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In therapeutic ultrasound, the presence of shock waves can be significant due to the use of high

intensity beams, as well as due to shock formation during inertial cavitation. Although modeling of

such strongly nonlinear waves can be carried out using spectral methods, such calculations are typi-

cally considered impractical, since accurate calculations often require hundreds or even thousands of

harmonics to be considered, leading to prohibitive computational times. Instead, time-domain algo-

rithms which generally utilize Godunov-type finite-difference schemes are commonly used. Although

these time domain methods can accurately model steep shock wave fronts, unlike spectral methods

they are inherently unsuitable for modeling realistic tissue dispersion relations. Motivated by the

need for a more general model, the use of Gegenbauer reconstructions as a postprocess tool to resolve

the band-limitations of the spectral methods are investigated. The present work focuses on eliminat-

ing the Gibbs phenomenon when representing a steep wave front using a limited number of harmon-

ics. Both plane wave and axisymmetric 2D transducer problems will be presented to characterize the

proposed method. VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3621485]

PACS number(s): 43.25.Cb, 43.25.Jh [OAS] Pages: 1115–1124

I. INTRODUCTION

Shock waves can often be observed in therapeutic ultra-

sound, due to its use of high intensity acoustic sources. It is

well known that this type of wave profile can be extremely

hard to model by frequency-domain methods,1 since the

Fourier expansion of a shock wave has a slow convergence

rate. Therefore, to model a shock wave using the frequency-

domain approach, the spectral components typically have to

include hundreds or even thousands of harmonics, resulting

in intolerable computation time. The same rule also holds

for modeling short pulses which carry ample frequency

components. To solve this dilemma, a time-domain model

has emerged,2 where the computation time increases linearly

to the number of harmonics. Nevertheless, this preliminary

study considers the use of an implicit solution of Burgers’

equation which is not conservative and not suitable for shock

wave modeling.3 Consequently, more sophisticated schemes

which involve Godunov’s method were proposed.3–6 Shock

waves can then be accurately approximated through the

scheme’s internal viscosity. During the fast development

of time-domain algorithms, the effort of improving the

frequency-domain approach never ceased. Christopher and

Parker proposed a harmonic-limited scheme where excess

absorptions were added into high frequency components.1

However, this scheme is approximate in the sense that it

highly distorts the shock wave front. Asymptotic values for

high frequency amplitudes have also been used both in the

algorithm of modeling nonlinear propagation of shocks, and

in the post-numerical waveform reconstruction.7–9 While

this method works well for one-dimensional cases containing

one shock wave, it becomes rather complex when two- or

three-dimensional waves containing multiple shock waves

are considered.9,10 Particularly, when pistons are modeled

(focused or unfocused), edge waves are present and may

result in formation of two shocks per waveform. The asymp-

totic method relies on the assumption that there exists only

one shock per cycle.10

The goal of this study is to introduce an approach that

can reduce harmonic representations for shock waves dur-

ing the numerical implementations. This approach integra-

tes artificial attenuations in modeling of nonlinear wave

propagation and a so-called Gegenbauer reconstruction

method (or reprojection method) as a post-numerical proce-

dure. The artificial attenuations are used to stabilize the fre-

quency-domain algorithm by reducing the errors at points

away from the discontinuity. The Gegenbauer reconstruc-

tions are used as a final step to recover the accuracy of the

sound field everywhere including the discontinuity. The

focus of this paper is the Gegenbauer reconstructions,

which were originally introduced by a series of papers11–14

and have been applied to engineering problems, e.g., the

propagation of electromagnetic waves.15 The general idea

is to take the Fourier expansions of a piecewise smooth

function which is generally contaminated by the Gibbs

noise, and project them onto another basis with Gegenbauer

polynomials. This basis is Gibbs complementary to the

family of the Fourier expansions,11–14 so that the new

expansions converge exponentially. Gegenbauer reconstruc-

tions further require the location of the discontinuity a pri-
ori, which necessitates an edge-detection algorithm. It is

noted that the Gegenbauer reconstruction method is

designed to suppress the Gibbs noise, not specifically for

either a frequency- or time-domain method, thus it has

general usages in complementing both methods. It is noted

that Gibbs-type phenomena sometime also occur in time-

domain algorithms.16 However, this study concentrates on

a)Author to whom correspondence should be addressed. Electronic mail:

jingy@bwh.harvard.edu

J. Acoust. Soc. Am. 130 (3), September 2011 VC 2011 Acoustical Society of America 11150001-4966/2011/130(3)/1115/10/$30.00



the frequency-domain method where reducing the number

of harmonics is more imperative.

