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In an important paper on the physics of small amplitude oscillations, Titze showed that the essence

of the vertical phase difference, which allows energy to be transferred from the flowing air to the

motion of the vocal folds, could be captured in a surface wave model, and he derived a formula for

the phonation threshold pressure with an explicit dependence on the geometrical and biomechanical

properties of the vocal folds. The formula inspired a series of experiments [e.g., R. Chan and

I. Titze, J. Acoust. Soc. Am 119, 2351–2362 (2006)]. Although the experiments support many

aspects of Titze’s formula, including a linear dependence on the glottal half-width, the behavior of

the experiments at the smallest values of this parameter is not consistent with the formula. It is

shown that a key element for removing this discrepancy lies in a careful examination of the proper-

ties of the entrance loss coefficient. In particular, measurements of the entrance loss coefficient at

small widths done with a physical model of the glottis (M5) show that this coefficient varies inver-

sely with the glottal width. A numerical solution of the time-dependent equations of the surface

wave model shows that adding a supraglottal vocal tract lowers the phonation threshold pressure by

an amount approximately consistent with Chan and Titze’s experiments.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3605672]
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I. INTRODUCTION

In their classic papers, Ishizaka, Matsudaira, and Flana-

gan1,2 developed a two-mass model of vocal fold motion

that presented a natural framework for describing how a

phase difference between the bottom and top edges of the

medial surface of the vocal fold played a key role in the

transfer of energy from the glottal airflow to the motion of

the vocal folds. If this airflow is sufficient, then the energy

transferred from the airflow to the vocal folds is adequate to

overcome the energy loss due to dissipative forces acting

within the vocal folds, and the oscillation can be sustained.

The lowest lung pressure at which this self-oscillation can be

achieved is the phonation threshold pressure, a focus of

many theoretical and experimental investigations. Titze3

realized that the essence of the energy transfer mechanism

could be captured in a mucosal surface wave provided that

the wave originated near the bottom of the medial surface of

the vocal folds and propagated to the top edge. He presented

qualitative arguments to show that such wave motion would

lead to larger intraglottal pressures when the glottis was

opening than when it was closing. Thus positive work would

be done during the glottal cycle, and the kinetic energy of

the vocal folds would be increased until the vocal folds

reached a state of balance where the energy input and the

energy dissipated were equal, a limit cycle. With the appro-

priate set of assumptions about the aerodynamics of the lar-

ynx and by focusing on the behavior of the surface wave

near threshold, where one would expect the oscillations of

the vocal fold to have a small amplitude, Titze derived a for-

mula3 for the phonation threshold pressure Pth, that is,

Pth ¼
2ktBcn2

01

LgT2 n01 þ n02ð Þ ; (1)

where kt is the transglottal pressure coefficient4–6, B is the

damping factor for motion of the vocal fold, c is the speed of

the mucosal wave, Lg is the glottal length (anterior-posterior

direction), T is the glottal thickness (inferior-superior direc-

tion), n01 is the prephonatory inferior glottal half-width, and

n02 is the prephonatory superior glottal half-width. The surface

wave model produces two simplifications over the two-mass

model of Ishizaka, Matsudaira, and Flanagan: (1) its results for

threshold pressure can be summarized in an analytic formula,

where the dependence on the geometrical and biomechanical

parameters of the larynx is made explicit. (2) Its description of

the mechanical properties of the vocal folds requires only four

parameters, the mass of the oscillating cover of the vocal fold,

the effective stiffness of the cover of the vocal fold, and the

quantities B and c in Eq. (1), instead of the seven or more pa-

rameters required for the two-mass model.

