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Abstract

Background: b-lapachone (b-lap), has been known to cause NQO1-dependnet death in cancer cells and sensitize cancer
cells to ionizing radiation (IR). We investigated the mechanisms underlying the radiosensitization caused by b-lap.

Methodology/Principal Findings: b-lap enhanced the effect of IR to cause clonogenic cells in NQO1+-MDA-MB-231 cells but
not in NQO12-MDA-MB-231 cells. b-lap caused apoptosis only in NQO1+ cells and not in NQO12 cells and it markedly
increased IR-induced apoptosis only in NQO1+ cells. Combined treatment of NQO1+ cells induced ROS generation, triggered
ER stress and stimulated activation of ERK and JNK. Inhibition of ROS generation by NAC effectively attenuated the
activation of ERK and JNK, induction of ER stress, and subsequent apoptosis. Importantly, inhibition of ERK abolished ROS
generation and ER stress, whereas inhibition of JNK did not, indicating that positive feedback regulation between ERK
activation and ROS generation triggers ER stress in response to combined treatment. Furthermore, prevention of ER stress
completely blocked combination treatment-induced JNK activation and subsequent apoptotic cell death. In addition,
combined treatment efficiently induced the mitochondrial translocation of cleaved Bax, disrupted mitochondrial membrane
potential, and the nuclear translocation of AIF, all of which were efficiently blocked by a JNK inhibitor. Caspases 3, 8 and 9
were activated by combined treatment but inhibition of these caspases did not abolish apoptosis indicating caspase
activation played a minor role in the induction of apoptosis.

Conclusions/Significance: b-lap causes NQO1-dependent radiosensitization of cancer cells. When NQO1+ cells are treated
with combination of IR and b-lap, positive feedback regulation between ERK and ROS leads to ER stress causing JNK
activation and mitochondrial translocation of cleaved Bax. The resultant decrease in mitochondrial membrane leads to
translocation of AIF and apoptosis.
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Introduction

b-lapachone (b-lap) is a bioreductive agent that has been

shown to possess strong anti-cancer activity both in vitro and in

vivo [1–3]. The anti-cancer activity of b-lap has been shown to be

due to the two-electron reduction of b-lap mediated by

NAD(P)H:quinone oxidoreductase (NQO1, DT-diaphorase)

using NADH or NAD(P)H as electron sources [1–3]. Because

NQO1 is expressed more abundantly in a variety of human solid

cancers than in normal tissues [1–3], b-lap can selectively kill

human cancer cells. b-lap has also been shown to sensitize

cancer cells to ionizing radiation (IR) [4]. However, the precise

underlying this radiosensitizing mechanism has not yet been

elucidated.

Futile cycling between the oxidized and reduced forms of b-lap

has been shown to cause progressive depletion of NADH and

NAD(P)H, which, in turn induces massive release of Ca2+ from

the endoplasmic reticulum (ER) into the cytosol, leading to

activation of the Ca2+-dependent proteinase, calpain and

subsequent apoptotic cell death [1,2,5]. Furthermore, redox

cycling caused by one-electron reduced b-lap (i.e., the semiqui-

none form of b-lap), the intermediate between two-electron b-lap

and the oxidized form of b-lap can trigger the activation of cell

death pathways [1]. Recent studies suggest that generation of

reactive oxygen species (ROS) by diverse cell death stimuli does

not only initiate cascades of cell death signals but also directly

lead to DNA damage [6–10]. However, the signaling pathways

activated by ROS in cells treated with b-lap have not yet been

clearly delineated.

Although b-lap was demonstrated to activate mitogen-activated

protein kinases (MAPKs) in cancer cells, and thereby induce

apoptotic death [11], the signaling pathways involved in the
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activation of MAPKs caused by b-lap, and the precise role of

MAPK activation in b-lap-induced apoptosis have not been

clarified.

The mitochondrial cell death pathway is regulated by the ratio

of pro- to anti-apoptotic proteins, including members of the Bcl-2

family. Among these family members, Bax or Bak plays a key role

in the loss of mitochondrial transmembrane potential [12]. Upon

delivery of an apoptotic stimulus, cytosolic Bax translocates to the

outer mitochondrial membrane, where it oligomerizes to form

homodimers, creating pores that expedite the release of cyto-

chrome c, apoptosis-inducing factor (AIF), and endonuclease G

(Endo G) from the intermembrane space of the mitochondrion

into the cytosol [7].

In this study, we investigated the mechanism by which b-lap

modulates the response of breast cancer cells to radiation. We

demonstrate here that combined treatment of IR and b-lap

synergistically increases clonogenic and apoptotic cell death in

an NQO1-dependent manner. We also show that the generation

of ROS, induction of ER stress, and activation of extracellular-

regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) by

combined treatment are crucial for mitochondrial apoptotic cell

death. Specifically, we concluded that formation of a positive

feedback loop between ERK activation and ROS generation is

needed for combined treatment-induced ER stress, which leads

to JNK activation and subsequent mitochondrial apoptotic cell

death. Our data provide a potential mechanism to account for

the radiosensitizing effect of b-lap, and insight gained in the

present study will lead to advances in the clinical application of

combined treatment with IR and b-lap in therapies based on

NQO1-directed tumor targeting.

Results

Combined treatment with IR and b-lap increases
clonogenic and apoptotic cell death in an NQO1-
dependent manner

To determine the effect of b-lap on clonogenic cell survival, we

treated parental NQO12-MDA-MB-231 cells deficient in NQO1,

or NQO1+-MDA-MB-231 cells possessing abundant expression of

NQO1, with different doses of b-lap. As shown in Figure 1A, a

dose dependent increase in clonogenic cell death following b-lap

treatment was obvious in NQO1+-MDA-MB-231 cells, but not in

parental NQO12-MDA-MB-231 cells, indicating NQO1 plays a

crucial role for the b-lap-induced cell death.

We analyzed the effect of b-lap on the IR-induced clonogenic

death of NQO12-MDA-MB-231 and NQO1+-MDA-MB-231

cells. Cells were exposed to different doses of IR in the presence or

absence of 2 mM b-lap and the clonogenic survival was

determined as shown in Fig. 1B. The radiation survival curves

for combined treatment were normalized for the death by b-lap

alone. The radiation survival curve for combined treatment with

IR and b-lap was identical in NQO1+-MDA-MB-231 cells. On the

other hand, the radiation survival curve for combined treatment of

NQO1+-MDA-MB-231 cells was significantly steeper particularly

at the lower radiation doses than that for IR treatment alone

resulting in significant decrease in the shoulder of the survival

curve. The reduction of shoulder indicated that b-lap inhibited the

repair of sublethal radiation damage in NQO1+ cells but not in

NQO12 cells.

