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Large-scale simulations of fluctuating biological membranes
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We present a simple, and physically motivated, coarse-grained model of a lipid bilayer, suited for
micron scale computer simulations. Each =25 nm? patch of bilayer is represented by a spherical
particle. Mimicking forces of hydrophobic association, multiparticle interactions suppress the
exposure of each sphere’s equator to its implicit solvent surroundings. The requirement of high
equatorial density stabilizes two-dimensional structures without necessitating crystalline order,
allowing us to match both the elasticity and fluidity of natural lipid membranes. We illustrate the
model’s versatility and realism by characterizing a membrane’s response to a prodding nanorod.
© 2010 American Institute of Physics. [doi:10.1063/1.3382349]

I. INTRODUCTION

Lipid bilayers form the basis of biological membranes.
Integral membrane proteins and a variety of small molecules
are embedded in this two-dimensional fluid, which is stabi-
lized by hydrophobic interactions: the bilayer structure effec-
tively shields the lipid’s hydrophobic alkane chains from ex-
posure to the aqueous solvent. Despite this complexity on the
molecular level, biological membranes at large length scales
are well characterized by surprisingly few material proper-
ties. In particular, their behavior on large length scales is
consistent with that of crude elastic models, which take as
input only a bending rigidity, i.e., the membrane’s resistance
to smooth shape deformations. It is unclear below what scale
such representations become inappropriate, in part due to
computational difficulties of incorporating thermal fluctua-
tions, which invariably gain importance as the scale of ob-
servation is reduced from the macroscopic. At the opposite
extreme computer simulations of lipid bilayers at atomistic
resolution provide detailed access to the spectrum of thermal
fluctuations. They are limited, however, to length and time
scales of tens of nanometers and hundreds of nanoseconds,
respectively.l’2

Many important biological phenomena involve mem-
brane deformations over several micrometers and span sec-
onds or even minutes. They thus occur on length scales in-
termediate between those natural to elastic continuum
models and to atomistic representations. In attempts to
bridge this gap, a large variety of simplified models for in-
teractions between lipid molecules have been proposed in the
literature. These range from systematically coarse-grained
systems at near-atomistic>* or molecular™® resolution to
solvent-free heuristic models;7’8 a recent review can be found
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in Ref. 9. Common to these models is an attempt to mimic
the amphipathic character of individual lipid molecules.
While considerably less expensive than atomistic simulations
in their computational demands, these approaches are still
limited in the scope of fluctuations and response they can
feasibly capture.

Extending computer simulations to examine large scale
behaviors such as aggregation of membrane-associated pro-
teins or deformations induced by growth of an actin network
would appear to require coarse-graining beyond the scale of
individual lipid molecules. Several such approaches have
been proposed.lof15 Most represent in a discrete way the
fluctuations implied by Helfrich’s continuum model of an
clastic sheet.'®!” Because these methods use the relevant
elastic constants such as the bending rigidity and the surface
tension as input parameters, they are guaranteed by construc-
tion to reproduce the correct large scale behavior. Such me-
soscopically coarse-grained models have been successfully
applied in the study of processes involving significant mem-
brane deformations, for example, liposome remodeling due
to N-BAR domain interactions.'®""

When the continuum limit is used as a starting point for
mesoscopic model building, one loses the ability to predict
the macroscopic material properties from the underlying
physical interactions. In this work we present an alternative
approach that follows transparently from the statistical me-
chanics of hydrophobicity and the underlying membrane
thermodynamics. This is not only aesthetically pleasing, it
also results in a model of surprising simplicity and compu-
tational efficiency. Whereas discretized expressions for the
bending energy can be numerically unstable and prone to
intricate topological dependencies,20 our method employs
only simple functions that can be evaluated quickly. Despite
its simplicity, our model successfully captures several impor-
tant properties of lipid bilayer physics, such as intrinsic flu-
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idity and the ability to spontaneously assemble into two-
dimensional sheets. It is furthermore sufficiently versatile to
reproduce a wide range of biologically relevant elastic prop-
erties.