The paper is structured as follows. In Sec. II, the theory

of Gegenbauer reconstructions is briefly revisited. Section

III discusses simulation results for plane wave and some

axisymmetric beam problems. Here, the validity of the

Gegenbauer reconstructions in the context of nonlinear

acoustics is verified. Section IV concludes the paper.

II. GEGENBAUER RECONSTRUCTION

Suppose a nonperiodic function f(x) on [–1, 1] has a dis-

continuity at x¼ x0, and the first 2Nþ 1 Fourier expansion

coefficients are known as F(k), where kj j � N: Then the Fou-

rier partial sum approximation yields

fN xð Þ ¼
X
kj j�N

f kð Þe�ipkx: (1)

This reconstructed function fN(x) suffers from the Gibbs

phenomenon: first order convergence away from the jump

discontinuity with nonuniform oscillations as the jump dis-

continuity is approached.

To improve the convergence rate, a conventional

approach is to introduce artificial attenuation to the algo-

rithm. For example, in the Westervelt equation, it is straight-

forward to add an artificial attenuation which grows

quadratically with frequency.17

The main purpose of the artificial attenuation is to stabilize

the algorithm. Since this is essentially an excess-absorption

scheme, while it maintains the accuracy of low frequency, it

reduces the accuracy of the high frequencies and inevitably dis-

torts the shock fronts.1,9 Fortunately, recent studies on Gegen-

bauer reconstructions11–14 show that if the function under test

is piecewise analytic/smooth, high frequency components can

be recovered by essentially using only the low frequency com-

ponents and the Gibbs effect can be completely removed. This

is realized by reconstructing a rapidly converging series based

on the expansions in Gegenbauer polynomials.

We now briefly introduces the underlying theory of

the Gegenbauer reconstruction following previous litera-

tures.11–14,18 The Gegenbauer partial sum expansion, which

converges exponentially for a smooth function f(x) defined

in [–1,1], is given by11–14

fm xð Þ ¼
Xm

l¼0

Fk
l Ck

l xð Þ; (2)

where Fk
l are the Gegenbauer coefficients

Fk
l ¼

1

hk
l

ð1

�1

1� x2
� �k�1=2

Ck
l xð Þf xð Þdx: (3)

The Gegenbauer polynomials, Ck
l , are orthogonal under the

weight function (1–x2)k–1/2 withð1

�1

1� x2
� �k�1=2

Ck
k xð ÞCk

n xð Þdx ¼ dk;nhk
k ;

hk
n ¼ p1=2Ck

n 1ð Þ
C kþ 1

2

� �
C kð Þ nþ kð Þ ; (4)

where dk,n is the Kronecker d.

The Gegenbauer polynomials can be calculated by a

recurrence relation19

Ck
kþ1 xð Þ ¼ 2 k þ kð Þx

k þ 1
ck

k xð Þ � k þ 2k� 1

k þ 1
Ck

k�1 xð Þ;

k ¼ 1; 2;… (5)

with Ck
0 ¼ 1 and Ck

1 ¼ 2kx:
It is assumed that f(x) is a piecewise smooth function

that is analytic in the subinterval [a, b]. A local variable n is

defined such that x(n)¼ enþ g, where e ¼ b� að Þ=2 and

g ¼ bþ að Þ=2, the Gegenbauer partial sum expansion of f(x)

in [a, b] can be obtained as

fm x nð Þð Þ ¼
Xm

l¼0

Fk
l;eC

k
l nð Þ;�1 � n � 1; (6)

where the Gegenbauer coefficients Fk
l;e yield

Fk
l;e ¼

1

hk
l

ð1

�1

1� nð Þk�1=2Ck
l nð Þf enþ gð Þdn: (7)

Based on the Fourier partial sum approximation Eq. (1), an

approximation to Fk
l;e can be written as

Gk
l;e ¼

1

hk
l

ð1

�1

1� n2
� �k�1=2

Ck
l nð ÞfN enþ gð Þdn: (8)

This approximation replaces Fk
l;e in the computation of the

Gegenbauer partial sum to reconstruct the function f(x) in an

exponentially accurate way in [a, b] as

gk
m x nð Þð Þ ¼

Xm

l¼0

Gk
l;eC

k
l nð Þ: (9)

It has been mathematically demonstrated that, if both k and

m grow linearly with N, and k¼ cm where c is an arbitrary

positive, the error introduced by Eq. (9) is exponentially

small.11–14

III. SIMULATIONS

A. Algorithm

1. Frequency-domain method

In this section, the aforementioned methods are numeri-

cally verified through shock wave modeling using a recently

developed frequency-domain method.20 This method is

based on the Westervelt equation which is written as

r2p r; tð Þ � 1

c2
0

@2

@t2
p r; tð Þ þ @

c4
0

@3

@t3
p r; tð Þ þ b

qc4
0

@2

@t2
p2 r; tð Þ ¼ 0;

