Structure and function of tryptophan tRNA from wheat germ

Kakoli Ghosh and Hara P.Ghosh

Department of Biochemistry, McMaster University, Hamilton, Ontario L8N 3Z5, Canada

Received ¹⁷ February 1984; Revised and Accepted ¹⁶ May 1984

ABSTRACT

The coding properties of tRNA^{ITP} from yeast and wheat germ were studied. Unlike <u>E</u>. <u>coli</u> tRNA^{ırp} or mitochondrial tRNA^{ırp}, eukaryotic tRNA^{ırp} did not recognize the UGA codon <u>in vitro</u>. The sequence of wheat germ <code>tRNA^{ITP</code> as</code>} determined by [32p] post-labelling techniques is:

 $pGAU*CCGU m^2GCCCAADDGmGDAGCCCm^2G\psi CUGACmUCmCAm^1GA\psi mCAGAAGGDU$

 $GGUGT\psi CG \text{ m}^1A(A)UUCACG\psi CGGGUCCACCA_{OH}$

The interesting features are: (i) Presence of a $\texttt{C}_{11}:\texttt{C}_{24}$ base pair in contrast to the U_{ll}:G₂₄ in <u>E. coli</u> Su[—] tRNA^{ITP}. (ii)The anticodon sequence
is -CmCA- compared to -CCA- in <u>E. coli</u> tRNA^{TTP}. (iii)Lack of a hypermodified base i^oA adjacent to the 3'-end of the anticodon. (iv) Presen<u>c</u>e of $-T\psi$ CG- sequence instead of $-\psi\psi$ CG- sequence present in mammalian tRNA^{Trp}.

INTRODUCTION

Tryptophan is usually coded for by a single codon UGG in both prokaryotic and eukaryotic system (1-4) except that in mitochondria the codon UGA also codes for tryptophan (5). But tRNA^{Trp} Su⁺UGA obtained from E. coli Su+UGA strain can translate the nonsense codon UGA and cysteine codon UGU as well as its normal codon UGG (1). The anticodon sequence of the normal and suppressing species of $tRNA^{Trp}$ from the corresponding strains of E. coli was, however, identical (1). The only change detected in the supressing species of tRNA^{Trp} was the replacement of G_{24} with A_{24} . The non-supressing form of tRNATrP could also translate the UGA codon as tryptophan in polypeptide synthesis in vitro, but with a much lower efficiency than the supressor species (1). Single UGA terminator codon present in natural mRNA was also recognized by the non-supressor $tRNA^{Trp}$ with a very low efficiency to produce a "fused protein" (6).

Studies involving polypeptide synthesis in vitro (2), polypeptide chain termination assays in vitro (3) , genetic analysis of yeast mutants (4) and

recent analysis of eukaryotic mRNA sequences suggest that in eukaryotes UGA is a nonsense codon.

In order to study if eukaryotic tRNA^{Trp} species could also recognize UGA like E. coli $tRNA^{Trp}$ species the coding properties of wheat germ and yeast $t_{\text{RNA}}^{\text{Trp}}$ species was studied. Unlike prokaryotic (Su⁻) $t_{\text{RNA}}^{\text{Trp}}$ species wheat germ or yeast tRNA^{Trp} species did not recognize UGA codon in vitro. The nucleotide sequences of wheat germ tRNA^{Trp} was also determined.

MATERIALS AND METHODS

Purification of Wheat Germ $tRNA^{Trp}$ - Tryptophan tRNA was purified from unfractionated wheat germ tRNA by chromatographic separation on a BDcellulose column followed by separation on a DEAE sephadex column (15). A final purification of 36-fold was achieved by a RPC-5 chromatography system (specific activity of purified $tRNA^{Trp}$, 1,820 pmoles per A260 units, yield 20%). In vitro protein synthesis using synthetic polynucleotide was carried out as described earlier (9). The procedures used for sequence analysis were (a) the rapid print-out method of Gupta and Randerath (7) and its modification by Kuchino et al. (10) and (b) the rapid read-off gel sequencing method using partial enzymatic digestion of $5'$ - $[{}^{32}P]$ labelled tRNA (8,11).