In the 1990s, Titze and his colleagues designed a physi-

cal model of the vocal fold cover with the express purpose
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of testing the relationships embodied in the phonation

threshold formula of Eq. (1). Their apparatus included a mi-

crometer screw for adjusting the glottal half-width and a thin

silicone membrane under which fluids of different viscosities

could be circulated.7 It was also possible to tilt the vocal fold

assembly to examine the threshold pressure for diverging

and converging angles.8 For the rectangular glottis,

n01¼ n02¼ n0, and hence Eq. (1) predicts a linear increase

with the glottal half-width. The linear increase of Pth with n0

was consistent with a number of measurements, and increas-

ing the viscosity of the fluid did lead to an increase in the

threshold pressure.7 Further, increasing the glottal thickness

from 0.7 to 1.1 cm also led to an inverse dependence on T
consistent with Eq. (1) in several cases.8

However, the prediction of Eq. (1) that the threshold pres-

sure for diverging prephonatory angles should be lower than

for converging angles was not supported by the experiments.8

Chan and Titze9 modified the vocal fold assembly so

that biomaterials, such as hyaluronic acid (HA), fibronectin

(FN), and human adipose tissue, could be implanted under

the silicone membrane, and they added a supraglottal vocal

tract 16.51 cm long to some of their experiments. The pur-

pose of the latter addition was to see if vocal tract inertance

lowered the phonation threshold pressure in accord with

their derivation of its effects, which produced an additional

term in Eq. (1) with a minus sign.

However, the phonation onset data9 of Fig. 1 point to an

obvious problem with the formula of Eq. (1); the linear trend

of the data does not approach zero as the glottal half-width

becomes very small. Moreover, none of the other threshold

pressure measurements reported in Chan and Titze’s paper

are consistent with the behavior required by Eq. (1) in this

limit, nor are any of the data reported in the earlier experi-

ments7 consistent with the zero limit at small glottal half-

widths. Instead the measured threshold pressures for these

experiments increased as the glottal half-width decreased.

Faced with this difference between the predictions of the sur-

face wave model and their experiments, Titze, Schmidt, and

Titze7 suggested that the oscillating silicone membrane may

have collided with the opposing wall at very small glottal

half-widths, and hence an additional dissipative mechanism

would come into play. This would mean that the assumptions

underlying Eq. (1) would no longer pertain.

Lucero10,11 pursued a different approach to the small

glottal-width discrepancy; he conjectured that its origin lay

in the neglect of viscous effects within the glottis. Assuming

that the velocity profile within the glottis was fully devel-

oped, he used the Poiseuille formula to consider viscous

effects within the glottis.1,2,12 His calculations indicated that

viscosity would give an upward trend for small glottal half-

widths, consistent with the experiments of Titze, Schmidt,

and Titze. However, we show in the following text that

Lucero’s formalism does not give results consistent with the
2006 experiments of Chan and Titze. Because these experi-

ments are more sensitive to the behavior of phonation thresh-

old pressure at smaller glottal widths, it is likely that the

Poiseuille formula, with its characteristic inverse cube de-

pendence on the diameter, exaggerates the effects of viscos-

ity at small glottal widths.

In deriving Eq. (1), Titze assumed that the transglottal

pressure coefficient kt is equal to the difference between the

entrance loss coefficient and the exit coefficient and that all

of these quantities are constant. In Sec. II in the following

text, it will be shown that Titze’s assumption is reasonable

for intermediate and larger glottal widths but that measure-

ments13,14 of the entrance loss coefficient at small glottal

widths show a strong inverse dependence on these widths.

To include this physical effect in the surface wave model,

one must include an inverse n0 term in the expression for the

entrance loss coefficient as well as a constant term. This

form for the entrance loss coefficient will give a phonation

threshold pressure that includes a constant term as well as a

term that increases linearly with n0. The freedom inherent in

these two terms will allow us to remove the discrepancy dis-

cussed in connection with Fig. 1 in the preceding text and

should allow one to obtain reasonable fits for all of the data

recorded in Chan and Titze. The result of including this com-

plication in the expressions for phonation threshold pressure

in the following text is to increase the number of parameters

to be determined from experiment by one in keeping with

the principle of parsimony of parameters described in the

preceding text as one of the accomplishments of the surface

wave model. It will also become clear in the following text

that introducing the constant term that will remove a discrep-

ancy noted by Chan and Titze9 in the discussion section of

their 2006 paper, “… the slope of the dependence of Pth on

n0… did not agree exactly with the empirical data, leaving

Pth underpredicted at small values of n0 and overpredicted at

large n0.”