We investigated the combined effect of IR and b-lap on

apoptotic cell death in NQO12-MDA-MB-231 and NQO1+-

Figure 1. b-lap induces radiosensitization in an NQO1-dependent manner. (A) NQO12 or NQO1+-MDA-MB-231 cells were treated with
various concentrations of b-lap. Cells were allowed to grow for 10 to 14 days and were stained with 0.5% crystal violet and scored for colony
formation. Results from three independent experiments are expressed as means 6 SEM. *Significant difference between NQO12- and NQO1+-MDA-
MB-231 cells after b-lap treatment at p,0.05. (B) Cells were treated with 2 mM b-lap and then exposed to increasing doses of IR 30 min after
treatment with b-lap. After 14 days, cells were scored for colony formation. Results from three independent experiments are expressed as means 6
SEMs. (C) Cells were treated with IR alone, b-lap alone or the combination of IR and b-lap for the indicated times. The percentage of cells with sub-G1
DNA content was determined by flow cytometry. Results from three independent experiments are expressed as means 6 SEMs.
doi:10.1371/journal.pone.0025976.g001
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MDA-MB-231 cells. Cells were treated with 10 Gy of IR alone,

2 mM b-lap alone, or combination of IR and b-lap for various

lengths of time, and apoptotic cell death was assessed. While

apoptosis of NQO1+-MDA-MB-231 cells induced by IR alone was

about 13 and 14% at 24 and 48 h, respectively, b-lap alone-

induced apoptosis in about 18 and 40% of cells at 24 and 48 h,

respectively (Fig. 1C). Combined treatment with IR and b-lap

remarkably increased apoptotic cell death in NQO1+-MDA-MB-

231 cells; about 58 and 87% of cells were apoptotic at 24 and

48 h, respectively. On the contrary, in NQO12-MDA-MB-231

cells, no significant apoptosis occurred after treating with IR or b-

lap alone or even with combination of IR and b-lap, most likely

due to NQO1 deficiency and a mutant form of p53 expressed in

NQO12-MDA-MB-231 cells [13].

Combined treatment with IR and b-lap markedly induces
ROS generation in NQO1+-MDA-MB-231 cells

We investigated the involvement of ROS in combined

treatment-induced apoptotic cell death in NQO12-MDA-MB-

231 and NQO1+-MDA-MB-231 cells. We first measured ROS

with DCF staining. Compared to individual treatment with IR

or b-lap, combined treatment caused far more increase in ROS

levels for 3 h in NQO1+-MDA-MB-231 cells but not in

NQO12-MDA-MB-231 (Fig. 2A). We further confirmed the

ROS generation by combined treatment with IR and b-lap using

another ROS detection dye, dihydroethidium (DHE). As shown

in Figure 2B, we observed marked increase in ROS generation

in NQO1+-MDA-MB-231 cells but not in NQO12-MDA-MB-

231 cells after combined treatment with IR and b-lap. To

determine whether the increase in intracellular ROS levels was

directly related to apoptotic cell death, we pretreated NQO1+-

MDA-MB-231 cells with the antioxidant NAC before exposing

cells to IR and b-lap. As shown in Figure 2C, pretreatment with

NAC significantly reduced the apoptotic cell death caused by

combined treatment with IR and b-lap. Furthermore, pretreat-

ment with NAC effectively attenuated the clonogenic cell death

caused by combined treatment with IR and b-lap (Fig. 2D).

These observations suggest that induction of ROS critically

contributes to the apoptotic and clonogenic cell death caused by

combined treatment with IR and b-lap in NQO1+-MDA-MB-

231 cells.

b-lap in combination with IR rapidly activates ERK and
JNK, leading to apoptotic cell death

To reveal the potential involvement of MAPKs in the apoptotic

cell death caused by combined treatment with IR and b-lap, we

studied the levels of the activated forms of MAPKs in NQO12-

MDA-MB-231 and NQO1+-MDA-MB-231 cells by Western blot

analysis using anti-phospho antibodies. As shown in Figure 3A, in

NQO12-MDA-MB-231 cells, IR alone slightly increased phos-

phorylation of ERK and JNK while b-lap alone caused little

change in the levels of phosphorylated ERK and JNK. The effect

of combined treatment was similar to that of IR alone. The

phosphorylation of p38 MAPK in NQO12-MDA-MB-231 cells

was negative after either single or combined treatments with IR

and b-lap. However, in NQO+-MDA-MB-231 cells, combined

treatment led to a rapid up-regulation of phosphorylated ERK

and JNK as compared with the treatment with IR alone or b-lap

alone (Fig. 3A). ERK activation was apparent at 0.5 h, and

remained elevated for 3 h after combined treatment. In addition,

Figure 2. b-lap in combination with IR enhances ROS generation and leads to apoptotic cell death. (A) and (B) Cells were treated with IR
alone, b-lap alone or combination of IR and b-lap for the indicated times. After 3 h, the cells were incubated with 10 mM H2DCF-DA and 4 mM DHE,
respectively, for 30 min and then analyzed by flow cytometry. Results from three independent experiments are expressed as means 6 SEMs. (C)
NQO1+-MDA-MB-231 cells were treated with IR alone, b-lap alone or combination of IR and b-lap for 24 h in the presence or absence of NAC (10 mM).
After 24 h, the percentage of cells with sub-G1 DNA content was determined by flow cytometry. Results from three independent experiments are
expressed as means 6 SEMs. (D) NQO1+-MDA-MB-231 cells were treated with combination of IR (2 Gy) and b-lap (2 mM) in the presence or absence of
NAC (10 mM). Cells were allowed to grow for 10 to 14 days and were stained with 0.5% crystal violet and scored for colony formation. Results from
three independent experiments are expressed as means 6 SEM. *Significant difference between cells in the presence or absence of NAC after
combined treatment with IR and b-lap, at p,0.05.
doi:10.1371/journal.pone.0025976.g002
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JNK activation started to increase within 0.5 h but diminished 2 h

after combined treatment in NQO1+-MDA-MB-231 cells. The

total cellular levels of ERK and JNK remained constant. IR

treatment increased phosphorylation of p38 MAPK, while b-lap

treatment caused no change in phosphorylation of p38 MAPK.