(10)

where p is the sound pressure, c0 is the sound speed, d is the

diffusivity, b is the nonlinearity coefficient, and q0 is the am-

bient density.
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Fourier transformation of the x, y, and t dimensions

yields an ODE in the wave-vector frequency-domain:

@2

@z2
P kx; ky; z;x
� �

þ K2P kx; ky; z;x
� �

� bx2

q0c4
0

P kx; ky; z;x
� �

� P kx; ky; z;x
� �

¼ 0; (11)

where

P kx; ky; z;x
� �

¼
ð1
�1

ð1
�1

ð1
�1

p r; tð Þ

� e�i kxxþkyyþxtð Þdxdydt; (12)

K2 ¼ x2

c2
0

� k2
x � k2

y � i
dx3

c4
0

; (13)

with x being the angular frequency; kx, ky being the wave

numbers; and � representing the convolution in terms of kx,

ky, and x. It is noted that the frequency-dependent absorp-

tion and dispersion are considered in K.
While the exact solution to Eq. (11) has been found, it is

not suitable for numerical implementations. An approximate

solution to Eq. (11) is therefore used and can be written as20

P kx; ky; z;x
� �

¼ P kx; ky; z;x
� �

eiKz

þ bx2

2iq0c4
0K
� eiKz

ðz

0

e�iKz0F P z0ð Þð Þdz0;

(14)

where

F P z0ð Þð Þ ¼ P kx; ky; z
0;x

� �
� P kx; ky; z

0;x
� �

: (15)

It is noted that the first term on the right hand side of the

equation represents the linear term and the second term rep-

resents the nonlinear term. This solution is numerically eval-

uated via the left-hand Riemann sums. In general, the initial

pressure distribution on the surface of a transducer can be

predetermined, and the sound field is then projected step by

step to the desired plane along the z-axis. Details of the algo-

rithm follow a previous description by Jing et al.20 A previ-

ous study has already shown the validity of this frequency-

domain method. It will be demonstrated in this paper how

the Gegenbauer reconstructions can be used as a post model-

ing procedure along with this frequency-domain method to

model shock wave propagation.

2. Artificial attenuation and Gegenbauer
reconstruction

The Gibbs effect occurs when shock waves are repre-

sented by insufficient harmonics. The errors, which are typi-

cally manifested as high frequency oscillations near the

discontinuity, become amplified while undergoing the planar

projection. This causes algorithm instability, and in some

cases, produces overflow errors. Therefore, artificial attenua-

tions which grow quadratically with the frequency are intro-

duced into the frequency-domain algorithm during each step

of the projection. Artificial attenuation for shock wave mod-

eling is a well established approach. Even for shocks of

60–80 MPa it is possible to obtain accurate results with

about 500 harmonics.17 For example, an artificial absorption

that has a dependence on the axial coordinate was introduced

in the algorithm locally around the focus to suppress strong

gradients appear in the transverse spatial field.17

For the relevant model equation, this can be easily

accomplished by adding a small value to the sound diffusiv-

ity d in Eq. (11). This small value should be chosen carefully

to prevent excessive signal noise and to stabilize the algo-

rithm. This could, for example, be done by starting with a

very small value to test for stability and noise levels, and

then progressively increasing the attenuation to determine

the minimum acceptable value. Clearly, if an overly high

value is used, essential lower-frequency components of the

signal might also be artificially reduced by a significant

amount, thereby reducing the efficacy of the Gegenbauer

reconstructions, which assume the low frequencies are rea-

sonably accurate.11–14

Recalling the Gegenbauer reconstructions, which are

understood to have exponential convergence for a smooth

function on [a, b] [element] [–1,1] (see Sec. II. for details),

the first task is to locate the discontinuity. It is noted that, the

number of shocks can be less or more than 2 (at a and b), as

will be shown in the simulation section. For example, if the

discontinuities are at –1, a, b, c, 1, the subintervals are [–1,

a], [a, b], [b, c], and [c, 1]. The time-domain waveform used

to find the discontinuities was obtained from the inverse FFT

with respect to frequency.

In shock wave modeling, assuming shocks are ideally

discontinuous, the discontinuities are then at a and b. How-

ever, these discontinuities are usually unknown. Although

there are sophisticated edge detection procedures21,22 for

Gegenbauer reconstructions, they limit the edge to a certain

grid point, which may be not sufficiently accurate, as this

edge does not necessarily correspond to a sampling point

especially when a small number of harmonics are used. The

present study considers several common problems in acous-

tic shock waves, and proposes empirical methods to locate

the edge that are specific to each problem. These methods

will be discussed in detail along with the presentation of nu-

merical results. In general, the edge corresponds highly with

the location of the first order derivative @f=@xð Þ maximum.