In our model, we envision the lipid bilayer as a collec-
tion of small membrane patches of size d=35 nm, roughly
the thickness of a typical bilayer,21 each comprising ~100
phospholipid molecules. For geometric simplicity, we repre-
sent each patch as a volume-excluding sphere with an axis of
rotational symmetry pointing from one polar head group re-
gion to the other. Cohesion of such patches is due of course
to the presence of water: Exposing the hydrophobic portion
(i.e., the equatorial region of our model spheres) to solvent
incurs a free energetic cost, while exposing the hydrophilic
portion (i.e., the polar caps of our model spheres) is thermo-
dynamically advantageous. At length scales =1 nm both of
these contributions should be proportional to the exposed
area.” Remarkably, these considerations alone are sufficient
to successfully mimic the flexibility and fluidity of natural
bilayers.

The model we have developed from these simple physi-
cal notions resembles in some respects one reported long ago
by Drouffe and co-workers."’ They similarly considered as-
sociation of spherical units each representing a bilayer patch
comparable in size to the membrane’s thickness. The aniso-
tropic interactions acting among their particles, however,
were devised not to reflect pertinent thermodynamic driving
forces at this length scale, but instead to foster formation of
fluid elastic sheets. In our view the potential energy function
used in that work would be difficult to motivate on micro-
scopic grounds, and no attempt was made in Ref. 10 to do so.
For this reason we expect that our approach will generalize
more naturally to describe scenarios that involve membrane
properties beyond long-wavelength fluidity and elasticity.

As a more immediate and practical justification for our
new approach, we found that the original model by Drouffe
et al., as described in Ref. 10, does not yield stable two-
dimensional structures. In the Appendix, we detail a revised
version of that model which is consistent with previously
reported properties. But even in this case the model mem-
brane’s bending rigidity is atypically small for biophysical
systems.

Il. MODEL

For a collection of N particles, each representing a patch
of lipid bilayer, we adopt the energy function
N

U=Ugc + €2 Aeg(nl)) = Apoi(nD). (1)
i=1

where the hard-core potential Uyc enforces the constraint
that the separatlon between any two particles is at least d.
The quantities n( and n' ())1 characterize, respectively, the
equatorial and polar coordination numbers of particle i. The
functions Ay(n) and A, (n) determine solvent exposure of
these two regions based on their coordination. The positive
constant € sets the scale of these solvent-mediated interac-
tions. Based on the surface tension between water and oil,
y~50 mJ/m?, and the hydrophobic surface area of a mem-
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brane patch, A= 60 nm2, we expect yA=740 kgT to be an
appropriate value for e.

In detail, we define the fluctuating density of a particle’s
equatorial and polar neighbors as

f’lég = 2 Geq(rij)Heq(Zizj) s (2)
JFI

g())l = ; Gpol(rz/)Hpol(le) (3)
J#i

The contributions of particle j to the coordination densities
of particle i are thus determined both by the distance r;;
|r | between their centers, and by the normalized prOJectlon
d /1 of their separation vector r;; onto the axis of
partlcle i (whlch points along the unit vector d) They are
attenuated by the functions

1, if r=r,,
22
b .
Gey(r) =Gpoi(r) =y 57—, if r,<r=r,, (4)
r,=Ty
0, otherwise,
and
L, if 22=<22,
-7
2 2 b o2 2 2
Heq(z)zl_Hpol(Z)= 5 o> if 7, <=2z,
ip— 2
0, otherwise,

(5)

over scales determined by parameters r,, 75, Z,, and z,. In
this way, particle j counts toward the equatorial (polar) cov-
erage of particle i only if it lies near its center and not too far
off the equatorial plane (polar axis).