The phosphorylation level of p38 MAPK after combined

treatment was lower than that after treatment with IR alone,

indicating b-lap suppressed IR-induced activation of p38 MAPK

in NQO1+-MDA-MB-231 cells (Fig. 3A). To examine the

relationship between the activation of MAPKs and apoptotic

cell death, we pretreated NQO1+-MDA-MB-231 cells with

SP600125, PD98059, or SB203580, inhibitors of JNK, MEK/

ERK, and p38 MAPK, respectively, prior to treatment with IR

and b-lap. As shown in Figure 3B, PD98059 and SP600125

effectively reduced the apoptotic cell death caused by combined

treatment from 56% to 24% and 13%, respectively, whereas

SB203580 was ineffective. To further investigate the involvement

of ERK and JNK2 in the apoptotic cell death caused by

combined treatment with IR and b-lap, we pretreated NQO1+-

MDA-MB-231 cells with siRNAs targeting ERK and JNK2.

Consistent with the results obtained with pharmacological

inhibitors, specific inhibition of ERK and JNK2 with siRNAs

almost completely abolished the apoptotic cell death caused by

combined treatment (Fig. 3C). These results demonstrate that

ERK and JNK act as important mediators of apoptotic cell death

induced by combined treatment with IR and b-lap in NQO1+-

MDA-MB-231 cells.

Positive feedback regulation between ROS and ERK
induced by combined treatment with IR and b-lap is
essential for the activation of JNK

To determine whether ROS generation is involved in the

activation of ERK and JNK by combined treatment with IR and

b-lap, we pretreated NQO1+-MDA-MB-231 cells with the

antioxidant NAC prior to treatment with IR and b-lap. As shown

in Figure 4A, the activation of ERK and JNK by combined

treatment was completely blocked by pretreatment with NAC. We

next examined the contribution of ERK and JNK to ROS

generation caused by combined treatment. We treated NQO1+-

MDA-MB-231 cells with siRNAs targeting ERK and JNK2 prior

to treatment with IR and b-lap. As shown in Figure 4B, siRNA-

mediated ERK knockdown effectively blocked ROS generation, as

determined with DCF, induced by b-lap alone and to an even

greater extent by combined treatment, whereas siRNA targeting

JNK2 did not attenuate ROS generation.

To further elucidate the possibility of cross-talk between ERK

and JNK, we pretreated NQO1+-MDA-MB-231 cells with

PD98059 or SP600125. As shown in Figure 4C, activation of

ERK and JNK by combined treatment was completely abrogated

by pretreatment with PD98059 and SP600125, respectively.

Figure 3. b-lap in combination with IR rapidly activates ERK and JNK. (A) NQO12 or NQO1+-MDA-MB-231 cells were treated with IR alone, b-
lap alone or combination of IR and b-lap for the indicated times. The data represent a typical experiment conducted three times with similar results.
(B) and (C) NQO1+-MDA-MB-231 cells were treated with IR alone, b-lap alone or combination of IR and b-lap for 24 h in the presence or absence of
PD98059 (30 mM), SP600125 (30 mM), SB203580 (30 mM), or siRNA targeting ERK1/2 or JNK2. The percentage of cells with sub-G1 DNA content was
determined by flow cytometry. Results from three independent experiments are expressed as means 6 SEMs.
doi:10.1371/journal.pone.0025976.g003
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Moreover, PD98059 effectively blocked combination treatment-

induced activation of JNK, whereas SP600125 did not attenuate

the activation of ERK, indicating that ERK is an upstream

activator of JNK (Fig. 4C). These results indicated that b-lap in

combination with IR leads to positive feedback regulation between

ROS and ERK activation that may contribute to JNK activation.

ROS generation induced by combined treatment with IR
and b-lap is required for the induction of ER stress

We next investigated whether combined treatment with IR and

b-lap induces ER stress in NQO1+-MDA-MB-231 cells using

phosphorylation of eIF2a and CHOP expression. As shown in

Figure 5A, IR alone did not alter phosphorylated eIF2a (p-eIF2a)

levels and CHOP expression, and b-lap alone slightly increased p-

eIF2a and CHOP expression. However, combined treatment

markedly induced p-eIF2a and increased CHOP expression level

(Fig. 5A). To further examine the involvement of ER stress in

apoptotic cell death induced by combined treatment with IR and

b-lap, we pretreated NQO1+-MDA-MB-231 cells with Salubrinal

(Sal), an ER stress inhibitor. As shown in Figure 5B, Sal effectively

suppressed combination treatment-induced apoptotic cell death.

These results indicate that ER stress is a major contributor to

combined treatment-induced apoptotic cell death in NQO1+-

MDA-MB-231 cells.

We next investigated the relationship between ROS generation

and ER stress in NQO1+-MDA-MB-231 cells treated with

combination of IR and b-lap. As shown in Figure 5C, pretreat-

ment with Sal did not attenuate the ROS generation caused by

combined treatment, whereas pretreatment with NAC effectively

prevented the phosphorylation of eIF2a (Fig. 5D), indicating that

ROS generation induced by combined treatment is required for

the induction of ER stress.

ER stress induced by combined treatment with IR and b-
lap is required for the activation of JNK

To analyze the relationship between ER stress and MAPKs

(ERK and JNK), we first examined the effect of Sal on the

activation of ERK and JNK. As shown in Figure 5E, pretreatment

with Sal efficiently suppressed the activation of JNK induced by

combined treatment, but did not attenuate the activation of ERK.

To further establish the critical role of MAPKs in the induction of

ER stress, we pretreated NQO1+-MDA-MB-231 cells with

PD98059 or SP600125. As shown in Figure 5F, combined

treatment-induced phosphorylation of eIF2a was completely

blocked by PD98059, but not by SP600125. These results indicate

that ERK is an upstream activator of ER stress responsible for

JNK activation in response to combined treatment with IR and b-

lap.