II. THE SURFACE WAVE MODEL REVISITED

A. Pressures within and near the glottis

A schematic diagram of the trachea, the larynx, and the

supraglottal vocal tract is shown in Fig. 2. The pressure at

the glottal entrance P1 is related to the subglottal pressure

Psub by

FIG. 1. (Color online) Phonation threshold pressure (onset) as a function of

glottal half-width. The hyaluronic acid data are from Chan and Titze.9 The

error bars (6 10 Pa) were added to the data to consider the accuracy of

the pressure resolution of the water manometer used by Chan and Titze. The

solid lines are based on the formula of Eq. (17).
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Psub ¼ P1 þ kentqU2
g= 2A2

1

� �
: (2)

In Eq. (2), q is the density9 of air (0.00114 g/cm3), Ug is the

glottal flow rate or volume velocity, A1 is the area at the glot-

tal entrance, and kent is the entrance loss coefficient.2,12–15

The pressure within the glottis at point z is connected with

the pressure at the glottal entrance and the pressure at the

glottal exit P2 by the Bernoulli equation,

P1 þ qU2
g 2A2

1

� �
¼ P zð Þ þ qU2

g= 2A2 zð Þ
� �

¼ P2 þ qU2
g= 2A2

2

� �
; (3)

where A2 is the area of the glottal exit. The pressure at the

glottal exit is related to atmospheric pressure Patm (taken to

be zero) by the effect of pressure recovery and also related

to the pressure necessary to accelerate the air in the vocal

tract. This inertia effect is given by the product of the inert-

ance I of the vocal tract and the time derivative of the glottal

flow rate,2,3 and hence

P2 ¼ Patm � kexqU2
g= 2A2

2

� �
þ I

dUg

dt
; (4)

where kex is the glottal exit coefficient. Chan and Titze9

showed that the inertance associated with the vocal tract was

substantially larger than any other inertance in their experi-

ment. Hence it is the only inertia effect included in the pres-

ent work. Adding Eqs. (2) to (4) leads to a differential

equation that determines the glottal flow rate from the sub-

glottal pressure, the inertance of the vocal tract, and the areas

at the glottal entrance and the glottal exit:

Psub ¼ I
dUg

dt
þ

qU2
g

2

kent � 1

A2
1 tð Þ þ

1� kex

A2
2 tð Þ

� �
: (5)

B. Vocal fold dynamics

The dynamics of the vocal fold cover, as derived by Titze,3

includes a driving term that considers the average Pg of the

intraglottal pressure over the medial surface of the vocal fold

cover, and the equation of motion for the displacement n(t)
of the center of mass of the cover takes the form,

M €n þB _nþ Kn ¼ LgTPg ¼ Lg

ðT=2

�T=2

P zð Þdz; (6)

where M is the mass of the oscillating vocal fold, B is the

damping parameter identified in Eq. (1), and K is a measure

of the stiffness of the oscillator. To make further progress

with the surface wave model, one needs to connect the time

dependence of the entrance and the exit areas with the coor-

dinates of the moving vocal fold cover and its time deriva-

tives. To accomplish this, Titze3 separated the vocal fold

cover displacement into two parts, one describing the pre-

phonatory shape of the glottis np(z), and the other describing

the time dependence of the oscillating vocal fold surface

n1(z, t). Thus

n z; tð Þ ¼ np zð Þ þ n1 z; tð Þ; (7)

and his choice for the prephonatory shape was a trapezoid,

which required that

np zð Þ ¼ n02 þ n01

2
þ n02 � n01

T
z: (8)

