GGA	Phe TTC	220 Cys TGC 855	Gly GGG	Gly GGC	Thr ACC	Ile ATC	Leu CTG 870	λsn λλC	Glu GAG	Phe TTC	Tyr TAC	230 Val GTC 885	Leu CTC	Thr ACG	Ala GCT	Ala GCC	His CAC 900	Cys TGC	Leu CTG	His CAC	Gln CAG	240 Ala GCC 915	Lys AAG	Arg AGG	Phe TTC	Thr ACG	Val GTG 930	Arg AGG	Val GTC	Gly GGC	Asp GAC	250 Arg CGG 945
Asn AAC	Thr ACA	Glu GAG	Gln CMG	Glu GAG 960	Glu GAG	Gly GGC	Asn AAC	Glu GAG	260 Met ATG 975	Ala GCA	His CAC	Glu GAG	Val GTG	Glu GAG 990	Met ATG	Thr ACT	Val GTG	Lys AAG	270 His CAC 1005	Ser AGC	Arg CGC	Phe TTT	Val GTC	Lys AAG 1020	Glu GAG	Thr ACC	Tyr TAC	Asp GAC	280 Phe TTC 1035	Asp GAC	Ile ATC	Ala GCG	Val GTG	Leu CTG 1050
Arg AGG	Leu CTC	Lys Ang	Thr ACG	290 Pro CCC 1065	Ile ATC	Arg CGG	Phe TTC	Arg CGC	Arg CGG 1080	Asn AAC	Val GTG	Ala GCG	Pro CCC	300 Ala GCC L095	Cys TGC	Leu CTG	Pro CCC	Glu GAG	Lys AAG 1110	Asp GAC	Trp TGG	Ala GCG	Glu GAG	310 Ala GCC 1125	Thr ACG	Leu CTG	Met ATG	Thr ACC	Gln CAG 1140	Lys Mag	Thr ACG	Gly GGC	Ile ATC	320 Val GTC 155
Ser AGC	Gly GGC	Phe TTC	Gly GGG	Arg CGC 1170	Thr ACG	His CAC	Glu GAG	Lys Mg	330 Gly GGC 1185	Arg CGC	Leu CTG	Ser TCG	Ser TCC	Thr ACG 200	Leu CTC	Lys Mg	Met ATG	Leu CTG	340 Glu GAG 1215	Val GTG	Pro CCC	Tyr TAC	Val GTG	Asp GAC 1230	Arg CGC	Ser AGC	Thr ACC	Cys TGT	350 Lys AAG L245	Leu CTG	Ser TCC	Ser AGC	Ser AGC	Phe TTC 260
Thr ACC	ile ATT	Thr ACG	Pro CCC	360 Asn AAC 1275	Met ATG	Phe TTC	Cys TGC	Ala GCC	G1y GGC 1290	Tyr TAC	Asp GAC	Thr ACC	Gln CAG	370 Pro CCC 1305	Glu GAG	Asp GAC	Ala GCC	Cys TGC	Gln CAG 1320	G1y GGC	Asp GAC	Ser AGT	G1 y GGC	380 Gly GGC 1335	Pro CCC	His CAC	Val GTC	Thr ACC	Arg CGC 1350	Phe TTC	Lys AAG	Asp GAC	Thr ACC	390 Tyr TAC 365
Phe TTC	Val GTC	Thr ACA	Gly GGC	Ile ATC 1380	Val GTC	Ser AGC	Ťrp TGG	Gly GGA	400 Glu GAA 1395	Gly GGG	Cys TGC	Ala GCG	Arg CGC	Lys AAG 1410	Gly GGC	Lys Ang	Phe TTC	Gly GGC	410 Val GTC 1425	Tyr TAC	Thr ACC	Lys Aag	Val GTC	5er TCC 1440	Asn AAC	Phe TTC	Leu CTC	Lys AAG	420 Trp TGG 1455	Ile ATC	Asp GAC	Lys AAG	11e Alic	Met ATG 1470
Lys AAG	Ala GCC	Arg AGG	Ala GCA	430 Gly GGG 1485	Ala GCC	Ala GCG	G1y GGC	Ser AGC	Arg CGC 1500	G1y GGC	His CAC	Ser AGT	Glu GAA	440 A1a GCC 1515	Pro CCT	Ala GCC	Thr ACC	Trp TGG	Thr ACG 1530	Val GTC	447 Pro CCG 15	с 37												

Figure 3: Nucleotide sequence of bovine factor X cDNA.