RESULTS

Recognition of Codons UGG and UGA by Tryptophan tRNA Species

Polypeptide synthesis in vitro as directed by poly [r-(UGA)] and poly r (U,G), which contained the codons UGA and UGG respectively, was carried out using the purified $tRNA^{Trp}$ species. Poly $[r (UGA)]$ was synthesized, by the action of RNA polymerase on DNA-like template, poly [d(T-G-A):d(T-C-A)]. For codon UGG, the commercially obtained polynucleotide poly r (U,G) was used. The results are shown in Table 1. It can be seen that codon UGG was recognized by all the tRNA^{Trp} species. As expected, the nonsense triplet UGA was recognized by E. coli Su⁺UGA tRNA^{Trp} and a 7-8 fold stimulation of the incorporation of tryptophan was observed in the presence of poly [r(UGA)]. Under the same condition, E. coli Su⁻ tRNA^{Trp} showed only a slight stimulation. Previous heating of the Su^- tRNA^{Trp} from E. coli stimulated the recognition of UGA codon. Hirsh and Gold (12) has also reported earlier that both E. coli Su⁻ and Su⁺UGA tRNA^{Trp} recognize UGA codon in vitro. Both of the eukaryotic tRNATrP species tested, however, did not recognize UGA codon, even after heating.

TABLE 1 Recognition of Codons UGG and UGA by Tryptophan tRNA Species

The reaction mixture for protein synthesis contained per ml, 22 A₂₆₀ units
of E. coli MRE 600 ribosomes washed with NH₄Cl, 1.5 mg of DEAE-cellulos@ treated
S-100 proteins free of termination factor R₁ and R₂,72 nmo 20 nmoles of each of nonradioactive phenylalanine, leucine, cysteine, valine and glycine. Mg²' concentration used was 0.02 M; after 60 min at 37° aliquots were
assayed for hot 5% Cl₃CCOOH insoluble radioactivity. Since yeast and wheat embryo
tRNA^{Irp} were partially charged by the <u>E. coli</u> synthet

Determination of the Sequence of tRNATrP

Modified Nucleotides:

The following modified nucleotides were detected in tRNA^{Trp} using (i) a high pressure ion-exchange chromatographic method (13) and (ii) in vitro $32P-$ labelling technique (14): T, ψ , D, Cm, m^1 G, m^2 G, m^2 G, m^1 A, ψ m and Gm. Analysis of Oligonucleotides Produced by T_1 and Pancreatic RNase Digestion:

Non-radioactive oligonucleotides produced by digestion of tRNA^{Trp} with either T_1 RNase or pancreatic RNase were characterized as described (15). The sequences of the oligonucleotides were found to be fully consistent with the sequence presented.

Overlapping Sequences

Rapid Print-Out Method

Figure ¹ shows the chromatographic analysis of 5'-terminal nucleotides of the labelled fragments between position 1-69 of tRNA^{Trp} in the ammonium

Figure 1

5'-Terminal analysis of oligonucleotides containing (a) bases 1 to 41 and (b) bases 32 to 69 of wheat germ tRNA^{Trp}. After RNase T₂ treatment in situ, the released 5'-terminal nucleotides from the contact-transfered PEI-cellulose plate were chromatographed in 0.55 M ammonium sulfate. Positions were numbered 5'- to 3'-. Spots \mathfrak{m}^L G38 and ψ m39 C40 are not clearly resolved here, but longer exposure (not shown) indicates the corresponding spots.

 $\ddot{}$

Figure 2 The nucleotide sequence of wheat germ t RNA Trp in the cloverleaf arrangement.</sup>

sulfate system. Identical result was obtained by using the ammonium formate solvent system.

