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Purpose: For the last few years, development and optimization of three-dimensional �3D� x-ray
breast imaging systems, such as digital breast tomosynthesis �DBT� and computed tomography,
have drawn much attention from the medical imaging community, either academia or industry.
However, there is still much room for understanding how to best optimize and evaluate the devices
over a large space of many different system parameters and geometries. Current evaluation meth-
ods, which work well for 2D systems, do not incorporate the depth information from the 3D
imaging systems. Therefore, it is critical to develop a statistically sound evaluation method to
investigate the usefulness of inclusion of depth and background-variability information into the
assessment and optimization of the 3D systems.
Methods: In this paper, we present a mathematical framework for a statistical assessment of planar
and 3D x-ray breast imaging systems. Our method is based on statistical decision theory, in par-
ticular, making use of the ideal linear observer called the Hotelling observer. We also present a
physical phantom that consists of spheres of different sizes and materials for producing an ensemble
of randomly varying backgrounds to be imaged for a given patient class. Lastly, we demonstrate our
evaluation method in comparing laboratory mammography and three-angle DBT systems for signal
detection tasks using the phantom’s projection data. We compare the variable phantom case to that
of a phantom of the same dimensions filled with water, which we call the uniform phantom, based
on the performance of the Hotelling observer as a function of signal size and intensity.
Results: Detectability trends calculated using the variable and uniform phantom methods are dif-
ferent from each other for both mammography and DBT systems.
Conclusions: Our results indicate that measuring the system’s detection performance with consid-
eration of background variability may lead to differences in system performance estimates and
comparisons. For the assessment of 3D systems, to accurately determine trade offs between image
quality and radiation dose, it is critical to incorporate randomness arising from the imaging chain
including background variability into system performance calculations. © 2010 American Asso-
ciation of Physicists in Medicine. �DOI: 10.1118/1.3488910�
I. INTRODUCTION

For the last several years, there has been a lot of interest in
the development of three-dimensional �3D� x-ray breast im-
aging systems, such as digital breast tomosynthesis �DBT�
and computed tomography �CT�, as well as in the optimiza-
tion of these systems.1–19 For example, Glick et al.1 com-
pared lesion detection accuracy between digital mammogra-
phy, DBT, and cone-beam breast CT systems with use of an
ensemble of simulated backgrounds with a power law spec-
trum and a receiver operating characteristic �ROC� study of
five human observers. In another study, Glick et al.2 em-
ployed a Fourier-domain based signal-to-noise ratio �SNR�
that utilized the noise power spectrum �NPS� of the system
and anatomical noise for investigating the impact of x-ray
spectral shape on the image quality of a flat-panel breast CT
system. Kwan et al.3,4 studied x-ray scatter properties and

spatial resolution properties of a cone-beam breast CT scan-
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ner. Das et al.5 investigated a variable dose DBT acquisition
technique in terms of detection accuracy for breast masses
and microcalcification clusters with a localization ROC
�LROC� human observer study. Zhao and her colleagues6–8

developed a cascaded linear system model for DBT to inves-
tigate the effects of detector performance, imaging geometry,
and image reconstruction algorithms on the reconstructed
image quality. Sechopoulos et al.9,10 investigated scatter
properties and glandular radiation dose in DBT systems us-
ing Monte Carlo simulation.

However, development of evaluation and optimization
methods, as well as quality assurance and control �QA/QC�
methods, for these systems has not caught up with advances
in system development. Fourier-domain based quantitative
measures, such as modular transfer function �MTF�, detec-
tive quantum efficiency �DQE�, NPS, and pixel SNR

�pSNR�, initially used for planar x-ray imaging systems are
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currently being employed for evaluation of 3D breast imag-
ing systems. Moreover, current QA/QC phantoms for planar
mammography, such as the ACR mammography accredita-
tion program �MAP� and CDMAM phantoms, do not probe
3D performance. These methods and phantoms work fairly
well for evaluating systems when assumptions of the shift
invariance of the system and the stationarity of the data sta-
tistics hold. However, these methods have limitations in that
the system’s shift invariance and the stationarity of the data
statistics do not hold as well for the 3D systems.20–22 Sys-
tematic and accurate incorporation of background variability
into system evaluation is important for planar
mammography,23 and even more critical for the 3D systems
because of the depth information arising from the 3D sys-
tems. Without adequate consideration of background vari-
ability and depth information in assessing the system’s diag-
nostic performance, the 3D systems cannot be accurately
evaluated and optimized for clinical tasks at hand. In addi-
tion, without further understanding what sorts of features for
the background variability and 3D depth information need to
be included in 3D evaluation methods, it would be difficult
to develop QA/QC tests and phantoms that are more appro-
priate for the evaluation and calibration of the 3D imaging
systems. Overcoming the limitations of the aforementioned
2D methods and developing appropriate 3D evaluation meth-
ods is an active area of current research in the breast imaging
field.7,8,12,14–16 In the meantime, human observer studies,
while expensive and time consuming, are still the most relied
upon method for a task-based assessment and optimization
of the 3D systems. Unfortunately, it is simply infeasible to
rely on human studies for an effective, rigorous system op-
timization over a large set of system as well as background
and signal parameters. Therefore, the need for more compre-
hensive and effective system evaluation methods before a
final clinical validation of system performance is significant.

In order to address the aforementioned issues, we advo-
cate the use of a task-based approach to the assessment of
image quality on the basis of statistical decision theory.24

This approach requires a number of ingredients: �1� a rel-
evant task of interest, �2� a model observer for performing
the task, and �3� a clinically meaningful figure of merit for
measuring observer �and hence system� performance. We
note that it is important that the model observer used in this
approach should make use of necessary and sufficient
amount of statistical information in the data for a rigorous
assessment and optimization of image quality. For rigorously
performing the task-based, statistical assessment of image
quality, a number of aspects need to be considered: �1� gen-
eration of realistic phantoms to be imaged, either virtual or
physical, �2� accurate characterization and simulation of the
imaging physics, and �3� improvement and appropriate use
of task-based statistical assessment methods including the
efficient implementation of model observers. For the past
several years, the need for incorporating the task-based ap-
proach using model observers in the assessment of 3D breast
imaging systems has been gaining ground in the medical
imaging community.25 However, the implementation of the

model observer for use in the assessment of 3D x-ray imag-
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ing systems has not been sufficiently executed to address
various scenarios in x-ray imaging due to the difficulty of
accurately incorporating system geometry and physics as
well as background and signal statistics into the model ob-
server. Moreover, this difficulty gets exacerbated by the large
data size problem inherent in digital x-ray imaging.