Combined treatment with IR and b-lap induces apoptotic
cell death through the nuclear translocation of AIF

Because activation of the caspase pathway is an important

mechanism for inducing apoptotic cell death [14], we investigated

the involvement of caspases in the apoptotic response to combined

treatment of NQO1+-MDA-MB-231 cells with IR and b-lap. As

shown in Figure 6A, combined treatment led to activations of

Figure 4. b-lap in combination with IR induces positive feedback regulation between ERK and ROS. (A) NQO1+-MDA-MB-231 cells were
treated with IR alone, b-lap alone or combination of IR and b-lap for 30 min in the presence or absence of NAC. The data represent a typical
experiment conducted three times with similar results. (B) NQO1+-MDA-MB-231 cells were treated with IR alone, b-lap alone or combination of IR and
b-lap for 3 h in the presence or absence of siRNA targeting ERK1/2 or JNK2. After 3 h, the cells were incubated with 10 mM H2DCF-DA for 30 min and
then analyzed by flow cytometry. Results from three independent experiments are expressed as means 6 SEMs. (C) NQO1+-MDA-MB-231 cells were
treated with IR alone, b-lap alone or combination of IR and b-lap for 30 min in the presence or absence of PD98059 or SP600125. The data represent a
typical experiment conducted three times with similar results.
doi:10.1371/journal.pone.0025976.g004
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caspase-8, -9 and -3. Note that activation of caspase 9 and 3

occurred prior to activation of caspase 8. IR or b-lap alone caused

no evident activations of these caspases. Cytochrome c released

from the mitochondria has been reported to form a complex with

procaspase-9 and apoptotic protease-activating factor-1 (Apaf-1),

resulting in activation of procaspase-9 [14]. Therefore, we

determined whether combined treatment with IR and b-lap

induces the release of cytochrome c from the mitochondria to the

cytosol. As shown in Figure 6B, combined treatment efficiently

raised the level of cytochrome c within the cytosolic fraction for

12 h, whereas IR or b-lap alone did not. We then studied the

requirement of caspase for combined treatment-induced apoptosis

using a broad-spectrum caspase inhibitor, z-VAD-fmk. Figure 6C

shows that z-VAD-fmk effectively prevented activation of caspases

caused by combined treatment. Surprisingly, however, z-VAD-

fmk only partially reduced combined treatment-induced apoptotic

cell death from about 51% to 42% (Fig. 6D). These results indicate

that the apoptotic cell death caused by combined treatment with

IR and b-lap occurs, even though activation of caspases is

inhibited.

Because AIF, a mitochondria-localized flavoprotein, is known to

be involved in the induction of caspase-independent apoptotic cell

death [7], we next investigated whether AIF plays a role in the

induction of cell death by combined treatment with IR and b-lap.

AIF is released from the mitochondria in response to cell death

stimuli, subsequently translocates to the nucleus, where it causes

DNA fragmentation [7]. Subcellular fractionation showed that

combined treatment dramatically induced the nuclear transloca-

tion of AIF, while IR or b-lap alone caused little increase in AIF in

the nucleus (Fig. 6E). Moreover, siRNA-mediated AIF knockdown

effectively reduced combination treatment-induced apoptotic cell

death from 55% to almost control levels (Fig. 6F). These results

suggest that nuclear translocation of AIF is required for the

induction of apoptotic cell death by combined treatment with IR

and b-lap.

To further define the roles of ROS, ERK, ER stress and JNK in

nuclear translocation of AIF after combined treatment with IR

and b-lap, we pretreated NQO1+-MDA-MB-231 cells with the

corresponding inhibitors, NAC, PD98059, Sal or SP600125, and

examine the subcellular localization of AIF. As shown in

Figure 6G, the nuclear translocation of AIF induced by combined

treatment was completely blocked by pretreatment with NAC,

PD98059, Sal or SP600125. These results show that ROS, ERK,

ER stress and JNK are upstream activators of AIF-mediated cell

death induced by combined treatment with IR and b-lap.

Combined treatment with IR and b-lap induces
mitochondrial translocation of cleaved Bax and
disruption of mitochondrial transmembrane potential

To determine the role of mitochondrial pathway in combined

treatment-induced apoptosis in NQO1+-MDA-MB-231 cells, we

first examined changes in Bcl-2 and Bax expression levels, and

mitochondrial transmembrane potential. As shown in Figure 7A,

Bax levels were markedly reduced in response to combined

treatment with IR and b-lap, but not in response to individual

treatment with IR or b-lap. The expression levels of Bcl-2 were

unchanged by individual or combined treatment. It has been

reported that Bax is cleaved from a 21 kDa native form to an

Figure 5. The induction of ER stress by combined treatment with IR and b-lap is required for JNK activation. (A) NQO1+-MDA-MB-231
cells were treated with IR alone, b-lap alone or combination of IR and b-lap for the indicated times. Cell lysates were subjected to Western blot
analysis. The data represent a typical experiment conducted three times with similar results. (B) NQO1+-MDA-MB-231 cells were treated with IR alone,
b-lap alone or combination of IR and b-lap for 24 h in the presence or absence of Sal (10 mM). After 24 h, the percentage of cells with sub-G1 DNA
content was determined by flow cytometry. Results from three independent experiments are expressed as means 6 SEMs. (C) NQO1+- MDA-MB-231
cells were treated with IR alone b-lap alone or combination of IR and b-lap for 3 h in the presence or absence of Sal (10 mM). After 3 h, the cells were
incubated with 10 mM H2DCF-DA for 30 min and then analyzed by flow cytometry. Results from three independent experiments are expressed as
means 6 SEMs. (D) NQO1+-MDA-MB-231 cells were treated with IR alone, b-lap alone or combination of IR and b-lap for 30 min in the presence or
absence of NAC. The data represent a typical experiment conducted three times with similar results. (E) and (F) NQO1+-MDA-MB-231 cells were
treated with IR alone, b-lap alone or combination of IR and b-lap for 30 min in the presence or absence of Sal, SP600125 or PD98059. The data
represent a typical experiment conducted three times with similar results.
doi:10.1371/journal.pone.0025976.g005
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18 kDa fragment in response to death stimuli [15,16]. Because