Because n1(z, t) satisfies a wave equation, its dependence on

the independent variables z and t is through the combination

t-z/c, and Titze3 assumed that the phase differences along the

medial surface of the vocal fold were small enough so that

one could carry out a power series expansion, that is,

n1 z; tð Þ ¼ n1 t� z=cð Þ ¼ n tð Þ � z

c
_n tð Þ þ � � � ; (9)

where n(t)¼ n1(0, t) is the coordinate of the center of the

vocal fold cover, and _n(t) is its time derivative. Then the

area A(z) in Eq. (3) is a linear function of z, and the integral

on the right side of Eq. (6) is readily evaluated. Thus the

expression for the driving pressure can be put in the conven-

ient form,

Pg tð Þ ¼ Psub �
qU2

g

2

kent � 1

A2
1 tð Þ þ

1

A1 tð ÞA2 tð Þ

� �
: (10)

Because of the power series expansion of Eq. (9), the areas

appearing in Eq. (10) may be expressed in terms of geomet-

rical factors, the displacement of the center of the vocal fold

cover, and its time derivative, that is,

FIG. 2. Schematic diagram of the trachea, the larynx, and the vocal tract in

the surface wave model. The displacement of the vocal fold cover is out-

lined with the dotted line.
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A1 tð Þ ¼ 2Lg n01 þ n tð Þ þ s _n tð Þ þ � � �
h i

;

A2 tð Þ ¼ 2Lg n02 þ n tð Þ � s _n tð Þ þ � � �
h i

; (11)

where the time s¼ T/(2c) is the time for the surface wave to

propagate from the center of the medial surface of the vocal

fold to the glottal exit. Equations (5), (6), (10), and (11) are a

closed set of coupled (nonlinear) differential equations that

determine the functions n(t) and Ug(t).

C. No vocal tract

Setting the vocal tract inertance equal to zero in Eq. (5)

allows one to find a direct connection between the driving

pressure Pg and the subglottal pressure, which takes the form,

Pgðn; _n;PsubÞ ¼
Psub 1� kex � A2 tð Þ=A1 tð Þ½ �

1� kex þ kent � 1ð ÞA2
2 tð Þ=A2

1 tð Þ : (12)

Equation (12) has an interesting property; its dependence on

the glottal areas is only through the ratio of A2 to A1. Thus, if

one follows Titze’s assumption that kent and kex are constants,3

it expresses the same relationship between the driving pres-

sure and the subglottal pressure regardless of whether a hemi-

larynx or a full larynx is involved, and it would pertain to the

experiments of Refs. 7–9 regardless of which larynx was

used.16,17 Substituting Eq. (12) into the right side of Eq. (6)

and using Eqs. (11) yields a self-contained nonlinear differen-

tial equation for oscillator coordinate, that is,

M€nþB _nþKn¼LgTPsub 1� kex�
n0þn� s _n

n0þnþ s _n

" #

� 1�kexþ kex�1ð Þ� n0þn� s _n

n0þnþ s _n

 !2
24 35�1

;

(13)

for the rectangular glottis. Following the spirit of Titze’s

approach to the surface wave model,3 one assumes that the

oscillations represented by n and its time derivative are small

in comparison with the initial glottal half-width n0. Then the

nonlinear terms of Eq. (13) may be expanded in inverse

powers of n0, and the equation of motion takes the form,

M€nþ B _nþKn ¼ LgTPsub

kent � kex

�
�
� kex þ

kent þ kex � 2kexkent

kent � kex

� 2s _n=n0

�
;

(14)

if one keeps only the lowest order. Physical interpretation of

the terms on the right side of Eq. (14) is straightforward.