For improving the assessment of 3D breast imaging,
much emphasis in the medical imaging community for the
last several years has been in �1� generating anatomical vir-
tual phantoms with patient data for use in system optimiza-
tion via simulation26,27 and �2� improving computational
methods for accurate characterization of the x-ray imaging
physics in simulation.1,20,28–32 But, there is still much left to
do in order to incorporate all necessary aspects of the imag-
ing physics into the system assessment tools. In addition,
creating virtual phantoms using patient data has a limitation
in the sense that sample size is small, thus with these phan-
toms, it is difficult to address questions regarding different
patient populations. However, if we are willing to sacrifice
some of the realism of the resulting simulated phantom, it is
feasible to create virtual phantoms without the sample size
limitation.33–35

An alternative approach is to assess image quality using
physical phantoms. In doing so, we have the ability to per-
form image acquisitions in reality rather than simplified
models in silico. Therefore, it would be useful to develop
physical phantoms that can produce randomly varying back-
ground images in the laboratory, of which the statistics re-
semble those in mammographic images. More importantly,
the phantom should be designed so that it has the capability
to create a large set of samples for a given patient class. With
such a phantom, one can investigate various issues including
how many samples of the mammographic background are
required for a rigorous assessment of image quality in breast
imaging. However, to date, such complex physical phantoms
have not yet been utilized for 3D x-ray breast imaging, in
particular, with the use of a task-based statistical assessment
approach.

For examples of studies that made use of a task-based,
statistical approach, Sechopoulos et al.11 and Saunders et
al.13 employed a contrast-to-noise ratio �CNR�, respectively,
for the optimization of the acquisition geometry in DBT and
the investigation of the impact of anatomical noise on breast
compression in DBT. Both studies used different but ran-
domly varying background phantoms simulated in computer
in order to include more complex background statistics in
their experiments than previous studies in the literature.
However, their studies are limited in the sense that the back-
ground variability is not accounted for sufficiently in their
calculation of system performance. For instance, Saunders et
al.13 only used three different phantoms to incorporate back-
ground variability, which is too small a sample size to draw
any statistically significant conclusions. Moreover, the CNR
is not a sufficient figure of merit for measuring the impact of
background variability on the system’s diagnostic perfor-
mance because it does not sufficiently account for the back-

¯
ground variability. By definition, the CNR is �c / ��bb�,
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where �c is the contrast difference between the signal and
the mean background, �b is the standard deviation of back-

ground image pixel values, and b̄ is the mean background
contrast. The contrast difference �c in the numerator of the
CNR can be an effective measure for indicating the contrast
difference between the signal and the background in the case
of uniform backgrounds. However, for the case of variable
backgrounds, the contrast difference itself does not capture
the difference between the signal and the background accu-
rately due to the impact of anatomical noise on signal con-
trast even if it is normalized by the mean of the background
image values. For instance, frequent occurrence of a concen-
tration of anatomical features in a neighborhood of the signal
location can increase the signal contrast, resulting in overes-
timated system performance using the CNR. In addition,
measuring background complexity summarized in the form
of the standard deviation of background image pixel values
works well for backgrounds of which the statistics follow an
independent and identically distributed �i.i.d.� Gaussian
model. But this does not work well for realistic background
statistics, which have more complex correlation between im-
age pixels as well as different angular projections, such as in
3D breast imaging.

A better alternative is to calculate the performance of the
Bayesian ideal observer, which makes use of all available
statistical information in the data.36 By design, the ideal ob-
server sets an absolute upper bound for the performance of
any observer, either human or model, and hence should be
used for system optimization and evaluation whenever pos-
sible. However, it is difficult to estimate the performance of
the ideal observer due to the high dimensionality and often
unknown probability density functions of the data for many
realistic applications including breast imaging. Developing
computationally efficient algorithms for the estimation of the
ideal observer is an active area of our research.37–39 When no
practical method to calculate the ideal observer is available, a
good alternative is to use the linear ideal observer, which is
also called the Hotelling observer, which uses the first and
second order statistics of the data. High dimensionality of the
data is often a bottleneck in accurately calculating the per-
formance of the ideal observers. To reduce the dimension of
the data but still approximate the performance of the Hotell-
ing observer, a channelized Hotelling observer �CHO� can
also be used with an appropriate choice of channels. A com-
mon figure of merit for the Hotelling and CHO observers is
a task SNR, which makes use of the mean difference be-
tween the signal-present and signal-absent data as well as the
inverse of the data covariance or a channelized version of the
mean difference and data covariance. The Hotelling observer
maximizes this SNR and hence is optimal among all linear
observers in terms of this figure of merit.

Recently, Chawla et al.12 implemented a CHO with
Laguerre–Gauss channels, which has been shown to approxi-
mate the Hotelling observer in cases involving rotationally
symmetric signals and stationary backgrounds40 for the opti-
mization of a DBT system with 25 different but fixed projec-

tion angles. They applied the CHO to the 25 individual pro-
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jection cases, yielding 25 sets of decision variables �i.e., 25
decision variables per image� and 25 corresponding ROC
curves. As an attempt to incorporate correlation between the
25 different angular projections, they combined the 25 deci-
sion variables in the following two ways and calculated the
DBT system’s detection performance. In their first approach,
the 25 decision variables were linearly combined with
weights defined with an assumption that a smaller angular
separation from the center �zero-angle projection� provided a
larger contribution to the correlation between the angular
projections. However, this assumption is simply untrue.
When an oblique-angle projection is closer to the central
orientation, the backgrounds, as well as the signals, from
both angles would appear more similar to each other, result-
ing in similar data statistics. This leads to a SNR similar to
the SNR of the zero-angle projection case. This means that
an oblique-angle projection close to the center may not add
as much additional information for performing the detection
task as a projection far away from the center. In the second
approach, they assumed that the 25 decision variables per
image were independent of each other, which implies that
multiangle projections per patient were assumed to be at
least uncorrelated. Therefore, with the second approach, spa-
tial correlation between the angular projections was not at all
incorporated in their SNR calculation.

In this paper, we present a statistical assessment frame-
work for 3D breast imaging on the basis of statistical deci-
sion theory, in particular, using the Hotelling observer, and
demonstrate the method for comparing laboratory mammog-
raphy and three-angle DBT systems in signal detection tasks.
In the following sections, we will describe a physical phan-
tom that can produce an ensemble of variable-background
images in the laboratory, of which the statistics are more
complex than those of stationary backgrounds often used in
the assessment of image quality in breast imaging. While this
phantom does not provide short- and long-range variabilities
of an actual 3D breast object, we employ this phantom to
demonstrate the effect of object variability on image quality
when using physical acquisitions instead of using simplified
simulations. Previously, with use of this physical phantom
and a uniform phantom of the same size filled with water, we
investigated the impact of background variability on the per-
formance of a laboratory mammography system using the
Hotelling observer.16

In the current paper, we will describe an expanded math-
ematical framework for performing a task-based statistical
assessment of 3D imaging systems. With the expanded
framework, spatial correlation between angular projections
as well as between image pixels within each projection can
be incorporated into the system’s diagnostic performance
measures. We will demonstrate this evaluation framework by
comparing the performance of the laboratory mammography
and three-angle DBT systems for two different x-ray expo-
sures and as a function of signal size and intensity. Our re-
sults will illustrate that when background variability is incor-
porated, the system’s diagnostic performance yields different
performance trends from the case when such information is

not incorporated.
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II. MATHEMATICAL BACKGROUND

II.A. Image formation and binary detection

In this work, we focus on binary signal detection for the
assessment of mammography and DBT systems. For binary
detection tasks, signal-present and signal-absent hypotheses
are considered here, given by

H1:g = b + s + n , �2.1�

H0:g = b + n , �2.2�

where the vectors b and s represent the noiseless background
and signal images, respectively, n represents measurement
noise, and g represents the resulting data vector. All the vec-
tors are M-dimensional, i.e., M pixels per image. In our
work, the noise is not additive, but the signal s is imple-
mented to be additive and independent of the background.