translocation of 18 kDa cleaved Bax from the cytosol to

mitochondria has been reported to induce a decline in

mitochondrial transmembrane potential and subsequent release

of proapoptogenic proteins from mitochondria [15,16], we

investigated whether combined treatment induces mitochondrial

translocation of cleaved Bax. As shown in Figure 7B and C,

combined treatment with IR and b-lap more effectively increased

the levels of 18 kDa cleaved Bax within the mitochondrial

fraction than individual treatment with IR or b-lap. However,

18 kDa form of Bax was undetectable in whole cell lysates after

combined treatment (Fig. 7C). Because a cathepsin-like protease

has been suggested to be involved in the rapid degradation of

18 kDa form of Bax in the cytosol [17], we pretreated cells with

the protease inhibitor MG132 to know why cleaved Bax was

absent in whole cell lysate after combined treatment with IR and

b-lap. As shown in Figure 7D, when cells were treated with

combination of IR and b-lap in the presence of MG132, cleaved

Bax was detected in whole cell lysate, indicating that cleaved Bax

is readily degraded in the cytosol after combined treatment with

IR and b-lap. Thus, the 18 kDa form of Bax may be unstable in

the cytosol but stable in the mitochondrial fraction after

combined treatment with IR and b-lap. Furthermore, as shown

in Figure 7E, combined treatment significantly disrupted

mitochondrial transmembrane potential in a time-dependent

manner, coinciding with the observed changes in Bax levels.

Taken together, these results demonstrate that combined

treatment-induced cell death involves an alteration in mitochon-

drial transmembrane potential mediated by intracellular redistri-

bution of cleaved Bax.

We next examined the role of ROS, ERK, ER stress and JNK

in the mitochondrial translocation of cleaved Bax and disruption

of mitochondrial transmembrane potential induced by combined

treatment with IR and b-lap. Pretreatment with NAC, PD98059,

Sal or SP600125 significantly attenuated combination treatment-

induced mitochondrial translocation of cleaved Bax and disruption

of mitochondrial transmembrane potential (Fig. 7F and G). These

results indicate that ROS, ERK, ER stress and JNK are upstream

Figure 6. b-lap in combination with IR induces apoptotic cell death via nuclear translocation of AIF. (A) NQO1+-MDA-MB-231 cells were
treated with IR alone, b-lap alone or combination of IR and b-lap for the indicated times. The data represent a typical experiment conducted three
times with similar results. (B) NQO1+-MDA-MB-231 cells were treated with IR alone, b-lap alone or combination of IR and b-lap for 12 h. Cytosolic
fractions from NQO1+-MDA-MB-231 cells were prepared and subjected to Western blot analysis. The data are representative a typical experiment
conducted three times. The data represent a typical experiment conducted three times with similar results. (C) NQO1+-MDA-MB-231 cells were
treated with combination of IR and b-lap for 12 h in the presence or absence of z-VAD-fmk. The data represent a typical experiment conducted three
times with similar results. (D) NQO1+-MDA-MB-231 cells were treated with IR alone, b-lap alone or combination of IR and b-lap for 24 h in the
presence or absence of z-VAD-fmk (30 mM). After 24 h, the percentage of the cells with sub-G1 DNA content was determined by flow cytometry.
Results from three independent experiments are expressed as means 6 SEMs. (E) NQO1+-MDA-MB-231 cells were treated with IR alone, b-lap alone or
combination of IR and b-lap for 24 h. Nuclear fractions from NQO1+-MDA-MB-231 cells were prepared and subjected to Western blot analysis. The
data are representative a typical experiment conducted three times. (F) NQO1+-MDA-MB-231 cells were treated with IR alone, b-lap alone or
combination of IR and b-lap for 24 h in the presence or absence of siRNA targeting AIF. After 24 h, the percentage of the cells with sub-G1 DNA
content was determined by flow cytometry. Results from three independent experiments are expressed as means 6 SEMs. (G) NQO1+-MDA-MB-231
cells were treated with combination of IR and b-lap for 24 h in the presence or absence of NAC, PD98059, Sal or SP600125. Nuclear fractions were
prepared and subjected to Western blot analysis. The data are representative a typical experiment conducted three times.
doi:10.1371/journal.pone.0025976.g006
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activators of the mitochondrial apoptotic cell death induced by

combined treatment with IR and b-lap.

Discussion

The aim of our study was to elucidate signaling pathways

involved in b-lap-induced radiosensitization in human breast

cancer cells. We found that b-lap in combination with IR caused

cell death significantly greater than that by individual treatment

alone or more than additive in an NQO1-dependent manner, and

showed that the induction of ER stress by the positive feedback

regulation between ERK and ROS caused JNK activation,

thereby contributing to combined treatment-induced mitochon-

drial apoptotic cell death.