Once the edge of the function is known, the reconstruc-

tion can be implemented according to Sec. II with the param-

eters k and m, which are function dependent and need to be

carefully determined. The optimum relation between the pa-

rameters and other factors has been considered analytically.23

However, these analytical results are not sufficient for provid-

ing a practical algorithm. There is also need for further

numeric experimentation.15 As will be verified, once the opti-

mized parameters are chosen, the smooth portion of the signal

away from the discontinuity can be accurately reconstructed.

This verification is achieved by comparing the reconstructed

curve with the original curve on the portion where the con-

tamination is not overwhelming (i.e., even though the curve

is contaminated by the Gibbs noise, typically there is a
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portion of the curve away from the discontinuity that has

only negligible oscillation). A more accurate but less straight-

forward method of comparison considers the frequency spec-

trum of the reconstructed shock wave with the original,

where good agreement should be observed for the low fre-

quency region.

An example is shown here to demonstrate the Gegenba-

uer reconstruction process. The Fay solution to Burgers’

equation was used, which is valid for sinusoidal waves after

the propagation distance is larger than 3r, where r is the

shock formation distance, and the diffusivity is sufficiently

small. For the numerical implementation, the projection dis-

tance Dz on the z-axis was chosen as 1/16 of the wavelength

at the center frequency, the temporal resolution dt for the si-

nusoidal source was 1/(64fc), where fc is the center frequency,

indicating 32 harmonics were used. The center frequency was

5 MHz, the initial pressure amplitude was 8 MPa, the speed

of sound was 1500 m/s, the density was 1000 kg/m3, the non-

linearity coefficient was 3.5, and the diffusivity was 5� 10–6

m2 s–1. An artificial diffusivity of d¼ 4� 10–5 m2 s–1 was

employed to prevent overflow error. Results at a distance of

r¼ 5.2 before Gegenbauer reconstructions are shown in Fig.

1(a) (dots). For the present case, if no artificial attenuation

was introduced, about 50 harmonics were required to obtain

stable results and 150 harmonics to obtain results nearly free

of Gibbs noise. To indicate the edge location, the first order

derivative is also plotted. It is initially considered that the

signal peak indicates the discontinuity, and that the shock

wave consists of two smooth subintervals above and below

the discontinuity. However, since the analytic solution indi-

cates that the shock wave is not ideally discontinuous (the

shock front includes at least one point), results after Gegenba-

uer reconstruction would be erroneous at grid points very

close to the real edge. Thus, it is decided to divide the func-

tion into three intervals. The location of the first order deriva-

tive maximum is defined as x0, and the two neighboring grid

points as x�1 and x1, from left to right. Similarly, x–n and xn

indicate positions n points away from x0. Note that subin-

terval boundaries do not have to coincide with grid points.

For one-dimensional continuous wave propagation, the best

results have been found using the subintervals: (1)

�1 to x�1 þ x0ð Þ=2; (2) x�1 þ x0ð Þ=2 to x0 þ x1ð Þ=2; (3)

x0 þ x1ð Þ=2 to 1; in some cases providing more accurate

results than defining interval boundaries as the neighboring

points, i.e., x1 and x–1. It is believed this is because the width

of the shock front is usually overestimated when modeling

using a limited harmonics. In this example, since the second

and third discontinuities are close, the subinterval in between

is very short. However, this is not generally the case, as will

be shown in Sec. III B. It is also noted that, the factor 2 here

is only an approximate number that keeps the edge some-

where between, for example, x–1 and x0. In other words, the

FIG. 1. Profiles of shock waves produced from an initial sinusoidal wave at a distance r1¼ 5.2. (a) Numerical simulations before and after the Gegenbauer

reconstructions, as well as the first order derivative. (b) Numerical simulations before and after the Gegenbauer reconstructions, as well as the analytic solu-

tion. (c) Frequency spectrums before and after the amplification. (d) Numerical simulations before and after the Gegenbauer reconstructions. The frequency

spectrums after the amplification were used.
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results are not sensitive to this factor. Again, the value of fN
on any arbitrary point, not necessarily a grid point, can be cal-

culated by using Eq. (1).

As discussed below in Sec. III B, although shock waves

are rarely ideally discontinuous, assuming discontinuity and

applying the Gegenbauer reconstructions still yield accurate

results for cases where the shock fronts are very sharp. For

example, when modeled by 30–100 harmonics and including

artificial attenuation, only 0–4 points were observed on the

shock front.