For a partially occluded object, such as our idealized
membrane particles when surrounded by neighbors, calculat-
ing the area accessible to solvent molecules of finite size is a
nontrivial operation. Furthermore, this task is not sensible to
carry out in detail for the reduced representation we have
chosen. Essential features of the functions A4(n) and A (1)
are nonetheless straightforward to ascertain: As n increases,
exposed area at first declines steadily. At some value 7 lower
than the maximum 7™ permitted by steric constraints, it
should nearly vanish, since perfect close-packing is not
needed to thoroughly exclude solvent from the bilayer’s in-
terior (or from the polar exterior). For n>n, variation in
exposed area should be very weak. We caricature this depen-
dence with computationally inexpensive, piecewise linear
functions:

Agg(n)=1- —(n <y,
Teq

0(n = ity), (6)

pol(n) =1- _

(}’l < npol)
npol

Appropriate values of 71,4 and 71,,; will depend on the relative
thicknesses of hydrophobic and polar regions, specified in
our model by z, and z,,.



154107-3 Simulations of fluctuating membranes J. Chem. Phys. 132, 154107 (2010)
a) . . b) ® ° e ¢ ¢
. * a ’ . o, °p ® o ©° Leg® % ©
. i R '?) ° .@ elo" s *g 4 o
. NP op’ @88 %e £ o 8%L
i . ® . °-a..000' ERT B . - *
;- -\ 4 3"2% ‘oug}’g.?.s 'f:-e‘?s 2.0
. ~ ° 9% 0P 00 oo @ e
~ . 09y ° . o Reo Ko o
/ S “/ \ ° af.,,’ G o0 g 0 00 Nl ol
’ ~ o \ o 0””}'}, W °°\g,§bmze°‘ s :2 o %
' ol :3 Woon % ®e Ot ®
% s s 80,0,
\ < - y~ l . 6%‘5 ‘osoo'?‘ ‘bou,.& 90.0 o8 :‘:?o €
s ¥ LIPPTTY; .
\ . .. / .o.Q: ?"’:.. 39,028 ¢ SRR pAb = FIG. 1. (a) Illustration of our model.
\‘ - A 2 / e ‘S,!,W;‘Jﬁ: ia oc,,,;“‘%t‘ i Each particle corresponds to a frag-
Y =~ : o4 E’né Pé‘o "g’ggé"wﬂ & ment of lipid bilayer, comprised of a
% * > YT o  Ser d 3 . central hydrophobic core and two sur-
. .',. < ol qc& ®oege, © ° . Il .
. . i *° e 2 Ve N ® rounding hydrophilic layers. The unit
. s © A . . .
. i o e ° '; - ~ vector d; specifies the orientation of
. ® e & @ particle i. Also shown are the spatial

regions used to compute the numbers
of equatorial (enclosed by dashed line)
and polar (enclosed by dotted line)

neighbors of particle i. (b) Random
initial configuration for a trajectory of
N=864 particles. As time progresses,
particles quickly form two-
dimensional patches that continue to
coarsen. Shown are snapshots after (c)
100 and (d) 1000 Monte Carlo sweeps.

The membrane free energy we have described is mark-
edly multibody in character, but in a way that is both physi-
cally meaningful and simple to understand. Its parameters
correspond intuitively to the geometry and chemistry of con-
stituent molecules. Below we present results of Monte Carlo
computer simulations for this model, which employed single
particle translations and rotations as trial moves, as well as
shape deformations of the periodically replicated simulation
box when an external tension was imposed. For these
calculations, we selected r,/d=1.3,r,/d= 1.7,z2=0.05,z§
=0.2,,q=5 and n,=1, which yield a rigidity typical of bio-
logical membranes. By varying these values, it is possible to
tune the elasticity of the assembled bilayer, as well as more
subtle properties such as internal viscosity or rupture tension.

lll. RESULTS

We first demonstrate that a sheetlike configuration is in-
deed the equilibrium state of our model at finite temperature.
Figure 1 shows snapshots from a Monte Carlo trajectory in
which an initially disperse collection of membrane particles
spontaneously organizes into two-dimensional structures that
then diffuse and coalesce.”> This coarsening process is ex-
pected to proceed until only a single membrane sheet re-
mains in the simulation box. A free boundary in the resulting
structure can be avoided either by forming a membrane sheet
that spans the periodically replicated simulation box, or by
adopting a boundary-free geometry such as a spherical
vesicle.