The sequence was determined by analysis of the overlapping clones shown in Figure 2. The predicted amino acid sequence of bovine prepro-factor X is shown above the DNA sequence. Nucleotides 76-195 code for a leader sequence, nucleotides 196-615 code for the light chain of plasma factor X (19), and nucleotides 622-1537 code for most of the heavy chain of plasma factor X (10). The single chain factor X is numbered from the site of cleavage that gives rise to the light chain of factor X. The cDNA sequence predicts that the light and heavy chains of factor X are joined by the dipeptide Arg-Arg (encoded by nucleotides 616-621). Putative cleavages to form two chain factor X are shown by the heavy arrows (\checkmark), the factor IXa cleavage site (2) by the light arrow (\checkmark), and the attachment sites for carbohydrate (10) on Asn-178 and Thr-445 are indicated by (\blacklozenge). The boxed region (nucleotides 1450-1466) is complementary to one of the synthetic oligonucleotides used as a hybridization probe in the isolation of factor X cDNA clones.

processing of some hormone precursors, including proinsulin (20). After transport to the Golgi area of the pancreatic β cell, proinsulin appears to be processed initially by a trypsin-like protease, followed by removal of basic amino acid residues by a carboxypeptidase B-like enzyme (20). The protease(s) required for the conversion of single chain factor X to two chain factor X may be located in plasma. Graves et al. (5) showed that the rat hepatoma cell line H-35 synthesized and secreted a single chain factor X. Using rapid immunochemical isolation techniques, these authors showed that 40% of rat factor X was in the single chain form, suggesting that extracellular processing may occur. Mattock and Esnouf (3) also showed that yields of bovine single chain factor X were increased by more rapid processing of the blood after collection. However, the conversion to two chain factor X must be very efficient, as Enfield et al. (19) did not report any heterogeneity at the COOH-terminal end of the light chain during their sequence analysis.

The amino acid sequences of the two chains of factor X predicted from the cDNA sequence agree well with those determined by protein chemistry techniques (10,19); however, four differences were noted. Residue 63 of the light chain was reported to be asparagine, but the cDNA sequence predicts aspartic acid in this position. Residues 111-115 of the heavy chain were reported to be Gln-Glu-Gly-Asp-Glu, whereas the cDNA sequence predicts that this region consists of six residues in the sequence: Glu-Glu-Glu-Glu-Gly-Asn (residues 253-258 in Figure 3). Titani et al. (10) reported that their positioning of Asn-152 after Arg-151 (corresponding to Arg-294 and Asn-296 in Figure 3) was tentative, presumably because they were unable to characterize fully a peptide derived from this region. However, the cDNA sequence predicts the presence of an extra arginyl residue in this region, giving the sequence: Arg-Arg-Asn. Lastly, residues 165-170 of the heavy chain were reported to be Ala-Glu-Thr-Leu-Gln-Thr, but the cDNA sequence predicts the sequence: Glu-Ala-Thr-Leu-Met-Thr-Gln (residues 309-315 in Figure 3) for this region. This last difference was unexpected, as Titani et al. based their sequence determination on the structures of overlapping CNBr fragments. However, Met-Thr bonds are known to resist cleavage with CNBr

Bovine Prothrombin Bovine Factor X Human Factor IX	Met	-45	Met arg Val	Ala i Asn i	Arg Met	Val Met Ile -40	Arg Ala Met	Gly Gly Ala	Pro Leu Glu	Arg Leu Ser	Leu His Pro -35	Pro Leu Gly	Gly Val Leu	Cys Leu Ile
Bovine Prothrombin Bovine Factor X Human Factor IX	Leu Ala Leu Sez Thr Ile -30	A Leu A r Thr A e Cys I	la Ala la Leu Leu Leu	Leu Gly Gly	Phe Gly Tyr -25	Ser Leu Leu	Leu Leu Leu	Val Arg Ser	His Pro Ala	Ser Ala Glu -20	Gln Gly Cys	His Ser Thr	Val Val Val	Phe Phe Phe
Bovine Prothrombin Bovine Factor X Human Factor IX	Leu Pro Leu Ala Leu Asj -15	o His G A Arg A p His G	ln Gln sp Gln lu Asn	Ala Ala Ala -10	Ser His Asn	Ser Arg Lys	Leu Val Ile	Leu Leu Leu	Gln Gln Asn -5	Arg Arg Arg	Ala Ala Pro	Arg Arg Lys	Arg Arg Arg -1	Ala Ala Tyr +1