II.B. Task performance with the Hotelling
observer

To measure the performance of a given system, the Ho-
telling observer24 that maximizes the task SNR can be em-
ployed for performing binary detection tasks. This observer
uses the mean and covariance of the data to form its template
wg via

wg = Kg
−1�s , �2.3�

where wg is an M �1 vector and Kg is an M �M matrix that
is the average of the covariance matrices of the signal-absent
and signal-present image data. In this work, we focus on a
signal-known-exactly �SKE� task with the additive signal, so
Kg=Kg�H0

. The vector �s is an M �1 vector that is the dif-
ference between the mean signal-present and signal-absent
image data. That is,

�s = ḡ1 − ḡ0, ḡ j = �g�Hj�, j = 0,1, �2.4�

Kg = = ��g − ḡ0��g − ḡ0�t�g�H0
, �2.5�

where t denotes the transpose operator.
For the SKE binary detection case, in theory, the mean

difference signal �s is the same as the true signal s. In prac-
tice, the mean signal is estimated and suffers from noise due
to finite sample size effects. But, in this work, we have full
knowledge of �s since this is a SKE task, there is not uncer-
tainty in the signal. In addition, we want to use a model
observer that is as optimal as possible, so we use the true
signal s for the mean difference signal �s.

With the Hotelling template wg, the signal-present and-
absent test statistics can be computed using

tj�g� = wg
t �g�Hj� , �2.6�

where �g �Hj� is sampled from the hypothesis Hj. For mea-
suring observer performance, the area under the ROC curve
�AUC� can be estimated via the Wilcoxon statistic using the
signal-absent and-present test statistics, t0 and t1. Then the

24
SNRAUC can be computed via
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SNRAUC 	 2 erf−1�2AUC − 1� , �2.7�

for two-alternative forced-choice �2AFC� signal-detection
experiments, where erf−1 is the inverse of the error function.
This quantity, SNRAUC, is also called the detectability index
dA. With signal intensity, AUC approaches 1, which yields
infinite SNRAUC. To avoid this problem when the signal is
strong, another definition of the SNR can be used, given by24

SNRt =
�t1� − �t0�


��0
2 + �1

2�/2
, �2.8�

where � j, j=0,1, indicates the standard deviation of tj. The
SNRt and SNRAUC are equivalent when each of the test sta-
tistics, t1 and t0, follows a normal distribution. In our simu-
lation study, SNRt was used to produce observer-
performance maps as a function of signal size and intensity.

When the dimensionality of the data g is large, estimation
of the data covariance and its inverse can be a difficult prob-
lem, leading to unstable performance estimates. In such a
situation, a linear transformation T, which consists of Nc

rows of channels, can be applied to g to reduce the dimen-
sion of the data,

v = Tg , �2.9�

where T is an Nc�M matrix and v is an Nc-dimensional
vector. A linear observer that uses the mean and the covari-
ance of v is called a CHO. For the CHO, all the formuli
given in this section can be used with replacement of all g
related quantities with the corresponding v related vectors.
We note that T can be chosen so that the CHO approximates
either the Hotelling observer or the human observer, in
which cases channels are, respectively, referred to as efficient
and anthropomorphic. For system design and optimization,
we advocate the use of efficient channels for approximating
the Hotelling �or nonlinear ideal� observer whenever pos-
sible. However, this is an active area of research in the field,
and efficient channels for mammographic images and signals
have not yet been fully identified. Thus, in this work, we will
make use of the Hotelling observer and a reasonably sized
region of interest �ROI� to reduce instability in the estimation
of the covariance and its inverse.

II.C. Variability and bias in observer-performance
estimates

In human-observer studies, case variability arises when a
different image set is used, and reader variability arises in the
following two fashions: intra and inter. Intra-reader variabil-
ity arises when the observer repeats the experiment, whereas
inter-reader variability arises when different observers per-
form the same experiment. Similarly, variability in the per-
formance of a model observer is caused by a number of
sources such as the estimation of the template and the test
statistic. The former and the latter can be regarded, respec-
tively, as the reader and case variabilities. The intra-reader
variability of a model observer is zero since the model ob-
server is a computer program that can always perform the

experiment exactly. The variance estimate of observer per-



6257 Park et al.: A statistical evaluation method for 3D breast imaging 6257
formance can generalize to a similar experiment in which we
draw a new set of readers and a new set of cases. This vari-
ance is often referred to as the multiple-reader and multiple-
case variance. The closer the template and the test statistic
estimates approximate the true template and the true popula-
tion of the test statistic, respectively, the closer the perfor-
mance estimate to the truth. In order to achieve this, a suffi-
cient number of samples, which well represent the true
population, should be used for calculating the template as
well as the test statistic, which we call training and testing,
respectively.

Bias in observer-performance estimates can be caused by
ways used in estimating the covariance and the test statistic.
Mainly, bias in the estimation of either the covariance or the
test statistic occurs when a finite set of samples, which does
not adequately represent the true population, is used for es-
timating either of the two quantities. Other sources of bias in
observer-performance estimates include the size of a chosen
ROI and the choice of channels if a CHO is used for per-
forming the task. If the ROI size does not account for suffi-
cient background statistics required for estimating the data
covariance, bias in observer-performance estimates in com-
parison with the true performance is likely to be larger than
the case when the ROI is large enough to incorporate com-
plete statistical information regarding the background for the
task. Similarly, if channels do not capture sufficient features
in the data for performing the task �to approximate either the
Hotelling or the human�, bias in the performance of a CHO
using these features is likely to be larger than the case when
all necessary features are utilized in the CHO.