The mechanism of the anti-cancer effect of b-lap alone or in

combination with other treatment modalities has been reported in

recent years [3,4,18–22]. Interestingly, b-lap has been found to

potentiate the effect of taxol, mitomycin C, genistein, cisplatin, and

IR on human cancer cells [3,4,18–22]. We have previously

reported that IR sensitized cells to b-lap by up-regulating NQO1

expression and acitivity [3,18]. In the present study, we observed

that b-lap in combination with IR increases clonogenic and

apoptotic cell death of MDA-MB-231 human breast cancer cells in

an NOQ1-dependent manner (Fig. 1). It has been demonstrated

that b-lap induces radiosenstization by inhibiting the repair of

DNA damage caused by IR [4]. Recently, hyperactivation of poly

(ADP-ribose) polymerase-1 (PARP-1) has been suggested to play

Figure 7. b-lap in combination with IR causes Bax cleavage and translocation of cleaved Bax to mitochondria. (A) NQO1+-MDA-MB-231
cells were treated with IR alone, b-lap alone or combination of IR and b-lap for the indicated times. Cell lysates were subjected to Western blot
analysis. The data represent a typical experiment conducted three times with similar results. (B) NQO1+-MDA-MB-231 cells were treated with IR alone,
b-lap alone or combination of IR and b-lap for 12 h. Mitochondrial fractions of NQO1+-MDA-MB-231 cells were prepared and subjected to Western
blot analysis. The data are representative a typical experiment conducted three times. (C) NQO1+-MDA-MB-231 cells were treated with IR alone, b-lap
alone or combination of IR and b-lap for 12 h. Whole cell lysates and mitochondrial fractions of NQO1+-MDA-MB-231 cells were prepared and
subjected to Western blot analysis. The data are representative a typical experiment conducted three times. (D) NQO1+-MDA-MB-231 cells were
treated with combination of IR and b-lap for 24 h in the presence or absence of MG132. The data are representative a typical experiment conducted
three times. (E) NQO1+-MDA-MB-231 cells were treated with IR alone, b-lap alone or combination of IR and b-lap for the indicated times. After 12 h,
the concentration of retained DiOC6(3) in cells was measured by flow cytometry. Results from three independent experiments are expressed as
means 6 SEMs. (F) NQO1+-MDA-MB-231 cells were treated with combination of IR and b-lap for 12 h in the presence or absence of NAC, PD98059, Sal
or SP600125. Mitochondrial fractions were prepared and subjected to Western blot analysis. The data are representative a typical experiment
conducted three times. (G) NQO1+-MDA-MB-231 cells were treated with combination of IR and b-lap for 12 h in the presence or absence of NAC,
PD98059, Sal or SP600125. After 12 h, the concentration of retained DiOC6(3) in cells was measured by flow cytometry. Results from three
independent experiments are expressed as means 6 SEMs. (H) Schematic model of combined treatment (IR+b-lap)-induced apoptotic cell death.
Combined treatment with IR and b-lap increases mitochondrial apoptotic cell death in an NQO1 dependent manner. As described in detail in the text,
positive feedback regulation between ERK and ROS induced by combined treatment plays a critical role in the induction of ER stress. This enhanced
ER stress is required for JNK activation, which leads to subsequent mitochondrial apoptotic cell death. Moreover, JNK activation induces cleavage of
Bax and mitochondrial translocation of cleaved Bax, which causes loss of mitochondrial transmembrane potential and consequent release of AIF.
doi:10.1371/journal.pone.0025976.g007

Signaling Pathways in Radiosensitization by b-Lap

PLoS ONE | www.plosone.org 8 October 2011 | Volume 6 | Issue 10 | e25976



an important role in b-lap-induced radiosensitization in prostate

cancer cells that overexpress NQO1 [23]. Furthermore, previous-

ly, it has been reported that ionizing radiation causes a long lasting

elevation of NQO1 activity, which can participate in stabilization

of p53 protein by interfering with 20S proteasome-mediated p53

degradation [24,25]. The stabilized p53 not only activate the

transcriptional expression of various genes involved in apoptosis

and cell cycle arrest by playing as a transcription factor, but it is

also involved in transcription-independent apoptosis [26,27].

It has been reported that ROS are generated during the redox

cycling of b-lap [1]. In the present study, we examined the role of

ROS in the cell death caused by combined treatment with IR and

b-lap. We observed that both the rate and magnitude of ROS

generation were markedly greater (Fig. 2A and B), and thus

apoptosis was greater after combined treatment, compared to

treatment with IR or b-lap alone in NQO1+-MDA-MB-231 cells

(Fig. 2C).

We demonstrated that the rapid and strong activation of ERK

induced by combined treatment with IR and b-lap is critically

associated with the induction of apoptotic cell death (Fig. 3).

Consistent with previous reports [28–30], we found that b-lap in

combination with IR causes a rapid activation of JNK in NQO1+-

MDA-MB-231 cells (Fig. 3A). However, activation of p38 MAPK

did not appear to be involved in response to the combined

treatment in NQO1+-MDA-MB-231 cells (Fig. 3A). In this

context, inhibition of p38 MAPK by pretreating with SB203580

did not alter combined treatment-induced apoptotic cell death in

NQO1+-MDA-MB-231 cells (Fig. 3B). The JNK activation caused

by combined treatment was first evident within 0.5 h and

decreased in 2 h in NQO1+-MDA-MB-231 cells (Fig. 3A). This

reduction of JNK activity after 2 h may be due to the action of

phosphatases, such as MAPK phosphatase 2 (MKP2) and -7

(MKP7), which have been reported to decrease the activity of

intracellular MAPK signaling pathways [31–33]. ERK has been

reported to increase the expression and activity of MKP2 and

MKP7, leading to suppression of JNK [31,33]. Similarly, because

our results indicated that ERK activity was elevated for 3 h after

combined treatment in NQO1+-MDA-MB-231 cells (Fig. 3A),

ERK seems to participate in inducing the expression and activity

of MKP2 or MKP7 for inhibition of JNK activity.

In this study, pretreatment of cells with NAC completely

inhibited combined treatment-induced activation of ERK and

JNK, and subsequent apoptotic cell death, demonstrating that

increased intracellular ROS generation is critical for the activation

of ERK and JNK (Fig. 4A). Increase of intracellular ROS has been

reported to activate the Ras/Raf/ERK pathway by stimulating

receptor tyrosine kinases or directly oxidizing the cysteine residues

of Src, Ras or Raf [34]. Furthermore, several recent reports have

indicated that ASK1, a MAPKKK for JNK activation, forms a

complex with reduced thioredoxin (Trx) in non-stressed cells

[35,36]. Oxidation of Trx by ROS releases ASK1 from the

complex and leads to JNK activation, possibly through dimeriza-

tion of ASK1 [35,36]. Therefore, further studies are required to

clarify the role of ASK1 in the JNK activation that occurs in

response to combined treatment with IR and b-lap.

Interestingly, inhibition of ERK by a targeted siRNA

substantially suppressed combination treatment-induced ROS

generation, whereas siRNA-mediated JNK knockdown did not

(Fig. 4B). These results demonstrate that activation of ERK by

combined treatment substantially contributes to ROS generation,

and indicates the existence of positive feedback regulation between

ERK activation and ROS generation. Several reports have

demonstrated that ERK activation induces phosphorylation of a

serine residue in p47 phox, a subunit of NADPH oxidase, thereby

promoting the translocation of p47 phox to the cellular

membrane, a perquisite for binding to and activation of the

NADPH oxidase responsible for ROS generation [37,38].

Pretreatment of NQO1+-MDA-MB-231 cells with DPI (dipheny-

lene iodonium), a pharmacological inhibitor of NADPH oxidase,

prior to combined treatment with IR and b-lap, significantly

inhibited the ROS generation and apoptotic cell death caused by

combined treatment (data not shown). Further studies are needed

to elucidate the possible role of ERK in the generation of ROS

generation in response to combined treatment with IR and b-lap.