The nucleotide sequence from position 4 to 43 of $\texttt{ERNA}^{\texttt{Trp}}$ was also determined by the rapid read-off gel sequencing method (8,11) which agreed with the sequence obtained by the print-out method. Total Sequence of Wheat Germ tRNA^{Trp}

The sequences obtained from the print-out sequencing techniques and the rapid read-off sequencing method, as well as the sequences of the oligonucleotides present in RNase T_1 and pancreatic RNase digests can be arranged in the following nucleotide sequence of wheat germ $tRNA^{Trp}$ present in cloverleaf form common to all tRNA molecules (Figure 2).

DISCUSSION

The inability of eukaryotic $tRNA^{Trp}$ to recognize UGA could be due to the modification of C_{34} to Cm and the lack of hypermodification of base 37. Structural Features of Wheat Germ tRNA^{Trp}

The tRNA^{Trp} from wheat germ contains 76 nucleotides in contrast to the presence of 75 nucleotides in other eukaryotic tRNA^{Trp} species. The stem region contains a modified but uncharacterized U at position 4. The presence of a ribose-methylated pyrimidine has also been reported in position 4 of eukaryotic tRNA Gly species (17). The modified base m^7G present in position 46 and m^5C present in positions 48 and 49 in other eukaryotic tRNAs are absent in tRNA^{Trp}. Unlike the U₁₁:G₂₄ or U₁₁:A₂₄ base pairing observed in

the case of E. coli Su⁻ and Su⁺UGA tRNA^{Trp}, respectively, wheat germ tRNA^{Trp} contains the base pair $C_{11}:G_{24}$ in the loop I stem.

Studies with tryptophan tRNA from both avian and bovine tissues have shown that they act as specific primers for reverse transcriptase and bind to a specific site near the 5'-terminus of the viral genome (18,19). Since wheat germ $\texttt{tRNA}^{\texttt{Trp}}$ possesses an extensive sequence homology with both avian and bovine tRNA^{Trp}, it is of interest to examine if the wheat germ tRNA^{Trp} can act as a primer for and can also bind to reverse transcriptase. Furthermore, the presence of the sequences $-\psi\psi CG-$ in loop IV of the two reverse transcriptase primer tRNAs, namely tRNA^{Trp} for avian system (20) and tRNA^{Pro} from murine system (21) suggests a possible implication of this sequence in initiation of DNA synthesis. The sequences in this region of tRNA^{Trp} and tRNA^{Pro} are: $C_{48}GUG\psi\psi CGm^1AA_{57}$ for avian tRNA^{Trp} and $C_{48}GGG\psi\psi CAM^1AA_{57}$ for murine tRNA^{Pro}. In comparison the sequence of the same region in wheat germ tRNA^{Trp} is C₄₈GUGT ψ CGm¹AU₅₈ which differs from the vertebrate sequence by two bases, ψ_{52} and A₅₇ being changed to T₅₂ and U₅₇ in wheat germ.

Conservation of Sequence of Tryptophan tRNA

Wheat germ t RNA^{Trp} shows the highest degree of homology (84%) with vertebrate tRNA^{Trp} species; the extent of homology between tRNA^{Trp} species from wheat germ and yeast or bacteria being 68% and 54%, respectively. It may be mentioned that wheat germ initiator tRNA^{Met} also shows the highest degree of homology (87%) with vertebrate initiator $tRNA_i^{Met}$. The primary sequence between wheat germ and vertebrate t RNA^{Trp} is identical between residues 6 to 76 with the exception of ⁷ residues. This conservation of the sequences present in all three loops and in the two stems between the higher plant and vertebrate tryptophan tRNA shows that the tRNA^{Trp} evolved by conserving these regions and ultimately in the vertebrate species the sequence is totally preserved.

ACKNOWLEDGEMENT

This work was supported by the Medical Research Council of Canada. We are deeply indebted to Dr. U.L. RajBhandary for his guidance in the $5'-[32p]$ post-labelling sequencing techniques. Thanks are also due to Drs. S. Chang and R. Gupta for their kind advice and help.