Initially, the values of k and m were set identically for

each subinterval (k¼ 4, m¼ 2), and then increased separa-

tively until a satisfactory result was found. It is noted that

the choices of k and m could be different for each subin-

terval, however, for simplification, they remain the same in

this study. For most one-dimensional problems, where dif-

fraction was not taken into account, the initial values them-

selves were observed to yield accurate results. Especially

increasing k does not significantly change the results. Figure

1(b) shows results after reconstruction (solid line) using this

setting, indicating that Gegenbauer reconstructions success-

fully recovers the shock front. To quantify the agreement

with the analytic solution, the least-square error was used

and was defined as

error ¼ pnum tð Þ � pexact tð Þk k
pexact tð Þk k ; (16)

where p tð Þk k is the least-square norm.

The least-square errors were 0.0659 and 0.0072 for

before and after the Gegenbauer reconstructions, respec-

tively, indicating a reduction of almost a factor of 10.

When k less than 4 was chosen, the Gegenbauer recon-

structions generally did not yield satisfactory results. The

Gegenbauer reconstructions were designed for problems

where a limited number of Fourier coefficients for a discon-

tinuous function are known and correct. However, when

modeling shock wave with a limited number of harmonics,

the spectrum at high frequencies is inaccurate due to the

incomplete description of harmonic interaction and corre-

sponding reflections from the high frequency boundary of

the spectral window.

Fortunately, for a relatively large k, such as 4 used in

this study, the weight of the reprojection basis 1� n2
� �k�1=2

reduces quickly to zero at its boundaries. The smooth func-

tion on [a, b] that requires reconstruction is multiplied by

this weighting function when calculating the Gegenbauer

coefficient, such that oscillations at high frequencies that

corresponds to the points on or near the boundaries are

tapered to zero by the weighting function. In other words, as

long as the Gibbs noise is not spread over a significant range

of the frequency spectrum, the Gegenbauer reconstructions

work, because they essentially utilize only the lower portion

of the frequency spectrum.

To demonstrate this point, results before reconstruction

were amplified by a factor of 20 at frequencies above 100

MHz [Fig. 1(c)]. Gegenbauer reconstructions were then

applied to this signal. Figure 1(d) shows that even in this

case where the frequency spectrum is highly inaccurate near

the frequency boundaries, the Gegenbauer reconstructions

still can recover the correct signal.

For a subinterval which is expected to be approximately

a flat line, it is found that m should be small, e.g., 2. On the

other hand, if the subinterval is a highly variant function,

which is typically seen when diffraction is considered, then

m must be relatively large, e.g., 8 or even larger. As men-

tioned above, there is no direct method to calculate or select

the exact m and k, but rather it is problem-specific and

numeric experimentations are typically required to obtain

the optimal parameters.

The CPU time for computing the Gegenbauer reconstruc-

tions has been shown to increase mainly with N and m.15

Processing time was less than one second for all the cases

tested in this paper, when implemented using MATLAB on a XP

64-bit operating system. The hardware consisted of four dual-

core 2.67 GHz Xeon processors, and 24 GB of RAM.

To close this section, the procedure is summarized as

follows.

Step 1: After the location of the discontinuity is deter-

mined, the whole time window of the numerical solution

breaks down to a few (depending upon the number of dis-

continuities) subintervals.

Step 2: For one subinterval, compute the Gegenbauer

coefficients Gk
l;e by using Eq. (8).

The integral is numerically evaluated. Point values fN
in the integral are calculated using Eq. (1). m and k
are obtained through numeric experimentations.

Step 3: Construct the Gegenbauer finite sum by using

Eq. (9).

Step 4: Repeat steps 2–3 for other subintervals.

B. Results

1. One-dimensional cases

To verify the model, we then studied the case of N
waves, with the initial wave written as

p tð Þ ¼ �p0t=T0; tj j < T0;¼ 0; tj j0; (17)

where p0 is 5 MPa and T0 is 0.3� 10–6. The analytic solution

for this case is available,24 and is not repeated here. In gen-

eral, as the N wave propagates, the peak amplitude reduces

and the width increases.