The constant term results in a displacement of the center of

the vocal fold cover from its equilibrium position, and the

velocity-dependent term is the negative damping effect of

the fluid structure interaction, which transfers kinetic energy

to the motion of the center of mass of the vocal fold. Equat-

ing the coefficient of this term to the damping constant

yields an expression for the threshold pressure, that is,

Pth ¼
Bcn0 kent � kexð Þ

LgT2
� 1� 2kex

kent � 1

kent � kex

� ��1

: (15)

This equation is the equivalent of Eq. (1) for the rectan-

gular glottis; it approaches zero in the limit as n0 ! 0

(assuming that kent and kex are constants) in contrast to the

data of Fig. 1. It contains an explicit expression for the trans-

glottal coefficient kt in terms of the entrance and exit coeffi-

cients. However, the assumption that kent and kex are

constants is not required to derive Eq. (15). The implications

of relaxing this assumption are explored in the next subsec-

tion. It is worth noting that no term linear in the coordinate n
appears on the right side of Eq. (14). Consequently the angu-

lar frequency of the oscillation at threshold is not changed

from (K/M)1/2 as the glottal half width n0 varies.

D. Behavior of the entrance loss coefficient for
different glottal widths and its implications

In Fig. 3(A), values of the entrance loss coefficients

determined from pressure distributions taken with a physical

model of the symmetric rectangular glottis (M5) are shown as

a function of glottal diameter (width) for a number of trans-

glottal pressures of interest for phonation.14 The curves are

based on data taken at diameters of 0.005 cm, 0.0075 cm,

0.01 cm, 0.02 cm, and 0.04 cm for each of the five transglottal

FIG. 3. (Color online) Dependence of the entrance loss coefficient on glottal

diameter for a rectangular glottis (A). In (B), the entrance loss coefficients

are multiplied by the glottal diameter. Transglottal pressures at which the

pressure distributions were measured are also listed.
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pressures shown. For the lower transglottal pressures, which

are of the most relevance for the study of effects near thresh-

old, there is a strong increase in kent as the glottal width gets

small, clearly demonstrating that kent is not constant in this

region. The observed behavior suggests it would be reasona-

ble to parameterize kent in this region as follows:

kent ¼
E

n0

þ Fþ Gn0 þ � � � ; (16)

where E, F, and G are constants to be determined from

experiment.18 Such a parameterization would lead one to

expect a parabola to be a reasonable fit to the product of kent

and the glottal diameter. Parabolic fits to this product for the

three smallest transglottal pressures of Fig. 3(A) are shown in

Fig. 3(B) as dashed curves for the range of diameters of most

relevance for the experiments of Chan and Titze. Because the

dashed curves pass through most of the values of the product

of the diameter and kent calculated from the M5 measure-

ments, it appears that the parabolic fits are reasonable. To

keep the number of parameters to a minimum, G is assumed

to be zero for the experiments of Chan and Titze, and thus

one should try to fit their measured threshold pressures with

two free parameters because the geometrical factors Lg and T
in Eq. (15) are determined from the experimental setup. This

assumption leads to an additional free parameter in Eq. (15).

Values for the exit coefficients14 as a function of glottal di-

ameter and transglottal pressure were also calculated from

the M5 pressure distributions. These were found to be much

smaller than the entrance loss coefficients. For example

kex¼ 0.140 for n0¼ 0.04 cm and a transglottal pressure of

274 Pa (equivalent to 3 cm of H2O). Thus the exit coefficients

are set equal to zero for the calculations in the following text.

Incorporating these assumptions into Eq. (15) leads to

the following expression for the threshold pressure,

Pth ¼ P0 þ
B�cn0

LgT2
; (17)

where P0¼ c B E/(LgT2) and B*¼B F. Thus the two param-

eters to be determined from an experiment with a given bio-

mechanical material implanted under the membrane of the

apparatus constructed by Chan and Titze9 are P0 and B*c.

The latter parameter measures the effective force associated

with the modified damping parameter B*. The fits to the two

sets of data in Fig. 1 were achieved with the B*c¼ 0.085 N,

and the constants P0¼ 122 Pa and P0¼ 202 Pa (Lg¼ 2.22

cm and T¼ 1.1 cm). Linear fits to the two sets of data points

in Fig. 1 did not give a larger slope for the 0.1% HA curve

than for the 0.01% HA curve and consequently the product

B*c was taken to be the same for both concentrations of hy-

aluronic acid. Thus the increased viscous forces associated

with the larger concentration of hyaluronic acid manifest

themselves mostly as an increase in the parameter P0.