III. METHODS AND MATERIALS

III.A. Constructing physical phantoms

To incorporate background variability into the estimation
of detection performance of our mammography and DBT
systems, we employed the concept of the bead phantom de-
veloped by Hesterman et al.41 and developed a physical
phantom that consists of spheres of different sizes and den-
sities for simulating tissue compositions and textures similar
to those of the breast. In particular, we constructed a
9.5 cm�height��9.9 cm�width��5 cm�thickness� con-
tainer filled with 35%, 25%, 31%, and 9%, by volume, of
water and spheres of polyethylene, polymethyl methacrylate
�PMMA�, and nylon, respectively. The container walls were
made of PMMA of thickness of 0.45 cm. The volume frac-
tion for PMMA includes the two 9.5 cm�h��9 cm�w� con-
tainer walls. The diameters of the spherical balls in the con-
tainer ranged from about 6.4 to 16 mm. Table I summarizes
characteristics of the different spherical balls used to con-
struct this phantom. Figure 1 shows the linear attenuation
coefficients for the different materials, including the phantom
itself with the assumption of uniform structure, compared to
the adipose and glandular tissue materials. These coefficients
were obtained from the database of the National Institute of
Standards and Technology.42

With this phantom, 200 configurations of the random

background structure were realized by stirring the contain-
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er’s contents and imaging each configuration. See Fig. 2 for
two different tissue configurations of the same phantom and
their 370�370 projection images. In addition, in order to
compare the random background case to the uniform back-
ground case, we filled the same phantom container with wa-
ter and imaged the phantom 35 times without stirring the
contents. Throughout this paper, we call the phantoms of
spheres and water the variable and uniform phantoms, re-
spectively.

III.B. Tissue compositions of physical phantoms

To understand how the physical phantoms relate to real
breast tissue compositions using adipose and glandular tissue

TABLE I. Specifications of the spheres used to construct the variable phan-
tom.

Individual spheres
Diameter

�cm� Quantity
Weight

�g�

Polyethylene �CH2� 1.59 5 1.89
Polyethylene 1.91 4 3.23
Polyethylene 0.95 98 0.41
Polyethylene 0.79 96 0.25
Polyethylene 0.64 94 0.12

Nylon66 �C6H11NO� 0.95 9 0.52
Nylon66 1.59 3 2.35
Nylon66 0.79 83 0.30
Nylon66 0.64 44 0.15

PMMA �C5H8O2� 0.64 42 0.16
PMMA 0.95 68 0.54
PMMA 1.3 17 1.28

Phantom summary Volume �%�
Density

�g/cm3�
Overall density

�g/cm3�
Polyethylene �CH2� 25 0.9114 1.04814

Water �H2O� 35 1.0
PMMA �C5H8O2� 31 1.189

Nylon66 �C6H11NO� 9 1.13
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FIG. 1. Linear attenuation coefficients of individual phantom materials com-
pared to those of the glandular and adipose tissues as well as the variable

phantom.
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materials, we followed the method proposed by Jennings43–45

for determining the thicknesses of adipose and glandular tis-
sue layers that provide the closest match, in a minimum root-
mean-square error sense, to the narrow-beam transmission of
the variable phantom over the energy range 10–40 keV. For
this analysis, the variable phantom was treated as a phantom
that consists of a uniform mixture of the two PMMA con-
tainer walls and the variable-phantom contents between the
two walls. For others who are interested in reproducing the
variable phantom and matching the breast tissue composi-
tions, Table II summarizes the weight fractions of atomic
materials of the uniform and variable phantoms as well as
those of the glandular and adipose tissues, taken from Ref.
46, used in the analysis.

The variable phantom used in this work was found to be
equivalent to a phantom of glandular and adipose blocks
simulated by the aforementioned method, which we call the
simulated phantom. The unnormalized ratios of the thick-
nesses for the glandular and adipose tissue blocks relative to

FIG. 2. The left column shows two different configurations of the variable
phantom and the right shows the negative logarithm of their 370
�370 �pixels� projection images.

TABLE II. Overall density � �g /cm3� as well as weight fractions of atomic
materials for the uniform phantom, variable phantom, glandular, and adipose
tissues.

Z
Uniform
phantom

Variable
phantom

Glandular
tissue

Adipose
tissue

1 0.1053 0.1089 0.1020 0.1120
6 0.1260 0.4573 0.1840 0.6190
7 0.0000 0.0111 0.0320 0.0170
8 0.7687 0.4226 0.6770 0.2510

15 0.0000 0.0000 0.0050 0.0010
� 1.034 1.048 1.040 0.930
Medical Physics, Vol. 37, No. 12, December 2010
the variable phantom were found to be 0.33 and 0.76, which
translated to a 30% glandular and 70% adipose tissue com-
position, by volume. The total thickness of the simulated
phantom was about 1.09 times that �5 cm� of the variable
phantom used in this work, which resulted in a 5.45 cm thick
simulated phantom. Figure 3 shows the ratios of x-ray �total
and scatter� attenuation coefficients of the simulated phan-
tom over the variable phantom. The coefficients for the simu-
lated phantom were adjusted by the ratio of the thickness of
the simulated and variable phantoms to facilitate the com-
parison. This figure reveals that the x-ray attenuation prop-
erties of the two phantoms match well. In summary, our vari-
able phantom of thickness of 5 cm has similar x-ray
attenuation properties to those of the simulated phantom of
30% glandular and 70% adipose tissue composition and
thickness of 5.45 cm.

The uniform phantom used in this study was found to be
equivalent to a phantom of only glandular tissue with the
same thickness as the uniform phantom. As shown in Fig. 1,
there is a gap between the x-ray attenuation coefficients of
the variable phantom and this glandular tissue only phantom
although the gap decreases with x-ray energy. This affects
the resulting gray levels in the x-ray projections of the uni-
form and variable phantoms and hence detection perfor-
mance calculations using these projections. This aspect of
the work will be further discussed in Sec. III D 3.

III.C. Experimental setup

The detector in this work was a Varian 4030CB �Varian
Corp., Salt Lake City US� with 2048�1596, 195 �m pixels
pixels, and a 600 �m thick columnar CsI �Tl� phosphor. The
x-ray beam was generated at 40 kVp with a Varian B180
x-ray tube �with 0.6 mm focal spot and Be window� using a

FIG. 3. The plot shows the ratios of x-ray attenuation coefficients of the
variable phantom over a simulated phantom consisting of glandular and
adipose blocks �33: 76�, which translates to 30% glandular and 70% adipose
tissue composition.
tungsten anode, Be window, and 1 mm Al added filtration.
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See Fig. 4 for the experimental setup. For the system geom-
etry, the source-to-detector, detector-to-center of rotation,
and center of rotation-to-source distances were 123, 14, and
109 cm. Note that the surface of the x-ray tube was used as
the location of the source for the system geometry measure-
ment. To create a simplified DBT system, a phantom rotator
was used, fixing the detector and the source, for producing
three different angular projections ��20°, 0°, 20°�. The rota-
tor was built in our laboratory, and it consisted of the rotator
stage �Newport 481-A series� and an aluminum plate top,
which was connected to the stage. The rotator allowed for
360° rotation, with an adjustment range accurate to 1°. The
height of the rotator was also adjustable in order to allow the
x-ray beam to pass through the center of the phantom. The
phantom to be imaged was placed on top of the aluminum
plate. See Fig. 5 for a closeup of the phantom rotator.