We next provide evidence that the elastic properties of
our model match quantitatively those of natural lipid bilay-
ers. Specifically, on length scales well beyond a particle ra-
dius d (corresponding to the bilayer’s thickness), its shape
fluctuations are well described by the Helfrich model of in-
compressible fluid elastic sheets,'®!” with macroscopic ma-
terial properties in accord with experimental measurements.
In Helfrich’s model, a nearly flat segment of membrane ex-
hibits a fluctuation spectrum

ks TA

0'q2 + Kq4 ’

(I = )

Here, ﬁq: Jah(x)exp(—ig-x)dx is the Fourier transform of
the membrane height A(x), ¢ is a two-dimensional wavevec-
tor conjugate to the Cartesian position x on a flat reference
membrane with area A, and (.) denotes the equilibrium av-
erage. For lipid mixtures common in cell membranes, the
bending rigidity « ranges from 10 to 30 kg T.** To the extent
that the membrane’s area per molecule is constant, the sur-
face tension o plays the role of minus chemical potential and
increases linearly with applied lateral tension .2

For the purpose of estimating the normal mode fluctua-
tions of Eq. (8) from simulation, we wish to avoid imposing
lateral tension (requiring 7=0). As a practical matter, how-
ever, it is convenient in this calculation to prescribe a fixed
box geometry (and thus a fixed set of wavevectors). We be-
gan by performing simulations in which the box size was
allowed to fluctuate at zero lateral tension. The resulting av-
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FIG. 2. Spectrum of height fluctuations around a flat reference state, equili-
brated at zero lateral tension. The dashed line is a fit to the expected behav-
ior (8) with o=0, yielding a bending rigidity k=252 kgT.

erage box size was then adopted as a constraint for a second
set of simulations, in which we computed the distribution of
height fluctuations.”® At large length scales we indeed ob-

serve the characteristic <|ﬁq|2> = g~* behavior predicted by the
Helfrich model, as shown in Fig. 2. The computed propor-
tionality coefficient indicates a bending rigidity of «
~25 kgT, well within the range of measured values.”* By
manipulating the parameters zi and zi, we are able to repro-
duce the elastic behavior of membrane sheets over a wide
range of bending rigidities (Table I).

The advantage of our model lies in a facile ability to
address mesoscale response without sacrificing the micro-
scopic basis of corresponding fluctuations. As a representa-
tive biophysical example that calls for these capabilities, we
considered the resistance of a fluctuating membrane to im-
pingement of a nanorod oriented perpendicular to the lipid
bilayer. Experimental realizations of this situation include
extension of polymerizing actin filaments close to a cell
membrane”’ and external forcing of a carbon nanotube
against a cell wall.®

Insets of Fig. 3 depict the reversible membrane deforma-
tions we have studied in this context. The prodding nanorod
is modeled here as a volume-excluding, rigid spherocylinder
of radius R=3d, which defines a region in space inaccessible
to the membrane particles. Its vertical displacement / deter-
mines the size of the membrane deformation. We set /=0 for
a nanorod that would contact the membrane, in a completely
flat configuration, at a single point. To prevent global trans-
lation of the membrane when />0, we constrain the vertical
positions of a small number of membrane particles. This pin-
ning could be viewed as a mimicry of cytoskeletal attach-
ments that would suppress overall translations in a living
cell.”!

To calculate membrane-induced forces on the nanorod,

TABLE I. Computed bending rigidities for different values of the model
parameters z2 and z.