In agreement with our previous report [39], b-lap alone caused

a slight elevation of ER stress and the induction of ER stress by

combined treatment with IR and b-lap was far more evident than

by b-lap alone (Fig. 5A). Consistent with previous reports that

ROS disrupt ER homeostasis [40–42], we found that inhibition of

ROS generation by pretreatment with NAC significantly sup-

presses the induction of ER stress induced by combined treatment

with IR and b-lap (Fig. 5D). However, Sal, an ER stress inhibitor,

did not affect ROS generation (Fig. 5C), but effectively blocked

apoptotic cell death (Fig. 5B), indicating that the induction of ER

stress is mainly due to ROS generation. It is well established that

ER stress activates JNK [43–46]. In agreement with previous

reports, the suppression of ER stress by Sal effectively blocked

JNK activation (Fig. 5E) and subsequent apoptotic cell death

induced by combined treatment with IR and b-lap (Fig. 5B), but as

mentioned above, it did not inhibit ROS generation (Fig. 5C).

Furthermore, inhibition of JNK by pretreatment with SP600125

did not attenuate combined treatment-induced ER stress (Fig. 4C),

indicating that JNK activation acts downstream of ER stress to

induce apoptotic cell death. These results further support our

conclusion that the induction of ER stress by ROS plays a crucial

role in JNK activation and subsequent apoptotic cell death in

response to combined treatment with IR and b-lap. Sal is known

to selectively block ER stress-induced apoptotic cell death by

inhibiting the dephosphorylation of eIF2a [47,48]. However, it is

unclear how dephosphorylation of eIF2a by Sal suppressed JNK

activation, as we observed in our study. Additional studies are

needed to clarify the inhibitory effect of Sal on the activation of

JNK by ER stress in response to combined treatment with IR and

b-lap.

Caspase activation was reported to be involved in the b-lap-

induced apoptotic cell death of breast cancer cells [2]. Further-

more, although caspase-3 was well known to be the downstream

effector of activated caspase-8 in death receptor-mediated cell

death pathway [14], we observed that the activations of caspase-9

and -3 preceded that of caspase-8 after the combined treatment

with IR and b-lap (Fig. 6A). Several reports also indicated that

caspase-3 can cleave pro-casapsae-8 in vitro [49], and proposed the

possibility that activation of caspase-8 in several anticancer drug

treatments or disease may be mediated by caspase-9 or -3 [50–54].

In addition, combined treatment with IR and b-lap also caused the

release of cytochrome c, expected to initiate activation of caspase-9

(Fig. 6B). Therefore, in agreement with these reports, caspase-9

activation via mitochondrial pathways may play a key role in

activation of caspase-8 by combined treatment with IR and b-lap.

However, interestingly, inhibition of caspases failed to inhibit

apoptosis indicating activation of caspases is not a major or a solo

mechanism for the induction of apoptosis by combined treatment

with IR and b-lap (Fig. 6D).

AIF is known to function in a caspase-independent apoptosis

pathway. Mitochondrial AIF is translocated to the nucleus in

response to death stimuli, where it initiates nuclear condensation

and DNA fragmentation [7,55]. Consistent with these findings, we

observed that AIF was translocated to the nucleus after combined
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treatment with IR and b-lap (Fig. 6E), and demonstrated that AIF

activity was required for combined treatment-induced apoptosis

(Fig. 6F). Proteolytic cleavage of native Bax (21 kDa) into an

18 kDa form by calpain has been shown to occur in cancer cells

treated with a variety of chemotherapeutic drugs [15,17]. This

cleaved form of Bax is more potent than the native form in terms

of disruption of mitochondrial transmembrane potential, release of

cytochrome c and AIF from the mitochondria, and subsequent

induction of apoptotic cell death [15,17,56]. We found that

combined treatment with IR and b-lap induced Bax cleavage

without altering Bcl-2 protein levels (Fig. 7A). We also observed

that the cleaved form of Bax was translocated to mitochondria

upon combined treatment (Fig. 7C), coinciding with the observed

changes in mitochondrial transmembrane potential and nuclear

translocation of AIF (Fig. 7B).

In conclusion, we demonstrate that, compared to individual

treatment with IR or b-lap, b-lap in combination with IR was

markedly more potent in causing apoptotic cell death. Combined

treatment induced mitochondrial apoptotic cell death in an NQO1-

dependent manner through positive feedback regulation between

ERK and ROS, which contributed to the induction of ER stress and

led to JNK activation and nuclear translocation of AIF (Fig. 7H).

Our results demonstrate that b-lap may effectively improve the

therapeutic efficacy of radiation therapy by targeting NQO1.

Materials and Methods

Reagents
b-lap was purchased from Biomol (Plymouth Meeting, PA), and

was dissolved in DMSO. Antibodies against p38 MAPK, JNK2,

JNK1/2, ERK1/2, Bax, Bcl2, AIF and Nucleoporin p62 were

purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA).

An antibody against mitochondrial heat shock protein 70 (HSP70)

was obtained from Affinity Bioreagents (Golden, CO). Anti-b-

actin, -rabbit IgG, -mouse IgG and N-acetyl-L-cysteine (NAC)

were purchased from Sigma (St. Lous, MO). Antibodies against

phospho-p38 MAPK (Thr180/Tyr182), phospho-JNK1/2

(Thr183/Tyr185), phospho-ERK1/2 (Thr202/Tyr204), phos-

pho-eIF2a (Ser51), eIF2a and active caspase-3 were obtained

from Cell Signaling Technology (Beverly, MA). Inhibitors specific

to JNK (SP600125), MEK/ERK (PD98059), p38 MAPK

(SB203580), caspases (z-VAD-fmk), protease (MG132) and ER

stress (Salubrinal) were purchased from Calbiochem (San Diego,

CA).

Cell culture
Parental NQO12-MDA-MB-231 human breast cancer cells,

which are NQO1-deficient, and NQO1+-MDA-MB-231 human

breast cancer cells, which are stably transfected with NQO1, were

obtained from Dr. David Boothman (University of Texas

Southwestern Medical Center, Dallas, TX). Cells were cultured

in RPMI 1640 medium (Gibco BRL, Grand Island, NY)

supplemented with 10% (v/v) bovine calf serum (Gibco BRL),

penicillin (50 units/ml), and streptomycin (50 mg/ml), in a 37uC
incubator under a mixture of 95% air and 5% CO2.

Irradiation
Cells were exposed to c-rays with a 137Cs irradiation source

(Model 68; J.L. Shepherd and Associates, Glenwood, CA) at a

dose rate of 200–300 cGy/min.