The exposure was taken at the entrance surface of the
phantom using an RTI Piranha 657 probe. In our experiment,
two different dose conditions were used: �1� keeping the
same dose per projection, which we call the isodose per pro-
jection condition, and �2� the same dose for both the systems,
i.e., one-third of mammography dose per DBT projection,

FIG. 4. Experimental setup for imaging the phantom. To produce angular
projections, the phantom was rotated, and the detector and the source were
fixed.

FIG. 5. On the left, the phantom rotator for producing angular projections

and its closeup view on the right.
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which we call the isodose per modality condition. This way
we were able to compare the performance of mammography
to that of the three-angle DBT system using the same as and
triple the dose of the mammography system in the experi-
ment.

The projection measurements for the isodose per modality
condition were performed at a later time than the measure-
ments for the isodose per projection condition. Therefore,
there were slight differences in the two sets of the system
parameters. In terms of exposures, for the isodose per pro-
jection condition, all projections, either DBT or mammogra-
phy, were taken with 200 mA, 63 ms, and 33 mR. For the
isodose per modality condition, DBT projections were taken
with 63 mA, 63 ms, and 10 mR, which yields a total of 30
mR for the DBT system, and mammography projections for
comparison were taken with 200 mA, 63 ms, and 33 mR,
which is a little above the DBT dose.

In addition, for the isodose per modality condition, the
source-to-detector, detector-to-center of rotation, and center
of rotation-to-source were 123, 12, and 111 cm. To facilitate
stirring the variable phantom contents, another 20 cm tall
phantom container was used. This phantom container had 0.3
cm thick PMMA walls. The resulting dimensions of the vari-
able phantom were 9.3 cm�height��10.2 cm�width�
�5.1 cm�thickness�. We believe that these differences were
not significant enough to change observer-performance
trends.

All images were flat-field corrected via

gm = �rm − dm��m, �3.1�

where �m, gm, rm, and dm are the mth elements of the vectors
�, g, r, and d. The vector � is the gain calculated by

�m =
�m=1

M �fm − dm�
fm − dm

, �3.2�

where d is the mean dark field image and f is the mean flat
field image. Lastly, the vectors r and g are the raw data taken
in the laboratory and the resulting flat-field corrected image
vector, respectively. In this work, for estimating the mean
dark field and mean flat field, 100 dark field and 50 flat field
images, and 35 dark field and 35 flat field images were used,
respectively, for the isodose per projection and modality con-
ditions. For the uniform phantom case, 35 flat field images
were considered as the raw data, r.

III.D. System performance analysis

III.D.1. Task performance for the 3D case

For assessing the DBT system, the ROIs of the angular
projections can be concatenated, which was previously dem-
onstrated by Young et al.,14–16 to form a single data vector g
for use in our performance analysis,

g = �gkk=1
Np , �3.3�

gk = �gk,ii=1
M , �3.4�

where Np is the number of angular projections and M is the

number of pixels in each ROI. In this work, Np=3 and M
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=372. Here we call the Hotelling observer using the resulting
concatenated vector the 3D projection (3Dp) Hotelling ob-
server. When appropriately used, this approach allows for
incorporation of spatial correlation information between pix-
els in different angular projections as well as pixels within
each projection.

Alternatively, channels that can extract spatial correlation

TABLE III. Diameters �mm� of the 3D spheres and
projection, �x and �x represent the lengths of the ma
indicates projections of the seven different 3D spher

0°
projection

p
�x

�mm�
�y

�mm�

p1 0.98 0.98
p2 2.15 2.15
p3 3.32 3.32
p4 4.49 4.49
p5 5.66 5.66
p6 6.83 6.83
p7 8.0 8.0

FIG. 6. The 2D projections of 3D spheres of different diameters used in this
work �top� embedded in the background projections using the uniform
�middle� and variable �bottom� phantoms. The projection angles are indi-
cated in front of each row of the 2D projections. For either of the phantom
cases, three different backgrounds were realized for the three different
angles. For display, the signal intensity in the variable backgrounds was
twice that in the uniform backgrounds.
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between angular projections can be applied to a collection of
projections per patient to produce a channelized data, v, and
reduce the dimension of the problem,

v = �
k=1

Np

Tkgk, �3.5�

where v is an Nc-dimensional vector and each Tk is an Nc

�M matrix consisting of appropriate channels for the given
projection data gk. We call this observer the 3Dp CHO. Then,
the test statistic and SNR formuli using v given in Sec. II B
can be used. Choosing appropriate channels for 2D as well as
3D background images to approximate the unchannelized
ideal observer by a channelized observer is still one of our
ongoing research activities,37–39 some of which will be fur-
ther discussed in Sec. V. Thus, in this work, we chose to use
the approach with the 3Dp Hotelling observer for incorporat-
ing spatial correlation between different angular projections.
In our simulation study, to simplify the process of choosing
ROIs while obtaining sufficient statistics, ROIs from the pro-
jection images were used as independent background im-
ages, resulting in considering the spatial correlation more
random than it actually is. Further discussion on this subject
will also be presented in Sec. V.

III.D.2. Detection task study setup

For producing noisy background images of the variable
phantom, we collected 200 �370�370 �pixels�� projections
of the phantom using the aforementioned imaging protocol.
Then, we extracted 100 �37�37 �pixels�� ROIs from each
projection and hence obtained a total of 20000 ROIs for use
in training and testing of the Hotelling observer. We note that
the �37�37 �pixels�� ROIs translated to 7.2 mm
�7.2 mm ROIs, which may not be a sufficient size for clini-
cally meaningful applications in breast imaging. However,
the method in this work is stylized to demonstrate the use of
the expanded evaluation framework and investigate the im-
pact of background variability on system performance in

corresponding 2D projections. For each elliptical
nd minor axes in mm. The 2D signal s=as p and pk

�20°
projection 3D sphere

�x

�mm�
�y

�mm�
Diameter

�mm�

0.98 1.37 1.0
2.15 2.54 2.0
3.32 3.71 3.0
4.49 4.88 4.0
5.66 6.05 5.0
6.83 7.22 6.0
8.0 8.34 7.0
their
jor a
es.
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simple cases. For the case of the uniform phantom, 35
�370�370 �pixels�� projections were collected, which trans-
lated to 3500 �37�37 �pixels�� ROIs.

To generate signal-present images, first the 2D x-ray pro-
jections of 3D spherical lesions were generated in the form
of a sum of the x-ray attenuation coefficients times the x-ray
path lengths in the computer using the same geometry as our
laboratory DBT system geometry. We set s=as p, where the
vector p represents the 2D projection of a 3D sphere normal-
ized by the maximum pixel value in each projection and
varied as to create different signal magnitudes. Then the re-
sulting signals �s� were added to the negative logarithm of
the projection images �b+n� measured in the laboratory. We
note that the negative logarithm was taken so that both back-
ground and signal projections were in the same data format.

