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Abstract
Because of the complexity inherent in biological systems, many researchers frequently rely on a
combination of global analysis and computational approaches to gain insight into both (i) how
interacting components can produce complex system behaviors, and (ii) how changes in
conditions may alter these behaviors. Because the biological details of a particular system are
generally not taught along with the quantitative approaches that enable hypothesis generation and
analysis of the system, we developed a course at Mount Sinai School of Medicine that introduces
first-year graduate students to these computational principles and approaches. We anticipate that
such approaches will apply throughout the biomedical sciences and that courses such as the one
described here will become a core requirement of many graduate programs in the biological and
biomedical sciences.

The Need for a Systems Biology Course
Systems biology focuses on developing an understanding of how phenotypic behavior of the
system as a whole emerges from the components and interactions that constitute the system.
Systems studied may be at various scales; they can be at the subcellular, cellular, tissue or
organ, or organismal level. Regardless of the scale, a key feature of systems biology is that
properties of and interactions among many components are studied, rather than simply the
characteristics of individual molecules. This course focuses mainly on the analysis of
systems at the subcellular and cellular level, although similar principles apply when other
scales are analyzed.

Advances in biological sciences over the past several decades have made it clear that most
biological systems are extremely complex. This inherent complexity makes it difficult, if not
impossible, to understand emergent behaviors, such as cellular decisions and phenotypes,
using only intuition. Systems biology, therefore, relies on a combination of experiments that
measure multiple entities simultaneously and computational approaches that allow the
analysis of multivariate data and the generation of testable predictions. Experimental
techniques that are critical to systems biology are frequently taught in undergraduate and
graduate programs in biomedical sciences. Computational approaches, however, have
traditionally not been part of these curricula. We describe a course developed at Mount Sinai
School of Medicine that introduces first-year graduate students to computational techniques
applicable to systems biology and that uses relevant biological examples, with the implicit
assumption that such approaches will become increasingly important, not just in systems
biology (1), but in the biomedical sciences more generally.
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Computational Needs of Systems Biology
Systems biology uses a range of computational techniques to analyze data sets of varying
sizes and types and to build predictive models. Although these computational methods are
used individually in other biological and physical sciences, a distinct combination is often
employed in systems biology research (Fig. 1).

In general, two major experimental approaches are used in systems biology, yielding
different types and volumes of data. One approach involves the gathering of large data sets,
often through high-throughput assays, and subsequent analyses of these data sets (Fig. 1,
left). In these types of experiments, the researchers obtain a vast and sometimes
comprehensive picture of the changes that occur in response to a defined perturbation, such
as the induction of a disease state. These large-scale and frequently genome-, proteome-, or
metabolome- wide studies are often referred to as “omic” data sets. For instance, the
measurement of changes in abundance of thousands of mRNAs by microarray (2) or next-
generation sequencing (3) is now a fairly routine experimental procedure. Other examples of
large data sets include analyses of the whole genome for transcription factor–binding sites
and epigenetic markings; proteomic data sets that measure changes of protein abundance or
posttranslational modifications, such as phosphorylation; and metabolomics that measure
changes in composition and concentrations of metabolites. Omic data sets can be so vast that
sophisticated computational algorithms are required to even visualize and gain a qualitative
appreciation of the results. Thus, statistical and network modeling approaches are critical for
analyzing data obtained with high-throughput assays. These modeling techniques can render
the data amenable to human investigation and discovery, revealing patterns in the data,
which can help to determine the pathways and processes involved. This level of analysis
provides insight into the organization of and relations among the components and can
generate predictions of how the system will respond to a perturbation, such as knockout of a
gene.