2 2

Z, Z;, K/ kgT
0.01 0.2 126.8+0.8
0.02 0.2 63.4%0.5
0.05 0.2 25.2%0.1
0.1 0.2 12.1+0.1
0.4 0.6 2.1+0.03
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FIG. 3. Restoring force as a function of protrusion length for three different
values of the lateral tension 71 0.0002¢/d> (squares), 0.0005¢/d> (circles),
and 0.001€/d? (triangles). For each value of 7 and I, we performed com-
puter simulations at two values of K (0.2 and 1 in units of €/d?). The force
was evaluated using Eq. (11) at a length [ corresponding to the arithmetic
mean of the two average lengths (I). Solid lines show the results of the
corresponding continuum calculations with o=7 (Ref. 36). Arrows indicate
the constant plateau force 277\2«xo for long cylindrical protrusions in the
continuum limit (Refs. 29-31). The inset shows cutaway views of typical
configurations at 7=0.0005¢/d? and 1,=17.5, 29.5, 41.5 (left to right), il-
lustrating the transition from a global deformation to a localized, tubular
protrusion. In our calculations the nanorod is placed at the center of the
periodically replicated simulation box, and a small number of membrane
particles are immobilized at the boundary to avoid overall membrane
translation.

we treat the rod height / as a dynamical variable subject to an
external potential, V(I)=(1/2)K(I-1,)>. The free energy of
this degree of freedom can then be written as the sum W(/)
+V(1), where W(I) originates from the fluctuating constraints
imposed by membrane particles. Expanding the latter to qua-
dratic order around a fixed length 1,, W(l)=W(l,)+W’(l,)(l
—1,)+(1/2)W"(1,)(I-1,)?, one finds that the average value
and variance of / can be expressed in terms of the derivatives
of W as

Kly—W' (1)) + W' (1)1,

b= W'(l,) + K : ©)
o kgT
((8)°) = —W”(ll) K (10)

Using these relationships, we can compute the (negative)
membrane-induced force f(I)=W'()=W'(l,))+W"(l,)(I-1,)
as

((81)?) = kg TIK
((a1)%)

This equation contains the well-known expression for the
force on a particle in a harmonic potential under linear per-
turbations as the special case W”(l;)=0.

Force-extension curves for this extrusion process are
plotted in Fig. 3 for three different values of 7. The restoring
force initially increases in proportion to filament length, and
ultimately reaches a plateau value at large /. This limitin
force is in good agreement with the constant force 2m\2ko
predicted by the Helfrich model for the stretching deforma-
tion of an elastic cylinder,”i31 provided that ¢ is dominated
by lateral tension. Similar agreement is found for the diam-

JO=K| D=1y (D=0 (11)
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eter of the membrane tubule (data not shown). At intermedi-
ate extensions, f exhibits a local maximum, signaling a me-
chanical instability associated with the transformation
between two different classes of membrane configurations.
This observation is consistent with recent experiments on the
formation of membrane tethers from giant vesicles” and
conclusions drawn from continuum calculations.”*°

IV. OUTLOOK

In addition to mechanical responses exemplified here by
nanorod protrusion, several other biologically relevant mem-
brane processes could be addressed through straightforward
extensions of our model. For example, lateral demixing of
multicomponent lipid bilayers could be studied by endowing
each membrane particle with a degree of freedom represent-
ing the local composition. The organization of embedded
proteins could be simulated using a description of the mac-
romolecule that is compatible with our membrane model.
Studying time-dependent behavior would require, in addi-
tion, a set of dynamical rules for updating particle arrange-
ments. Most simply, the Monte Carlo trajectories we have
used here to sample equilibrium configurations could be in-
terpreted as an approximation of physical time evolution.
Integrating equations of motion that involve derivatives of
potential energy would require smoothed versions of the in-
teractions we have described. Already, the mesoscale realism
and computational economy of our approach recommends its
use for examining a wide range of lipid bilayer fluctuation
phenomena beyond the reach of molecular models.
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APPENDIX: MEMBRANE MODEL BY DROUFFE
AND CO-WORKERS