Note that the 2D signal projection was assumed to be
statistically independent of the background projection im-
ages. See Fig. 6 for the 2D projections of the 3D spheres
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used in the work as well as those embedded in the back-
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grounds produced using the uniform and variable phantoms.
For either of the uniform and variable phantom cases, three
different background images were, respectively, used for the
three different angle cases shown in Fig. 6.

For the zero projection angle, the diameters of the 2D
signal projections used in this study ranged from 0.98 to 8.0
mm, which was approximately equivalent to the diameters of
the 3D spherical lesions ranging from 1 to 7 mm. Table III
summarizes all the signal diameters for the three different
angle cases. The size of the 3D sphere was limited by the
size of the ROI chosen in this study, and the ROI size was
chosen to use reasonable numbers of training and testing sets
for having sufficient statistical power in the estimation of the
task SNR. In addition, the largest 3D sphere diameters, 6 and
7 mm, were included to show the impact of background vari-
ability on observer performance using the uniform and vari-
able phantom methods. Further discussion on this subject can
be found in Sect. V. We note that the object was discretized
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laboratory DBT system, so there is some discrepancy be-
tween the diameters of the 3D sphere and its resulting 2D
projection.

III.D.3. Training and testing the observer

For training the 3Dp Hotelling observer, the covariance
Kg for the variable phantom case was estimated using an
independent set of 19000 signal-absent ROIs, whereas 3000
ROIs were used for the uniform phantom. See Figs. 7–9 for
intensity plots of the covariance and inverse matrices of both
the uniform and variable phantoms for the mammography
and DBT systems. In this work, since we had full knowledge
of the signals and intended to estimate the upper bound for
the performance of the model observer, the true signal image
�s� was used for �s. For testing the observer, in order to
calculate t1 and t0 given in Eq. �2.6�, the remaining 500 pairs
of signal-present and signal-absent ROIs were used for the
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variable phantom case, whereas the remaining 250 ROI pairs
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for the uniform phantom case. Signal intensity and diameter
were varied to compare signal detectability for each system
and background type.

In this work, as discussed in Sec. III B, the overall x-ray
attenuation properties of the uniform and variable phantoms
were slightly different, i.e., x rays going through the uniform
phantom would attenuate more than through the variable
phantom. This resulted in the mean gray levels of the nega-
tive logarithm of their projection images being slightly dif-
ferent, e.g., 7.51 and 7.67, respectively, for mammography
projections of the uniform and variable phantoms. In our
simulation, the signal intensity values used for adding the
signal to both the variable and uniform backgrounds were
kept the same. However, in practice, if an actual 3D signal
was inserted in both the uniform and variable phantoms, and
then the phantoms were imaged, the 2D signals in the result-
ing variable-phantom projections would have had higher
contrast than those in the uniform-phantom projections. In
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uniform mixture of the phantom materials, the intensity of
the signal should have the following relationship:

as�variable� �
ḡvariable

ḡuniform

as�uniform� , �3.6�

where ḡ�·� and as� · � are, respectively, the mean gray level and
signal intensity for the projection data from each phantom
case. This consideration was incorporated in estimating the
SNR ratios for comparing the uniform and variable phantom
methods for assessing the mammography and DBT systems.
That is, to calculate the ratio of the SNR estimates, denoted
by 	, of the uniform phantom over the variable phantom, the
adjusted SNR for the variable phantom case using the same
signal intensity as for the uniform phantom, SNR�, was cal-
culated as the initial SNR, SNR�variable�, of the variable
phantom times the ratio of the aforementioned two mean
gray levels,

SNR� =
ḡvariable

ḡuniform

SNR�variable� , �3.7�

	 =
SNR�uniform�

SNR� , �3.8�

where SNR� · � is the SNR for each phantom case and SNR�

denotes the adjusted SNR.

IV. RESULTS

IV.A. Comparison of uniform and variable phantom
methods

As discussed in Sec. II C, observer-performance estimates
vary depending on the sample size involved in the training
and testing of the observer. To account for such uncertainty
in our observer-performance measures, we calculated a
single-observer but multiple-case variance for the AUC be-
fore transforming AUC estimates for a set of signal intensi-
ties and diameters to the SNR estimates. We observed that
the AUC trends were statistically significant and hence so
were the SNRAUC trends. We also observed that the perfor-
mance trends using SNRt remained the same as the trends
using SNRAUC. In particular, for the uniform phantom case,
two standard errors for the AUC were less than 0.05, while
they were less than 0.035 for the variable phantom case.
These upper bounds are for the AUC values close to .5,
which is not surprising as the lower AUC means the task is
more difficult, and hence larger variability. As the task incor-
porating background variability is a lot harder than one with-
out it, the performances of both mammography and DBT
systems using the uniform phantom method were much bet-
ter than those using the variable phantom. For this reason,
we faced the problem of AUC approaching or equaling 1,
which yielded infinite SNRAUC. Therefore, we chose to use
SNRt instead of SNRAUC for all comparisons discussed in the
following sections. This enabled us to set signal intensity the
same for all different cases.

In Fig. 7, the top plot shows that the covariance of the

uniform phantom data from the mammography system is not
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diagonal, which indicates that there still exits some spatial
correlation between pixels even in the uniform projection
data. These short-range correlations are the result of correla-
tions in the detector output caused by correlated x-ray trans-
port processes in the detector phosphor. The amount of cor-
relation increases greatly when the projection data
incorporate background variability, which is shown in the
bottom plots in Fig. 7. Figure 8 shows the inverse of these
covariances for both uniform and variable phantom cases. A
similar trend is observed for the data covariances and their
inverses of the DBT system, as shown in Fig. 9. Note that
there is little correlation between the angular projections of
the water phantom, whereas there is significant spatial corre-
lation between the angular projections of the variable phan-
tom even when the spatial correlation was partially incorpo-
rated with the independence assumption of ROIs in this
work. We also note that the projections for the isodose per
projection condition were used to produce the plots in Fig. 9.
But, we observed that using the data covariance from the
isodose per modality case yielded similar SNR and SNR
ratio plots to those using the covariance in this figure, which
will be further discussed in the following sections. With use
of the aforementioned covariance matrices, the impact of
background variability and spatial correlation information on
observer performance is shown in the SNR plots of Figs.
10–12, and discussed in the following sections.