Figure 4: Comparison of the leader sequences of bovine factor X, bovine prothrombin (6) and human factor IX (8), as predicted from the cDNA sequences.

Identical residues in corresponding positions are boxed. The sequences are numbered backwards from the cleavage site that gives rise to the mature protein found in plasma. Residue -34 of human factor IX has also been reported as serine (9). For factor X and factor IX, the 5'-most ATG codon has been assumed to code for the initiator methionyl residue. A partial sequence of the human prothrombin leader peptide has also been reported (7), and is very similar to the bovine prothrombin sequence.

(21), so that the unexpected presence of a methionyl residue in this region may have been overlooked during the sequence analysis.

The cDNA sequence also predicts that bovine factor X is synthesized as a precursor with a leader peptide of 40 amino acid residues. The NH2-terminal part of this leader peptide consists of a highly hydrophobic region (residues -37 to -22 in Figure 3) followed by a region containing glycine, alanine and proline. This type of sequence corresponds to the signal peptide found in many secreted proteins (22). However, the conversion to plasma factor X occurs by cleavage of a bond in the sequence: Arg-Arg-Ala (encoded by nucleotides 190-198 in Figure 3), where Ala represents the NH_2 -terminus of single chain factor X. Several other proteins are processed by proteolysis COOH-terminal to double basic residues, including albumin (23) and apolipoprotein A-II (24). In both of these proteins, it has been shown that the co-translational (signal peptidase) cleavage occurs at a position upstream of the double basic residues (23,24). This proteolysis results in a protein having a short amino-terminal extension named a propeptide (23,24). Presumably, conversion of the proprotein to the plasma form of the protein involves proteolysis at the COOH-terminal side of the double basic residues by an unknown protease. From the predicted leader sequence, it appears that factor X is also synthesized as а prepro-protein similar to other plasma proteins including albumin (23), apolipoprotein A-II (24), prothrombin (6,7) and factor IX (8,9). Comparison of the leader peptides of the three vitamin K-dependent proteins (Figure 4) shows little sequence identity between residues -40 and -18 (1 residue out of 23 in corresponding positions is identical in all three proteins), but considerable sequence identity between residues -18 to -1 (7 out of 18 residues in corresponding positions are identical). The location of the signal peptidase cleavage site is unknown, but may be COOH-terminal to the alanine residue at position -10, as this residue is conserved in these three proteins and also in human prepro-prothrombin (7). The significance of the sequence homology in the putative pro region is unclear.

The region of factor X mRNA encoded by pBX1 is G/C rich (65% G/C, 35% A/T). This is reflective of the codon usage, where 88% of the bases in the third position are G or C. Codon usage is non-random, with nine sense codons not used at all (UUA, UCU, UAU, CAU, CAA, AGA, GUU, GUA, GGU). Eleven of the twelve γ -carboxyglutamic acid residues are encoded by GAG. This is similar to prothrombin (6,7), where all 10 γ -carboxyglutamic acid residues are encoded by GAG. However, the majority of the γ carboxyglutamic acid residues in human factor IX are encoded by GAA (8,9).

In summary, we have characterized a cDNA coding for bovine factor X. From the sequence of this cDNA, we predict that factor X is synthesized as a single chain precursor having a prepro leader sequence. This precursor appears to be cleaved specifically in at least five different steps during its conversion to factor Xa. Initially, signal peptidase cleaves prepro-factor X (possibly at the Ala-His bond at position -10) to produce pro-factor X. A trypsin-like protease then converts pro-factor X to single chain factor X in an analagous manner to the conversion of proalbumin to albumin. Perhaps after secretion into the blood, another trypsin-like protease cleaves the single chain factor X at a position COOH-terminal to Arg-142. A carboxypeptidase B-like enzyme then releases the two arginyl residues from the light chain, resulting in the formation of two-chain factor X. Finally, activation of factor X to factor Xa occurs by cleavage of the bond COOH-terminal to Arg-193 (corresponding to Arg-51 of the heavy chain of factor X (10)). The specificity of these cleavages during the formation of factor Xa is quite remarkable.