REFERENCES

- 1. Hirsh, D. (1971) J. Mol. Biol. 58, 439.
2. Gupta, N.K. (1968) J. Biol. Chem. 243.
- 2. Gupta, N.K. (1968) J. Biol. Chem. 243, 4959.
- 3. Beudet, A.L. and Caskey, C.T. (1971) Proc. Natl. Acad. Sci. USA 68, 619.
- 4. Stewart, J.W., Sherman, F., Jackson, M., Thomas, F.L.X. and Shipman, N. (1972) J. Mol. Biol. 68, 83.
- 5. Heckman, J.E., Sarnoff, J., Alzner-DeWeerd, B., Yin, S. and RajBhandary, U.L. (1980) Proc. Natl. Acad. Sci. USA 77, 3159.
- 6. Weiner, A.M. and Weber, K. (1971) Nature New Biol. 234 , 206.
7. Gupta, R.C. and Randerath, K. (1979) Nucleic Acids Res. 6. 3
- 7. Gupta, R.C. and Randerath, K. (1979) Nucleic Acids Res. 6, 3443.
8. Lockard, R.E., Alzner-DeWeerd, B., Heckman, J.E., Macgee, J.M.W.
- Bapta, M.O. and Manuscrath, M. (2000) Model and Lockard, R.E., Alzner-DeWeerd, B., Heckman, J.E., Macgee, J.M.W. and RajBhandary, U.L. (1978) Nucleic Acids Res. 5, 37.
- 9. Ghosh, K. and Ghosh, H.P. (1972) J. Biol. Chem. 247, 3369.
10. Kuchino, Y., Kato, M., Sugisaka, H. and Nishimura, S. (197
- Kuchino, Y., Kato, M., Sugisaka, H. and Nishimura, S. (1979) Nucleic Acids Res. 6, 3459.
- 11. Donis-Keller, H., Maxam, A.M. and Gilbert, W. (1977) Nucleic Acids Res. $4, 2527$.
- 12. Hirsh, D. and Gold, L. (1971) J. Mol. Biol. 58, 459.
13. Sen. G.C. and Ghosh. H.P. (1974) Anal. Biochem. 58.
- Sen, G.C. and Ghosh, H.P. (1974) Anal. Biochem. 58, 578.
- 14. Silberklang, M., Gillum, A. and RajBhandary, U.L. (1976) Methods in Enzymology, Vol. LIX, p. 58.
- 15. Ghosh, K., Ghosh, H.P., Simsek, M., RajBhandary, U.L. (1974) J. Biol. Chem. 249, 4720-4729.
- 16. Barrell, B.G., Anderson, S., Bankier, A.T., de Bruijn, M.H.L., Chen, E., Coulson, A.R., Brouin, J., Eperon, I.C., Nierlich, D.P., Roe, B.A., Sanger, F., Schreier, P.H., Smith, A.J.H., Staden, R. and Young, I.G. (1980) Proc. Natl. Acad. Sci. USA 77, 3164.
- 17. Gupta, R.C., Roe, B.A. and Randerath, K. (1979) Nucleic Acids Res. 7, 959.
- 18. Cordell, B., Swanstrom, R., Goodman, H.M. and Bishop, J.M. (1979) J. Biol. Chem. 254, 1866.
- 19. Baroudy, B.M. and Chirikijian, J.G. (1980) Nucleic Acids Res. 8, 57.
20. Harada, F., Sawyer, R.C. and Dahlberg, J.E. (1975) J. Biol. Chem. 25
- Harada, F., Sawyer, R.C. and Dahlberg, J.E. (1975) J. Biol. Chem. 250, 3487.
- 21. Peters, G., Harada, F., Dahlberg, J.E., Panet, A., Haseltine, W.A. and Baltimore, D. (1977) J. Virol. 21, 1031.