IV.A.1. Assessing mammography

Figure 10 shows the 3Dp Hotelling SNR maps for assess-
ing the mammography system with the use of the uniform
and variable phantoms. The top and middle plots in this fig-
ure show the 3Dp Hotelling observer’s SNR maps, respec-
tively, for the uniform and variable phantom cases for detect-
ing the signal as a function of signal intensity �y-axis� and
the diameter of the 3D signal in mm �x-axis�. These plots
indicate that the SNR for the uniform phantom case increases
with signal intensity and signal diameter �as expected�, but
this is not true for the variable phantom case. With the vari-
able phantom, the SNR of the mammography system does
not increase with signal diameter while it does with signal
intensity. In particular, the SNR for the variable phantom
case fluctuates with a decreasing trend with signal diameter.
We believe that this fluctuation is caused by the relationship
between the projected signal parameters �shape and size� and
the projection background statistics, which are affected by
the spheres of different diameters used in our work. For in-
stance, when the diameter of the projected signal is similar to
those of the projections of the background spheres, it would
be more difficult to detect the projected signal than when the
diameter of the projected signal is largely different from
those of the background spheres. In this work, the shape of
the signal was the same as those of the background spheres,
but differently sized spheres were used, resulting in different
diameters of the projected background spheres. In addition,
even the diameter of the projection of the same background
sphere can vary depending on the sphere’s location in the

phantom, resulting in some of the projected spheres obscur-
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ing the signal more than others. However, with respect to
signal intensity, the SNR trend is smooth because the SNR
estimated using the Hotelling observer is linear with respect
to signal intensity. Our SNR results are consistent with Bur-
gess’ finding:47 in order to obtain the same level of detect-
ability, signal intensity must increase with signal size for
mammographic backgrounds, whereas for uniform back-
grounds, the required signal intensity decreases with signal
size for achieving the same level of detectability.

The bottom plot in Fig. 10 shows the resulting SNR ratio
map as a function of signal intensity and diameter in mm.
This plot indicates that using the uniform phantom method in
evaluating mammography results in higher SNR than is ob-
tained in the presence of a structured background. In addi-
tion, for a given signal diameter, the amount of the difference
in SNRs with signal intensity remains about the same. How-
ever, with signal diameter, the difference in SNR levels be-
tween the uniform and variable phantoms appears to in-
crease.

IV.A.2. Assessing breast tomosynthesis

Figures 11 and 12, respectively, show the 3Dp Hotelling
SNR maps of the DBT systems using the isodose per modal-
ity and per projection conditions. The top and middle plots in
each figure, respectively, present the 3Dp Hotelling SNRs for
the uniform and variable phantom methods. The bottom plot
in each figure shows the SNR ratio using the SNR estimates
from the first two plots. In Figs. 11 and 12, while the actual
values of the SNR are different for the two different dose
conditions, the SNR trends remain similar in the sense that
the SNR for the variable phantom case appears to decrease
with signal diameter, whereas the SNR for the uniform phan-
tom case tends to increase. For both the phantom cases, the
SNR tends to increase with signal intensity, which was the
expected outcome. However, with signal diameter, the SNR
trend tends to increase �as expected� for the uniform phan-
tom case but decrease for the variable phantom case. We note
that the SNR trend with signal diameter for the variable
phantom case is smoother with a decreasing trend than what
is seen in Fig. 10 for the mammography system. This is
because with some 3D information from the multiangle pro-
jections, the relationship between the diameters of the 3D
signal and the 3D spheres influenced the detection task more
than the relationship between the projected signal and back-
ground sphere diameters. As discussed in Sec. IV A 1, the
latter case influenced the detection task for the mammogra-
phy system. Therefore, given the diameters of the back-
ground spheres and 3D signal used in this work, the detec-
tion task for the DBT system became more difficult with
signal diameter. The SNR ratio plots in the bottom of both
Figs. 11 and 12 reveal higher estimates of the system’s diag-
nostic performance when using the uniform phantom method
that did not incorporate background variability. The trend in
performance differences is similar to that of the mammogra-
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FIG. 10. Mammography: the first two plots show the Hotelling observer’s
SNR as a function of signal intensity and signal diameter �mm� for detecting
a 2D signal in projection images of the uniform and variable phantoms,
respectively. The bottom plot shows the SNR ratio of the uniform phantom
over the variable phantom as a function of signal intensity and diameter
�mm�.
 phy case discussed in Sec. IV A 1 in that with signal diam-
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FIG. 11. Breast tomosynthesis with mammography dose: the first two plots
show the Hotelling observer’s SNR as a function of signal intensity and
signal diameter �mm� for detecting a 2D signal in x-ray projection images of
the uniform and variable phantoms, respectively. The bottom plot shows the
SNR ratio of the uniform phantom over the variable phantom as a function
of signal intensity and diameter �mm�.
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FIG. 12. Breast tomosynthesis with triple mammography dose: the first two
plots show the Hotelling observer’s SNR as a function of signal intensity
and signal diameter �mm� for detecting a 2D signal in x-ray projection
images of the uniform and variable phantoms, respectively. The bottom plot
shows the SNR ratio of the uniform phantom over the variable phantom as
a function of signal intensity and diameter �mm�.
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eter, the difference in performance levels between the uni-
form and variable phantoms tends to increase, whereas it
does not change much with signal intensity.

IV.B. Comparison of mammography and breast
tomosynthesis

Figures 13 and 14 show the SNR ratios of the DBT sys-
tem over the mammography system, respectively, for the iso-
dose per modality and per projection conditions. In each fig-
ure, the left plot shows the SNR ratio using the uniform
phantom, whereas the right plot shows the results using the
variable phantom method. For the isodose per modality con-
dition, the right plot in Fig. 13 shows that with the variable
phantom, the three-angle DBT system does not give much
advantage over mammography as the SNR ratio is less than
or equal to 1 for most of the signal parameters. However,
with the uniform phantom method as shown in the left plot
of Fig. 13, the DBT system appears to be slightly better than
the mammography system for certain parameters of the 3D
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FIG. 13. Isodose per modality: plots show the SNR ratio of breast tomosyn-
thesis over mammography with the uniform phantom �top� and variable
phantom �bottom� methods.
lesion such as diameters of 3, 4, and 5 mm. For the isodose
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per projection condition, as shown in Fig. 14, the left plot for
the uniform method indicates that the DBT system is slightly
better than the mammography system as the SNR ratio is
above 2.0 for the majority of the signal parameters. How-
ever, we note that for the DBT system to achieve twice the
SNR, three times the mammography dose was used. When
background variability is incorporated in the SNR estima-
tion, as shown in the right plot of Fig. 14, the advantage of
the DBT system with triple the mammography dose is even
further reduced because the SNR ratio is reduced to below
around 1.7. These results indicate that when background
variability was incorporated in the SNR estimation, the DBT
system had less advantage over the mammography system,
which was more pronounced in the isodose per projection
case, i.e., more x-ray dose for the DBT system.

