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Completion of the Human Genome Project in 2003 ushered in a wave of optimism and
anticipation that new therapies and even cures for many diseases would soon be forthcoming
[1]. Aside from impressive progress in reducing the costs of genotyping [2], the promise
offered by the Human Genome Project has been largely unrealized, particularly in relation to
stroke [3]. More than 100 Genome-Wide Association studies [4] made possible with the new
information provided by the Human Genome Project have yielded many interesting findings
about the genetics of stroke-related brain injury, but all have generally fallen far short of
identifying a genetic basis for vulnerability to cerebral ischemia [5]. With the notable
exception of monogenic diseases, Genome-Wide Association studies have generally not
been an efficient strategy to elucidate the genetic mechanisms of disease, particularly in
complex pathologies such as ischemic cerebral injury [6]. These studies have taught us that
most disease pathologies, including those associated with cerebral ischemia, are polygenic
and involve highly variable contributions from the genes involved. Such findings raise the
important question: why are the genetic components of complex diseases so variable?

The Three Categories of Epigenetic Mechanisms
Long before the Human Genome Project was completed, it was recognized that genetic
factors were not the only, or perhaps even not the most important, determinants of responses
to some diseases. Indeed, in the same issue of Nature Genetics that was dedicated to
completion of the Human Genome Project, it was already recognized that “epigenetic”
factors were major players in the etiology and progression of many diseases [7]. Following
completion of the Human Genome Project, understanding of epigenetic mechanisms has
expanded rapidly and it is now recognized that epigenetic regulation involves three main
categories of mechanisms [8, 9], as summarized in Figure 1.

The most widely studied category of epigenetic mechanisms includes the enzymes that
mediate DNA methylation. These reactions are catalyzed by DNA Methyltransferases [10],
which play a critical role in many cancers [11]. DNA methylation occurs most often on
cytosine residues in promoter regions of regulated genes, and can greatly attenuate gene
expression. Many DNA methylation reactions exhibit specific developmental timing and
require methyl donors, such as folic acid, for their function. This is one reason why dietary
folic acid is so important during pregnancy [12]. Work with DNA Methyltransferases has
helped identify multiple inhibitors of DNA methylation, many of which have found use in
clinical studies of cancer [13]. DNA demethylation reactions have been proposed, but clear
evidence for enzymes reversing DNA methylation, in vivo, is not yet well established [14].

A second category of epigenetic mechanisms involves the enzymes that reversibly acetylate
and methylate the histone proteins that tightly bind DNA. This large and diverse group of
enzymes plays a key role chromatin structure and gene expression [15, 16], although the
basis for their gene-specificity remains unclear [17]. As a general mechanism, acetylation of
the lysine residues on histone proteins adds negative charge, which in turn promotes their
dissociation from DNA; deacetylation reverses this process and promotes gene “silencing”
[18]. Studies of histone acetyltransferases and deacetylases have also helped identify a broad
variety of selective inhibitors, many of which are in clinical trials [19, 20].
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The third and most recently recognized category of epigenetic mechanisms includes the
pathways involved in the transcription, processing, and action of a class of short (≈20–25
nucleotides) RNA molecules identified as micro-RNAs (miRNAs) [21]. In contrast to DNA
methylation and histone modification, the main function of miRNAs is involved much more
with message translation than with gene transcription. The miRNA molecules directly bind
mRNA and either retard or accelerate its degradation. In addition, miRNA binding to mRNA
can block message translation [22]. The sequences coding for miRNAs often arise from
intronic DNA, and regulate the gene products coded by adjacent exons. More than 1000
unique sequences of miRNA have been identified, and together these regulate approximately
30% of all mammalian genes [22]. A single miRNA can help regulate multiple different
gene products, and a single gene product can be regulated by multiple different miRNAs. As
such, miRNAs play key roles in many cellular functions and are particularly important in
cardiovascular biology [23–28]. Expression and action of miRNAs change with
development and in response to nutritional stress [29]. The actions of specific miRNA
molecules can be inhibited by reverse-sense antagomirs, and these have proven useful in
many studies of miRNA function [30, 31].