For the numerical implementations, the nonlinearity was 3.5

and 150 sampling points were used across the initial N shock

wave. The step size Dz was 18.75 lm. The medium diffusivity

was set to zero, however, an artificial diffusivity d¼ 1� 10–5 m2

s–1 was used. Empirically, good results can be acquired when the

N shock wave was assumed to consist of three smooth subinterv-

als: (1) �1 to x�1 þ x0ð Þ=2; (2) x�1 þ x0ð Þ=2 to x0 þ x1ð Þ=2;
(3) x0 þ x1ð Þ=2 to 1. The underline denotes the point on the

right side of the N wave. Occasionally, the first order

derivative on x–1 only differs from the one on x0 by a small

amount, e.g., less than 10%. In this case, the first subinterval

becomes �1 to (x–2þ x–1)/2, and the second subinterval will

need to change accordingly. A similar rule holds for the right

side of the N wave, i.e., if the first order derivative on x1 only
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differs from the one on x0 by a small amount, then the third sub-

interval becomes x1 þ x2ð Þ=2. This rule of finding the edge for

the N waves is based on the fact that modeling the N wave using

a limited number of harmonics usually underestimates the total

width of the N wave. Figure 2(a) shows the results at a distance

of 20 mm. In this specific case, the edge on the right side is at

x1 þ x2ð Þ=2.

k and m were again chosen to be 4 and 2, respectively.

Figure 2(b) shows the comparisons between the simulation

with Gegenbauer reconstructions and the analytic solution for

portions of the shock wave at distances of 20, 40, 60, and 80

mm. To calculate, for example, the result at 40 mm, the result

at 20 mm before the reconstructions (rather than after) was

projected to 40 mm, where the reconstructions were applied.

This is important, as even in the “worst case” scenario where

the edge was misidentified by one grid point after the recon-

structions, this error would not accumulate during propaga-

tion. Again, the Gegenbauer reconstructions successfully

recovered the high frequency components that were overly

reduced by the artificial attenuation. The least-square errors

were found to be rather small, being 0.000187, 0.000248,

0.000261, and 0.000259 for distances at 20, 40, 60, and

80 mm, respectively. For comparison, the least-square errors

before the reconstructions were 0.176, 0.099, 0.159, 0.071.

The second case tests the algorithm with multi-cycle tone

bursts that generally contain several shocks of different ampli-

tudes formed at different distances. A Gaussian-modulated

sinusoidal pulse with a center frequency of 5 MHz, and a

bandwidth of 2.5 MHz was selected. Peak amplitudes were

varied from 12 to 8 MPa at increments of 2 MPa. The me-

dium properties remained the same except the diffusivity was

set at 5� 10–6 m2 s–1. Travel distances corresponded to 7.9r,

6.5r, and 5.2r, respectively, as referenced to a 5 MHz contin-

ues wave signal. For the simulation, the projection distance

Dz was 1/16 of the wavelength at center frequency, and 32

harmonics were used with an artificial diffusivity of 3� 10–5

m2 s–1. To assess the accuracy of the simulation, the bench-

mark solution was obtained by considering 256 harmonics

and no artificial attenuation. The results were later interpolated

to have the same sampling frequency with 32 harmonics.

To locate the edges, three maximum first order deriva-

tives were identified first, see Fig. 3(a). Taking the one on the

rightmost as an example, the best results were found when

the edge is assumed to be located at (x61þ x0)/2, where x61

is either x–1 or x1, dependent upon which coordinate had a

higher first order derivative. In the specific case shown in Fig.

3(a), x61¼ x1 in that specific case. The same rule was found

to hold when searching for other edges. Occasionally the first

order derivatives on x–1 and x1 only differ by less than 10%.

In this special case, the edge is assumed to be at x0. Last, k
and m were 4 and 2, respectively.

Figures 3(b)–3(d) show the results at different distances,

where Gegenbauer reconstructions are shown to be valid.

The least square errors for results after the reconstructions

were 0.0396, 0.0101, and 0.0179, respectively. The errors

before the reconstructions were 0.149, 0.151, and 0.157.

2. Axisymmetric cases

This section presents axissymmetric cases, which are

relevant to therapeutic ultrasound. The advantage of the pro-

posed approach is that there is no essential difference

between dealing with a one-dimensional problem and an

axissymmetric problem. The acoustic field is propagated by

the frequency-domain method, and the Gegenbauer recon-

structions are applied at the last step to the time-domain sig-

nal that is of interest.

The first case considers the field due to a spherically

concave transducer (single element) with an aperture radius

of 3 mm and a 20 mm focal distance. The initial time-do-

main signal was a continuous wave. The center frequency

was 5 MHz and the initial peak pressure was 1 MPa. For the

medium, water was modeled, as the attenuation is rather

small and the Gibbs phenomenon is more pronounced. The

sound speed was 1500 m/s, density was 1000 kg/m3, nonlin-

ear parameter was 3.5, and attenuation coefficient a/f2 was

25� 10–15 Np/m/Hz2.