The second approach involves the study of fewer components, but in greater depth so as to
understand the quantitative relation between the components and the emergent behaviors
that arise from these interactions (Fig. 1, right) (4). Experiments generally measure key
system variables as a function of time and sometimes also as a function of space. Time
courses may be recorded in response to multiple perturbations, and data may be summarized
as dose-response curves. These systems are analyzed using dynamical models that can
simulate the time evolution of the system’s behavior. When representations of average
behavior are adequate, the dynamical models are generally deterministic (4). This means
that a particular set of parameters and initial conditions will always generate the same
output. If fluctuations of individual molecules need to be considered, then stochastic models
that incorporate randomness may be used (5). Both types of dynamical models can generate
quantitative predictions that can subsequently be tested experimentally. From this iteration
between simulation and experiment, mechanisms of regulation that are operative at a
systems level, such as feedback and feed-forward loops (6) can be inferred (Fig. 2). Thus,
the questions addressed by dynamical models focus on mechanisms that give rise to
emergent properties at a systems level.

Several studies that have combined experiments with computation have operated at what
might be considered an intermediate level (mesoscale) of complexity (7, 8). These studies
have measured the activities of tens, rather than hundreds or thousands, of signaling
molecules. Although the data obtained in these studies were not sufficiently detailed, in
terms of rates or concentrations, to enable construction of dynamical models, the work
showed that relatively straightforward input-output relations generated through methods
such as regression had impressive predictive power (7, 8). Thus, the modeling approach that
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is suited to a given study depends to a large extent on the nature of the data and the depth of
understanding of the system under consideration.

The course is organized to provide students with a well-rounded knowledge of the full range
of computational techniques used in cutting-edge studies, while emphasizing the appropriate
computational technique for a particular set of data. The course introduces students to both
statistical and network modeling techniques that are particularly important for analyzing
omics data sets and to dynamical modeling techniques that provide quantitative mechanistic
insight into data obtained in cell biology and physiology experiments. This combination of
computational approaches leads to the identification of the topology and organizational
characteristics of the system through the application of statistical and network models, and
then an understanding of the regulatory and functional capabilities of the system through the
application of dynamical models.

Student Prerequisites
The course is designed for students who have taken upper-level undergraduate courses in
cell and molecular biology. Students should have a basic knowledge of statistics; however,
no prior programming or modeling experience is necessary.

Course Organization and Topics
The course is designed as a 3-credit course with three teacher-student contact hours per
week for a 15-week semester and includes ~ 3 to 5 hours per week of homework
assignments (Table 1). There are 12 Teaching Resources published in sequential issues of
Science Signaling that provide lecture notes, slides, problem sets, and answer keys (Table 1).
The topics covered and a brief summary of the Teaching Resources are provided here.

The beginning of the course focuses on statistical approaches and network modeling. The
first two Teaching Resources cover lectures 2 and 3, which introduce methods used to
analyze large data sets. The first introduces principal component analysis (PCA) as an
approach for identifying trends within large data sets and reducing data dimensionality for
visualization. The second Teaching Resource introduces the students to gene set enrichment
analysis (GSEA), which combines statistical methods with prior knowledge about the
biological system. The third Teaching Resource describes lectures 4, 5, and 6, which deal
with graph theory and network analyses. The students are introduced to key concepts in
graph theory and how networks can be built from either large experimental data sets or from
data in the biochemical and cell biological literature. Methods to analyze both global and
local characteristics of networks are presented. These include topological analyses to
identify network motifs, such as feedback loops, feed-forward motifs, and bifan motifs.
Methods for network visualization and identification of functional units within cellular
networks are also presented.

Another main topic of the course is an introduction to dynamical models, which are used to
obtain quantitative input and output relations with respect to time and space. Deterministic
dynamical models, which use ordinary or partial differential equations as the mathematical
basis for the model, are fully specified by the equations and the initial conditions of the
system. Stochastic models incorporate the effects of randomness, and repeated simulations
can therefore generate different results. Exploiting the power of dynamical models requires
knowing several important concepts that are discussed in turn during the course. Because
MATLAB is the software package used in the course for the implementation and analysis of
dynamical models, a Teaching Resource that describes two lectures introducing this
software (lectures 9 and 10) is included. The Teaching Resource corresponding to lecture 8
illustrates how to analyze ordinary differential equation (ODE) models using the tools of
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dynamical systems theory. These concepts are further elaborated in a Teaching Resource
associated with lectures 14 and 15, which describe switching behavior or bistability, and a
Teaching Resource associated with lecture 16, which covers mathematical models of the cell
cycle.