V. DISCUSSIONS

We employed the method of the Hotelling observer that
uses the first and second orders of the data statistics and
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FIG. 14. Isodose per projection: plots show the SNR ratio of breast tomo-
synthesis over mammography with the uniform phantom �top� and variable
phantom �bottom� methods.
maximizes the task SNR for comparing the performance of
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the mammography and DBT systems. To incorporate “3D”
spatial correlation information between angular projections
into our observer model �the 3Dp Hotelling observer�, we
made use of an ensemble of vectors, each of which concat-
enates the angular projections per phantom configuration and
estimated the covariance for use in calculating the perfor-
mance of the 3Dp Hotelling observer for the DBT systems.
To have sufficient statistical power, i.e., sufficient numbers
of ROIs for use in estimating the covariance for the 3Dp
Hotelling observer as well as calculating the observer perfor-
mance, we utilized all possible ROIs from each angular pro-
jection instead of limiting the ROI to the area where the 2D
projected lesion is expected to appear. Due to this simplifi-
cation, spatial correlation between pixels in different angular
�background� projections may have been realized to be less
than it actually is. In principle, using relevant local ROIs
with respect to the signal location and size instead of using
all ROIs throughout the FOV may lower or increase signal
detectability, depending on the relationship between the local
and overall background statistics. For instance, if the local
background statistics have shorter-range correlations than the
overall background statistics, then signal detectability esti-
mated using the local ROIs can be improved in comparison
to the SNR estimated using all ROIs. Full understanding of
the interplay between the local and overall statistics and its
impact on signal detectability is beyond the scope of this
work. But, in our current work, we believe that 37�37 ROIs
extracted from the center of the FOV have a similar distri-
bution to that of 37�37 ROIs extracted from the whole FOV
because of the way the phantom is designed. That is, when
the contents of the phantom are stirred, different spheres can
move around within the phantom, yielding similar local tex-
tures in the x-ray projections of one phantom configuration
to another. The signal diameter in our work was chosen so
that it takes some range of values within the given ROI used
in the work. In addition, the ROI size was chosen so that a
sufficient number of samples can be provided experimentally
and the impact of a range of signal diameter values on sys-
tem performance can be studied. We kept the largest signal
diameter, which slightly goes over the boundaries of the
square ROI, because using such a signal can show the impact
of background variability on signal detectability better when
the uniform and variable phantom methods are compared.
More specifically, in a uniform background, having a larger
signal simply means there is more signal energy and hence
always higher signal detectability. But in a structured back-
ground, signal detectability can either improve or degrade
because it is affected by the relationship between the back-
ground statistics and signal characteristics.

For the investigation of the aforementioned problem, one
method is to try to avoid the sample size problem by con-
straining the Hotelling observer to a set of efficient channels
that can extract salient statistical information from the data
and to approximate the true observer performance by the
channelized observer.24,37,39,40,48 However, this alternative re-
quires the knowledge of what kinds and how many channels
are necessary for approximating the performance of the ideal

observer, which depend on the specific background data sta-
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tistics. One approach to implement this alternative is to apply
two-dimensional �2D� channels that are efficient for each of
the angular projections, yielding an Nc-dimensional channel-
ized projection vector, and concatenating Np channelized
projection vectors into a vector of size Nc�Np, where Nc is
the number of channels and Np is the number of projections.
This observer is called the 3Dp CHO �Ref. 14 and 15� as
discussed in Sec. III D 1. However, if Nc and Np are large
enough, this approach can again have a problem of needing
large numbers of images for training and testing.14 Investi-
gation of trade offs between the number of training images
and the accuracy and stability of covariance estimation is one
of our ongoing research activities. Another approach is to use
the 3D CHO by applying 3D efficient channels, which can
fully incorporate spatial correlation between angular projec-
tions into an Nc-dimensional channelized data vector and al-
low the 3D CHO to approximate the 3D Hotelling observer.
In this case, a set of angular projections can be regarded as a
3D-like object in a multiangle projection space, and each of
the Nc number of 3D efficient channels can be applied to the
whole set of the angular projections via the dot product,
yielding the Nc-dimensional channelized data vector. This
way, the dimension of the data vector for use in observer
performance and variance analyses is only Nc, which is much
smaller than M, the dimension of the original data set, or
Nc�Np of the 3Dp CHO approach. This aspect is currently
under investigation, for example, to extend the method of
choosing efficient channels using the partial least squares
algorithm, as investigated by Witten et al.,39 to the 3D case.

In this work, we considered only one breast tissue com-
position. We are interested in extending our method by using
different mixtures of spheres to represent different classes of
breast tissue compositions in order to investigate the impact
of breast density on observer-performance trends. We are
also interested in investigating more realistic tissue texture
models with the use of objects of different shapes. To incor-
porate the impact of breast density on the intensity of the 2D
signal projection and hence detection performance, we plan
to expand our work to more realistically model the lesion
projections incorporating the effects of the 3D lesions em-
bedded in the variable phantom instead of adding a computer
simulated signal to the phantom projection data with the as-
sumption that the signal projection is independent of the
background projection. For a more accurate comparison of
the uniform and variable-background phantoms, instead of
using the uniform phantom filled with water, we are inter-
ested in employing Jennings’ approach45 to create a phantom
consisting of a couple of different fluids, which would give
closer x-ray attenuation properties to the variable phantom.
Lastly, we are currently investigating important features and
locations of features in order to simplify the variable phan-
tom to a fixed phantom of salient features while capturing
important information for use in the evaluation and calibra-
tion of the 3D systems.

As discussed above, there are still a number of improve-
ments to be made for our evaluation method, and many ques-
tions to be addressed and many different parameters to be

investigated for a complete evaluation and optimization of



6269 Park et al.: A statistical evaluation method for 3D breast imaging 6269
3D breast imaging systems. This may be infeasible to do so
through the use of experimental data from the laboratory
setting due to the large space of parameters to be investi-
gated. Therefore, while it is useful to have the physical phan-
tom proposed in this work, it is also essential to make use of
sophisticated simulation and computation tools in these ef-
forts toward developing a statistical, task-based evaluation
method and evaluating the 3D system accordingly,15,30,35,49

and gaining the knowledge necessary to improve the current
status of not only system optimization methods but also
QA/QC phantoms and tests. When such further investiga-
tions are performed via simulation and hence a range of op-
timal system parameters for the 3D imaging is found, the
method and the phantom presented in this work can be useful
for validating the optimal parameters found via simulation
studies as well as improving the current status of the QA/QC
phantoms and tests.

VI. CONCLUSION

We presented a statistical, task-based assessment method
for evaluating planar and 3D x-ray breast imaging systems
and demonstrated our evaluation method for comparing the
laboratory mammography and three-angle DBT systems in
signal detection tasks. With use of the variable and uniform
phantoms, we investigated the impact of background vari-
ability on this system performance comparison. For the
phantoms tested in our study, when background variability
and correlation between the multiangle projections were in-
corporated into our observer performance calculations, the
SNR trends were found to be different from those without
background variability. This outcome implies that it is impor-
tant to take into account background variability and spatial
correlation information between any two pixels in angular
and single projection images in estimating the system’s diag-
nostic performance for accurate evaluation of 3D breast im-
aging systems.
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