The model proposed by Drouffe and co-workers in Ref.
10 operates on the same lengthscale and focuses on the same
degrees of freedom as the model presented in this work. It
employs an energy functional of the form

U=UHC+Uan+Mden. (Al)

The first term is a pairwise repulsive energy that penalizes
overlap of different particles, which we treat as hard spheres.
The second term is a pairwise anisotropic interaction energy,

Up= €2, B(ry){n(d; - )"+ g(z}) + ()}

i<j

(A2)

where B(r;;) is a positive weight function that limits the
range of the interaction to =2d, n=1 in Ref. 10, a {1,2}
depending whether the particles are symmetric, and

J. Chem. Phys. 132, 154107 (2010)

’ / !
c-"’ %
<

s n? B
o <
® " oy
a3

FIG. 4. (a) Typical configuration of the membrane model developed by
Drouffe and co-workers (a=n=1, T=1.6€). A flat sheet of 256 particles
with parallel orientation vectors was used as the initial configuration. This
structure dissolves quickly into a disordered collection of small clusters. (b)
Final configuration of a trajectory starting from the same initial state, but
employing an alternative parameter set (a=1, n=-1, and T=0.5¢). The
initially flat sheet remains stable, and closes to form a vesicle.

g(x)=0.75x* + 0.25x + 0.8 (A3)
is a monotonically increasing function over the range of its
argument x € [0, 1].

The last term in Eq. (A1) is a multibody potential that
favors configurations in which each particle is surrounded by
6 nearest neighbors,

Ugen = 62 C(P,’), (A4)

where C(p)=(p;=6)?, pi=2;+h(r;), and h(r;) is a weight
function with unit value for small particle separations.

To implement this model one must specify the depen-
dence of B(r) and h(r) on interparticle distance, which was
done only graphically in Ref. 10. We assign these quantities
simple functional forms that are piecewise linear in 72,

.
1.5,

if r=1.85,
1.52.0%2-7) .
B(r)=< m, if 1.85<r=2.0, (AS)
L0, otherwise,
1, if r=1.6,
19572 |
h(r):< m, if 1.6<r=1.95, (Aﬁ)
0, otherwise.

"

Values of B and h resulting from this choice closely resemble
those plotted in Ref. 10.

We performed Monte Carlo computer simulations of the
model defined by Egs. (A1)—(A6) for a=1 at a temperature
T=1.6€. For these conditions, Drouffe and co-workers report
the spontaneous assembly of randomly distributed and ori-
ented particles into a two-dimensional sheet, in which the
orientation vectors of neighboring particles are nearly paral-
lel. However, in our simulations we find that for these pa-
rameter values the system forms many small clusters of par-
ticles without apparent internal order. Similar configurations
are obtained when a completely ordered sheet is used as the
initial condition [Fig. 4(a)], which indicates that the inability
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to form stable membranes is thermodynamic in origin, and
not due to dynamical artifacts caused by the Monte Carlo
method.

The lack of stable membranelike structure in this pub-
lished version of the model is straightforward both to under-
stand and to remedy. When #=1, the first term in the brack-
ets of Eq. (A2) actually disfavors parallel alignment of
neighboring particles’ orientational vectors; this energy con-
tribution is minimum when axes of adjacent particles are
antiparallel (in the case a=1) or perpendicular (@=2). Sus-
pecting a typographical error in Ref. 10, we set »=-1 in
order to instead favor the desired alignment. Equilibrium
states resulting from this modification, however, still feature
a collection of many small aggregates of particles at the tem-
perature 7=1.6 reported in Ref. 10. In this case the adhesive
interaction (A4) is insufficient to overcome the loss in en-
tropy associated with forming a single membrane sheet. Only
after reducing the temperature to 7=0.5¢ were we able to
observe stable sheetlike structures and vesicles in our simu-
lations [Fig. 4(b)]. This modified set of model parameters
results in membrane sheets with a bending rigidity «
=4.9=*0.1 kgT, which is smaller than values measured for
biophysical phospholipid bilayers.24
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