ODE models of biological processes require the user to specify reaction rates and the initial
concentrations of reactants. For many biochemical reactions, these numbers are not
available; therefore, they have to be estimated from experiments conducted for other
purposes. The Teaching Resource associated with lecture 11 presents methods for estimating
kinetic parameters and concentrations of cellular components. All numerical simulations
have some errors associated with the computation. These errors need to be explicitly
estimated and taken into consideration during the interpretation of the results of the
simulations. Therefore, the next Teaching Resource associated with lecture 12 presents
methods for error estimation.

Virtual Cell, developed by a group at the University of Connecticut (9), is a tool for
developing cellular models that incorporate spatial organization. Therefore, the Teaching
Resource associated with lecture 20 introduces students to this modeling platform, which
allows the user to import realistic microscopic images, including images from live cell
experiments. Models built with this platform can simulate complex cellular phenomena,
such as cyclic adeno sine monophosphate microdomains, calcium waves, and nuclear-
cytoplasmic transport.

The final topic covered in the course is the use of probabilistic models for analysis of
stochastic systems. Several biological processes are probabilistic in nature, where-by a
system variable, such as the concentration of a protein or a second messenger or an ion, may
exhibit large fluctuations. For instance, single-cell measurements have shown that the
behavior of individual cells can deviate considerably from the average behavior of the
group. Methods for modeling such stochastic processes are an important aspect of
quantitative biology, and the last set of Teaching Resources therefore describes lectures on
stochastic modeling. Lecture 22 and the associated Teaching Resource introduce
probabilistic thinking and show through classic examples how a rigorous analysis of data
can lead to deep understanding of underlying biological phenomena. Lectures 23 and 24 and
the associated Teaching Resource describe methods for simulating stochastic phenomena by
applying the classic Gillespie algorithm to a model of transcription and translation.

Course Goals and Outcomes
The overall goal of this course is to train the students in the range of computational
approaches that are used in systems biology. These include (i) analysis of large data sets, (ii)
development and analysis of networks, (iii) application of deterministic dynamical models
consisting of ordinary or partial differential equations, and (iv) application of stochastic
dynamical models.

This is a laboratory course in which the students perform numerical computations during
each session and complete problem sets as homework. Students bring their laptop computers
to class, and an institutional license allows for MATLAB to be installed on each student’s
computer. Although the focus of this course is on computational methodologies, the students
receive training in the identification of the types of experimental data, the appropriate
computational approach for the data set, and the types of questions that can be addressed
with a particular data set and computational strategy.

For dynamical modeling and statistical analyses, the course uses MATLAB, a commonly
used commercial software package. For spatial models based on live-cell imaging, we
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introduce the students to partial differential models in Virtual Cell (9). For network-based
methods, where the analysis is more specialized, we use the following software packages
developed by Avi Ma’ayan and his colleagues within the Systems Biology Center, New
York, Genes2Networks, http://actin.pharm.mssm.edu/genes2networks/ (10); AVIS,
http://actin.pharm.mssm.edu/AVIS2/ (11); SNAVI, http://code.google.com/p/snavi/ (12);
KEA, http://amp.pharm.mssm.edu/lib/kea.jsp (13); Lists2Networks,
http://amp.pharm.mssm.edu/lachmann/upload/register.php (14); and ChEA,
http://amp.pharm.mssm.edu/lib/chea.jsp (15).

All sections within the course have associated problem sets that collectively test (i) the
student’s ability to implement the computational technique; (ii) the student’s ability to
correctly apply a method of analysis; and (iii) the student’s ability to interpret the results in a
biologically relevant manner. Answer keys to the problem sets are available upon request at
http://www.sbcny.org, by communicating with the corresponding author of a particular
Teaching Resource, or through Science Signaling.