Transfection of small interfering RNA
RNA interference with small interfering RNAs (siRNAs) was

carried out using double-stranded RNA molecules. ERK1/2

siRNA (#6560) was purchased from Cell Signaling Technology

(Beverly, MA). siRNAs against AIF (59-GCA AGU UAC UUA

UCA AGC UTT-39) and JNK2 (59-CUG UAA CUG UUG AGA

UGU ATT-39) were purchased from Bioneer Corporation

(Daejeon, Korea). An unrelated control siRNA (59-CCA CTA

CCT GAG CAC CCA G-39) that targets the green fluorescent

protein DNA sequence was used as a control. For transfection,

cells were seeded on 60-mm dishes and transfected at 30%

confluency with siRNA duplexes (100 nM) using Lipofectamine

2000 (Invitrogen, Carlsbad, CA) in accordance with the

manufacturer’s instructions. Assays were performed 24 h after

transfection.

Quantification of clonogenic death
Various numbers of cells were plated on 60-mm dishes and

treated with 2 mM b-lap, a range of doses of IR (0,4 Gy) or b-lap

(2 mM) in combination with and IR (0,4 Gy). Cells were then

incubated for 14 days at 37uC in 5% CO2 incubator to allow

colonies to form. Prior to counting colonies, the culture medium

was decanted, and the cells were fixed in 95% methanol, stained

with 0.5% crystal violet, and the numbers of colonies (.50 cells/

colony) from triplicate dishes were counted. Mean colony numbers

were plotted relative to those formed by unirradiated cells.

Quantification of apoptosis
Cells were collected by trypsinization, washed 2 times with

phosphate-buffered saline (PBS); resuspended in 1 ml PBS

containing 0.1% Triton X-100, 0.1 mM EDTA, 10 mg/ml

DNase-free RNase A, and 2 mg/ml propidium iodide (PI); and

incubated for 1 h in the dark at 37uC. Apoptotic cells were

detected by flow cytometry using a FACSCalibur system (Becton

Dickinson, San Jose, CA). Apoptosis was measured as the

percentage of cells in the sub-G1 population.

Measurement of ROS generation
Cells were incubated at 37uC for 30 min in 10 mM 29,79-

dichlorofluorescein-diacetate (DCFH-DA; Molecular Probes, Eu-

gene, OR) or 4 mM dihydroethidium (DHE; Molecular Probes,

Eugene, OR), harvested by trypsinization, and washed three times

with cold PBS. ROS levels were determined by flow cytometry, as

described previously [7].

Western blot analysis
Cells were treated with lysis buffer [40 mmol/L Tris-Cl

(pH 8.0), 120 mmol/L NaCl, and 0.1% NP40] supplemented

with protease inhibitors, then centrifuged for 15 min at 12,0006g.

Proteins were separated by sodium dodecyl sulfate-polyacrylamide

gel electrophoresis (SDS-PAGE) and transferred to nitrocellulose

membranes (Bio-Rad, Hercules, CA). The membranes were

blocked with 5% nonfat dry milk in Tris-buffered saline and

subsequently incubated for 1 h with primary antibodies at room

temperature. Blots were developed with a peroxidase-conjugated

secondary antibody, and immunoreactive proteins were visualized

using enhanced chemiluminescence reagents (Amersham Biosci-

ences, Piscataway, NJ), as recommended by the manufacturer. b-

actin, Nucleoporin p62 and mitochondrial HSP 70 were used as a

loading control, a nuclear marker, and a mitochondrial marker,

respectively.

Measurement of mitochondrial membrane potential
Cells were incubated for 30 min in 30 nM 3,39-dihexyloxacar-

bocyanine iodide (DiOC6(3); Molecular Probes, Eugene, OR) at

37uC, harvested by trypsinization, and washed three times with
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cold PBS. Mitochondrial membrane potential was determined by

flow cytometry, as described previously [7].

Preparation of mitochondrial and nuclear fractions
Cells were collected and washed twice in ice-cold PBS,

resuspended in isotonic homogenization buffer [250 mM sucrose,

10 mM KCl, 1.5 mM MgCl2, 1 mM Na-EDTA, 1 mM dithio-

threitol, 0.1 mM phenylmethylsulfonylfluoride, 10 mM Tris-HCl

(pH 7.4)], incubated on ice for 20 min, and homogenized using a

Dounce glass homogenizer (70 strokes) fitted with a loose pestle

(Wheaton, Millville, NJ). Cell homogenates were spun at 306g to

remove any unbroken cells. Supernatants were then respun for

10 min at 7506g to separate nuclear and mitochondrial fractions.

Each pellet (nuclear fraction) was washed three times with

homogenization buffer, and resuspended in nuclear lysis buffer

[50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1% (v/v) NP40, 0.5%

(w/v) sodium deoxycholate] containing protease inhibitors, prior

to Western blot analysis. After pelleting the nuclear fraction, the

supernatant was further subjected to 30 min of centrifugation at

14,0006 g to obtain a mitochondria-rich fraction. Pellets were

washed once with homogenization buffer and then resuspended in

mitochondrial lysis buffer [150 mM NaCl, 50 mM Tris-HCl

(pH 7.5), 1% (v/v) NP40, 0.25% (w/v) sodium deoxycholate, and

1 mM EGTA] containing protease inhibitors prior to Western blot

analysis.

Preparation of cytosolic fractions for cytochrome c
measurement

Cells were collected and washed twice in ice-cold PBS,

resuspended in isotonic homogenization buffer [250 mM sucrose,

10 mM KCl, 1.5 mM MgCl2, 1 mM Na-EDTA, 1 mM dithio-

threitol, 0.1 mM phenylmethylsulfonylfluoride, 10 mM Tris-HCl

(pH 7.4)], incubated on ice for 20 min, and homogenized using a

Dounce glass homogenizer (70 strokes) fitted with a loose pestle

(Wheaton, Millville, NJ). Cell homogenates were spun at 1,0006g

to remove unbroken cells, nuclei, and heavy membranes. The

supernatant was re-spun at 14,0006 g for 30 min to collect the

cytosolic (the supernatant) fractions.

Statistical analysis
All data presented are representative of at least three separate

experiments. Comparisons between groups were analyzed using

Student’s t-test (SPSS Statistics version 17.0, Chicago, IL). p

values,0.05 (indicated by * on figures) were considered to be

significant.
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