ACKNOWLEDGEMENTS

We would like to thank Mark Zoller, Caroline Beard, Colin Hay and Debbie Cool for helpful suggestions during this study. This work was supported in part by grants from the Medical Research Council of Canada (MA-7716) and the British Columbia Health Care Research Foundation 19(82-1). MRF was supported by a studentship from the MRC of Canada.

REFERENCES

- 1. Jackson, C.M. and Nemerson, Y. (1980) Ann. Rev. Biochem. 49, 765-811.
- Fujikawa, K., Coan, M.H., Legaz, M.E. and Davie, E.W. (1974) Biochemistry 13, 5290-5299.
- 3. Mattock, P. and Esnouf, M.P. (1973) Nature New Biol. 242, 90-92.
- Rosenberg, J.S., Beeler, D.L. and Rosenberg, R.D. (1975) J. Biol. Chem. 250, 1607-1617.
- Graves, C.B., Munns, T.W., Willingham, A.K. and Strauss, A.W. (1982) J. Biol. Chem. 257, 13108-13113.
- 6. MacGillivray, R.T.A. and Davie, E.W. Biochemistry (in press)
- 7. Degen, S.J. Friezner, MacGillivray, R.T.A. and Davie, E.W. (1983) Biochemistry 22, 2087-2097.
- Jaye, M., de la Salle, H., Schamber, F., Balland, A., Kohli, V., Findeli, A., Tolstoshev, P. and Lecocq, J-P. (1983) Nucleic Acids Res. 11, 2325-2335.
- 9. Kurachi, K. and Davie, E.W. (1982) Proc. Natl. Acad. Sci. USA 79, 6461-6464.
- Titani, K., Fujikawa, K., Enfield, D.L., Ericsson, L.H., Walsh, K.A. and Neurath, H. (1975) Proc. Natl. Acad. Sci. USA 72, 3082-3086.
- 11. Chaconas, G., and van de Sande, J.H. (1980) Meth. in Enzymol. 65, 75-85.
- 12. Hanahan, D. and Meselson, M. (1980) Gene 10, 63-67.
- Grunstein, M. and Hogness, D.S. (1975) Proc. Natl. Acad. Sci. USA 72, 3961-3965.
- 14. Maxam, A. and Gilbert, W. (1980) Meth. Enzymol. 65, 499-560.
- 15. Sanger, F., Nicklen, S. and Coulson, A.R. (1977) Proc. Natl. Acad. Sci. USA 74, 5463-5467.
- 16. Messing, J. (1983) Meth. Enzymol. 101, 20-78.
- 17. Sanger, F. and Coulson, A.R. (1978) FEBS Lett. 87, 107-110.
- Barnes, W.M., Bevan, M. and Son, P.H. (1983) Meth. Enzymol. 101, 98-122.
- 19. Enfield, D.L., Ericsson, L.H., Fujikawa, K., Walsh, K.A., Neurath, H. and Titani, K. (1980) Biochemistry 19, 659-667.
- Steiner, D.F., Quinn, P.S., Chan, S.J., Marsh, J. and Tager, H.S. (1980) Ann. N.Y. Acad. Sci. 343, 1-16.
- Schroeder, W.A., Shelton, J.B. and Shelton, J.R. (1969) Arch. Biochem. Biophys. 130, 551-556.
- 22. Thibodeau, S.N., Palmiter, R.D. and Walsh, K.A. (1978) J. Biol. Chem. 253, 9018-9023.
- Strauss, A.W., Bennett, C.A., Donohue, A.M., Rodkey, J.A., Boime, I. and Alberts, A.W. (1978) J. Biol. Chem. 253, 6270-6274.
- 24. Gordon, J.I., Budelier, K.A., Sims, H.F., Edelstein, C., Scanu, A.M. and Strauss, A.W. (1983) J. Biol. Chem. 258, 14054-14059.