Although the course includes a minimum amount of theory so that the students understand
the mathematical basis for the numerical computation; the course does not provide an in-
depth description of analytical solutions or of techniques such as non-dimensionalization or
perturbation theory. Although these are important approaches in quantitative biology, it is
difficult to give them sufficient treatment in a course focused on numerical computations
and simulations.

At the conclusion of the course, the students should be able to

• Identify a set of genes or proteins that respond to a stimulus

• Build a network from a set of nodes representing biological entities, such as genes
or proteins

• Construct pathways from receptors to effectors using lists of genes or proteins

• Analyze a biological network to identify key topological features

• Obtain estimates of kinetic parameters from biochemical and cellular physiology
data

• Develop and run ODE models to obtain predictions of phenotypic behavior

• Determine whether the steady-state solutions of an ODE system are stable

• Develop and run PDE models to obtain predictions of spatially specified behavior

• Develop and run stochastic models to obtain predictions of phenotypic behavior

• Analyze data to understand stochastic processes from distribution profiles

• Identify and estimate the errors associated with numerical simulations
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Fig. 1.
Data sets can dictate the computational approaches used in systems biology. (Left) Omics
technologies generate extremely large data sets that can be analyzed and organized into
networks by using statistical modeling techniques. This strategy can be considered “top-
down” modeling. (Right) When high-quality data are available, smaller-scale systems can
be represented by dynamical models, and simulations with these models can generate
quantitative predictions of system behavior. This strategy is sometimes called “bottom-up”
modeling. Both approaches are important in systems biology, and a few cutting-edge studies
combine the positive aspects of both.
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Fig. 2.
Complementary computational approaches used in systems biology. For either the top-down
approach (left) or the bottom-up approach (right), the text describes the general strategy of
computational studies (middle) and lists important techniques that are taught in the course.
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Table 1

Course schedule and Teaching Resources for the Systems Biology course.

Teaching Resource Lecture Number Lecture Topic

None 1 Overview of course—Introduction to modeling

Introduction to Statistical Methods to Analyze Large
Data Sets: Principal Components Analysis

2 Trends in large data sets: Principal components analysis

Introduction to Statistical Methods for Analyzing
Large Data Sets: Gene Set Enrichment Analysis

3 Analysis of large data sets: Gene set enrichment analysis

Introduction to Network Analysis in Systems Biology 4 Representation of biological systems as networks

5 Milestones and key concepts in network analysis

6 Making predictions using network analysis

None 7 Discussion and problem-solving session

An Introduction to Dynamical Systems 8 Introduction to dynamical systems

Introduction to MATLAB 9 Computing with MATLAB I

10 Computing with MATLAB II

Obtaining and Estimating Kinetic Parameters from the
Literature

11 Development of models I: Extracting constants from
experimental literature and estimating errors

Biomedical Model Fitting and Error Analysis 12 Development of models II: Curve fitting and error estimation

None 13 Discussion and problem-solving session

Bistability in Biochemical Signaling Models 14 Ordinary differential equation models of bistability in
biochemical signaling I

15 Ordinary differential equation models of bistability in
biochemical signaling Ii

Computational Modeling of the Cell Cycle 16 Ordinary differential equation model of the cell cycle

None 17 Ordinary differential equation model of the action potential

None 18 Discussion and problem-solving session

None 19 Partial differential equation model of a propagating action
potential

Developing Models in Virtual Cell 20 Spatial models in virtual cell: Ordinary differential equations
and partial differential equations

None 21 Discussion and problem-solving session

Probabilistic Reasoning in Data Analysis 22 Analysis of data from stochastic events

Simulations of Stochastic Biological Phenomena 23 Stochastic models I

24 Stochastic models II

None 25 Discussion and problem-solving session
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