Epigenetic Mechanisms in Physiological Regulation
Apart from the molecular mechanisms responsible for epigenetic regulation, a broad variety
of evidence has implicated epigenetic regulation in long-term environmental influences on
gene regulation. One of the best-known such examples is the epidemiological work of
Barker, who identified a cohort of Dutch individuals with a uniquely elevated risk of
coronary artery disease [32, 33]. The common feature among this cohort was maternal food
restriction during the Dutch famine in World War II. These early studies established that
fetal nutritional stress could produce life-long changes in the vulnerability to cardiovascular
disease, and subsequent work has further established the epigenetic basis of such “vascular
programming” [34]. Similarly, other studies have implicated epigenetic mechanisms in long-
term responses to hypoxia [35–38] and ischemia [39–41]. Of particular relevance to stroke
are findings that miRNA is involved in ischemic preconditioning [42–48] and may even play
a role in ischemic postconditioning [49]. Together, these results emphasize that
environmental influences can produce long-term changes in physiological patterns of gene
expression through epigenetic mechanisms.

Epigenetic Mechanisms in Stroke
Appreciation of the potential involvement of epigenetic mechanisms in the incidences and
outcomes of stroke has begun to motivate studies of these mechanisms in relation to cerebral
ischemia and stroke [50]. DNA methylation has been suggested to contribute to delayed
ischemic brain injury in mice [51] and has been correlated with stroke risk in humans [52,
53]. Histone modifications have been implicated in LPS-induced cerebral inflammation [54]
and oxidative neuronal injury [55], and may be neuroprotective following ischemia [56] in
rodent brains. Correspondingly, inhibitors of histone modification have been suggested to be
neuroprotective in animal models of cerebral ischemia [57–61] and intracranial hemorrhage
[62]. In turn, miRNAs have been shown to play diverse roles in neuronal [63–66], glial [67]
and endothelial [68, 69] responses to stroke. In addition, miRNAs have been suggested to
regulate the effects of ischemia on aquaporin expression and function [70] and in some cases
may be neuroprotective [71]. miRNAs may also help explain gender-based differences in
responses to cerebral ischemia [72]. Although studies of epigenetic mechanisms in stroke
are still in the early stages, the data accumulated to date strongly suggest that further studies
of these mechanisms are well justified and that future publications resulting from these
studies are worthy of careful attention.
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Epigenetic Mechanisms and Cell-Based Therapies
Outside the brain, epigenetic mechanisms may contribute to the cerebral vulnerability to
ischemia through many different pathways. Epigenetic mechanisms appear to play a major
role in the development and progression of diabetes [73–75], and are intimately involved in
regulation of angiogenesis [30, 76–83] and growth factor function [84]. Correspondingly,
epigenetic mechanisms can play key roles in cell proliferation and differention [85–93].
These diverse findings suggest that the success of cell-based therapies, such as those
discussed in this issue of Translational Stroke Research, may also depend, at least in part, on
epigenetic mechanisms. Without doubt, studies of epigenetics are expanding rapidly and
offer great promise for improved understanding of stroke pathology. Translational Stroke
Research has already included two manuscripts on this topic [94–95], and another by Baltan
appears in this issue. More are sure to come.
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Figure 1.
Epigenetic mechanisms can be divided into three main categories. The first includes the
mechanisms mediating DNA methylation, typically at cytosine residues in gene promoter
regions. These reactions attenuate gene expression and are catalyzed by multiple different
isoforms of DNA Methyltransferases. An important requirement for these reactions is a
methyl donor, typically folic acid supplied through the diet. DNA demethylation has been
proposed, but has not yet been demonstrated in vivo. The second epigenetic category of
mechanisms includes the enzymes that acetylate and deacetylate lysine residues on histone
proteins. These enzymes regulate chromatin structure and include Histone
Acetyltransferases and Histone Deacetylases. In general, histone acetylation promotes
dissociation from DNA and facilitates gene expression, whereas deacetylation promotes
reassociation and reduced gene expression. The third epigenetic category includes the
pathways that transcribe, process, and transport miRNA, which arises from more than 1000
genes. In many cases, miRNA is coded by intronic regions of DNA, and regulates the gene
coded by adjacent exons. In general, miRNAs are highly divergent, such that one miRNA
can bind multiple different mRNAs. In addition, miRNAs are also highly redundant; many
different miRNAs can regulate a single gene mRNA. Overall, approximately 30% of all
genes are regulated by miRNAs.
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