Two numerical implementations were conducted

separately. The first considered 50 harmonics, the second

considered 250 harmonics. The latter was used roughly as a

FIG. 2. (a) Profiles of shock waves produced from an N wave. Two results

are presented at a distance of z¼ 20 mm, one before the Gegenbauer recon-

structions, one after. The first order gradient is shown to indicate approxi-

mately where the edge is. (b) Simulation results after the Gegenbauer

reconstructions are compared with the analytic solution at various distances

20, 40, 60, and 80 mm, where the longer the distance, the lower the peak

pressure.
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reference to assess the accuracy of the Gegenbauer recon-

structions when fewer harmonics are considered. The step

sizes Dz were 18.75 and 1.25 lm, respectively. On the radial

axis, the spatial resolution was 37.5 lm, where convergence

for the results on the axis was observed. An artificial attenua-

tion of 8� 10–6 m2 s–1 was added to the algorithm.

To locate the edge, the same rule in the one-dimensional

Gaussian pulse case was used. Therefore, the shock wave

was divided into two parts: (1) �1 to (x61þ x0)/2; (2)

(x61þ x0)/2 to 1. k and m were chosen to be 4 and 8, respec-

tively. As explained above, a larger m was used because the

two subintervals, instead of being straight lines, are quite

curvy, see Fig. 5(a). It is worth pointing out that the result is

insensitive to the choice of k if the difference is within 1.

It is further noted that, according to Eq. (9), once the

Gegenbauer coefficients are calculated, the waveform can be

reconstructed everywhere on the time-domain. In other

words, even though the algorithm started with only 50 har-

monics, during the Gegenbauer reconstructions, the number

of harmonics can be increased by enlarging the sampling fre-

quency. In this case, 200 harmonics were added to the origi-

nal 50 harmonics according to the procedure described

above. As a matter of fact, it is found that if only 50 harmon-

ics were considered, the frequency spectrum close to the 50th

harmonics would not be accurate. As more harmonics are

added, the frequency spectrum close to the 50th harmonics

would converge and become much more accurate. To demon-

strate this, we took the Fay solution to the one-dimensional

continuous wave problem discussed above (Sec. III A 2), and

compare the frequency spectrum up to the 32th harmonics

when considering 16, 32, and 160 harmonics. Figure 4 shows

that, even though all the results are analytic solutions in the

time domain, their frequency spectrums could be different to-

ward the end of the spectrum. The procedure of adding har-

monics during the Gegenbauer reconstructions were not done

FIG. 3. (a) Portions of the profile of a shock wave produced from a Gaussian-modulated sinusoidal wave. Two results are presented at a distance of 7.9r, one

before the Gegenbauer reconstructions, one after. The first order gradient is also shown. Simulation results after the Gegenbauer reconstructions are compared

with the benchmark solution at distances of (b) 7.9r, (c) 6.5r, and (d) 5.2r.

FIG. 4. (Color online) Frequency spectrums for the Fay solution to the one-

dimensional continuous problem discussed in Sec. III A 2. Three results are

shown, one with 16 harmonics, one with 32 harmonics, and one with 160

harmonics. Only the results up to the 32th harmonics are presented.
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in the one-dimensional cases, because the same sampling fre-

quency was used when comparing the results.

Figure 5(a) shows four results: a shock wave profile pre-

dicted by using 50 harmonics without Gegenbauer reconstruc-

tions and with Gegenbauer reconstructions (two and three

subintervals), shock wave profile predicted by using 250 har-

monics at a distance of 15 mm on the axis. All the results are

over a full cycle. When only 50 harmonics are used, severe

artifacts are observed as expected. Gegenbauer reconstruc-

tions eliminated these artifacts and produced a curve that is

indistinguishable from the one generated by using as many as

250 harmonics. Figure 5(b) shows only the shock fronts, and

indeed the shock front is reconstructed. Figures 5(c) and 5(d)

show the corresponding spectral results for different fre-

quency ranges. The result before Gegenbauer reconstructions

clearly show high frequency noise at the end. The result after

Gegenbauer reconstructions agrees fairly well with the one

carrying 250 harmonics for the first 60 harmonics, but differ-

ent beyond this range. Nevertheless, it is recalled that the ini-

tial signal only carries 50 harmonics, and the Gegenbauer

reconstructions have produced an accurate spectrum at least

up to this range. For higher harmonics, i.e., up to 60 harmon-

ics, even though accurate results are obtained, they are

actually not being modeled in the propagation and are extrap-

olated results. Their diffraction and absorption are not

accounted for and should be treated with cautions. Future

study is expected to verify the results beyond the harmonics

considered in the propagation algorithm at more locations.

In the first case, only one shock wave is observed in a

cycle. The second case considers the field due to an unfo-

cused circular transducer (single element) where two shock

waves within one cycle have been found in the near field10

due to the propagation of edge waves. The aperture radius is

23.5 mm. The initial time-domain signal was again continu-

ous wave. The center frequency was 1 MHz and the initial

peak pressure in water was 1.43 MPa.

Again, two numerical implementations were conducted

separately. The first considered 100 harmonics, the second con-

sidered 450 harmonics. The step sizes Dz were 25 and 5 lm,

respectively. On the radial axis, the spatial resolution was

187.5 lm. The artificial attenuation was 3� 10�6 m2 s�1. This

shock wave, which contains two shock fronts, was assumed to

consist of three parts, and the rule for finding the edges follows

the one in the one-dimensional Gaussian pulse problem. For

the 100 harmonics simulation, 400 harmonics were added dur-

ing the reconstructions. k and m were 4 and 12, respectively.

Figure 6(a) shows three results: shock wave profile pre-

dicted by using 100 harmonics without Gegenbauer recon-

structions and with Gegenbauer reconstructions, shock wave

profile predicted by using 450 harmonics at a distance of 255

mm on the axis. All the results are in a full cycle. Numerical

oscillations can be observed near the edges when only 100

harmonics are used. Gegenbauer reconstructions were able

to suppress these oscillations.

Figure 6(b) shows only the shock fronts. Figures 6(c)

and 6(d) show the corresponding spectral results for different

FIG. 5. Profile of a shock wave produced from a focused circular transducer. Simulation results before and after Gegenbauer reconstructions with 50 harmon-

ics are compared with the result before the Gegenbauer reconstructions with 250 harmonics at a distance of 15 mm on the axis. The 50 harmonics results after

Gegenbauer reconstructions are resampled to include in total 250 harmonics. (a) Depicts a full cycle. (b) Depicts the shock fronts. Corresponding spectral

results. (c) Spectrums for the first 250 harmonics. (d) Spectrums for the first 60 harmonics.
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frequency ranges. The spectrum decays much like a sinc

function rather than following the 1/n asymptotic behavior

which occurs in shock waves containing one shock front.9

The result after Gegenbauer reconstructions shows good

agreement to the result with 450 harmonics for the first 120

harmonics, while the results before Gegenbauer reconstruc-

tions overestimate the values after about 80 harmonics.

IV. CONCLUSIONS

In conclusion, this paper proposes combining artificial

attenuation in the modeling of shock wave propagation with

the Gegenbauer reconstruction method as a post-numerical

procedure. Conventional frequency-domain methods are not

suitable for shock wave modeling due to the large number

of harmonics required. The spectrum of a shock wave

decays slowly, and a truncation at a relatively low fre-

quency introduces numerical errors. The present method

takes the Fourier spectral projection and projects it onto

another basis; in this case, the basis is the Gegenbauer poly-

nomials. By knowing the location of the discontinuity using

empirical ways proposed in this paper, one can reconstruct a

rapidly converging series based on the expansions in Gegen-

bauer polynomials. Simulations have shown for both one-

dimensional and axisymmetrical problems that the Gegen-

bauer reconstructions are able to successfully recover the

high frequency spectrum of a shock wave, even when multi-

ple shock fronts are present. These high frequency details

are very significant to the absorption of the shock front and

thus the associated heating rate and radiation force of the

propagation. These features are expected to be studied in a

future paper.

The present study concentrated on improving recon-

struction at a fixed position. However, the method may also

prove useful in the progressive problem, where reconstruc-

tions could be applied periodically along the beam path to

maintain stability and accuracy. Although not considered

here, the conditions and extent to which such efforts could

be applied is proposed as a future topic of study.

Finally, the underlying diffractive complexity off-axis

(for example, the “fingers” in a transverse beam plot), which

requires a very fine grid, could provide additional harmonic

complexity to the shock waves. It is possible to use the

Gegenbauer reconstructions for this type of spatial disconti-

nuity. The three-dimensional Gegenbauer reconstructions are

not available at this moment to the best of our knowledge.

However, the available two-dimensional Gegenbauer recon-

structions15 may be useful for axisymmetrical problems.
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FIG. 6. Profile of two shock waves produced from an unfocused circular transducer. Simulation results before and after Gegenbauer reconstructions with 100

harmonics are compared with result before the Gegenbauer reconstructions with 450 harmonics at a distance of 255 mm on the axis. The 100 harmonics results

after Gegenbauer reconstructions are resampled to include in total 500 harmonics. (a) Depicts a full cycle. (b) Depicts the shock fronts. Corresponding spectral

results. (c) Spectrums for the first 500 harmonics. (d) Spectrums for the first 120 harmonics.
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