E. Vocal tract

When Chan and Titze added a supraglottal vocal tract to

their apparatus, they were careful to keep all of the other

conditions the same as in their experiments without the vocal

tract.9 Thus their data presented in Fig. 4 should give a mea-

sure of the effects of the vocal tract. Because the vocal tract

inertance is determined by the density of the air, the vocal

tract length Lvt¼ 16.51 cm, and the vocal tract area

Avt¼ 2.82 cm2 (I¼q Lvt/Avt), adding a vocal tract should not

introduce additional free parameters into the solution of the

equations of subsections A and B in the preceding text. Thus

the parameters B*c and P0 of Fig. 4 are determined from the

Chan and Titze threshold pressures without the vocal tract,

and these same values are used for the calculation with the

vocal tract.

Before addressing this question of the size of the vocal

tract effects, let us consider the solution of Eq. (5) when the

geometry is frozen, so that A1 and A2 are not functions of

time. For the special case of a rectangular hemilarynx, where

A1¼A2¼Lgn0, the time dependence of the solution to

Eq. (5) takes the form of a hyperbolic tangent function, that is,

Ug tð Þ ¼ Lgno

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Psub

q kent � kexð Þ

s

� tanh
t

ILgno

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Psubq kent � kexð Þ

2

r" #
: (18)

This equation affords a means of checking the method used

for the numerical integration of Eq. (5). Choose Psub¼ 294

Pa and n0¼ 0.08 cm, then14 kent¼ 1.298 (and kex is assumed

to be zero). Numerical solutions based on Adam’s formula

and the trapezoidal rule19 are shown in Fig. 5, where the two

curves are indistinguishable because they agree with each

other to four or five decimal places for a time step D¼ 0.01

ms. The numerical integrations agree with the formula of

Eq. (18) to a precision of three or four decimal places.

To solve Eqs. (5), (6), (10), and (11) numerically, values

for the mass and stiffness parameters must be chosen,

although these did not play a role in the threshold formula of

Eq. (17). We follow the lead of Ishizaka and Flanagan2 and

choose M¼ 0.15 g and K¼ 88 000 dynes/cm, values that of-

ten have been used for numerical simulations.20,21 The

choice of B is dictated by the fit to the no-vocal-tract data of

Fig. 4 and the desire to have a value for the surface wave

FIG. 4. (Color online) Phonation threshold pressure as a function of glottal

half-width for experiments and calculations with and without a vocal tract.
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speed comparable to that observed for mucosal waves22 (100

or 200 cm/s). Choosing c¼ 200 cm/s yields23,24 B¼ 100 g/s.

Because all of the parameters are now determined, the stage is

set for the numerical solution of Eqs. (5), (6), (10), and the

hemilarynx version of Eqs. (11). This solution produced the

solid curve shown in Fig. 4, which should be compared with

the vocal-tract data of Chan and Titze (2006). It is labeled

NLSWM for non-linear surface wave model because the

expansions in inverse powers of n0 [used to obtain Eq. (17)]

have not been carried out. The fit is good for smaller values of

the glottal width and a little disappointing for the larger val-

ues. Nevertheless, to the best of our knowledge, this is the first

attempt to give a quantitative account of the size of the vocal

tract inertance effects in the experiments of Chan and Titze.

An important aspect of the consistency of our method of

introducing the new free parameter in the surface wave

model is addressed in Fig. 6. There the dependence of the

threshold pressure as a function of vocal tract length is

shown for n0¼ 0.20 cm and n0¼ 0.10 cm. In both cases, the

curves calculated with the NLSWM smoothly approach the

limit of zero vocal tract length, that is, the numerical solu-

tion25 of the zero-inertance result of Eq. (13). The smooth-

ness of this limit is measured by the quality of the cubic

polynomial fits to the set of threshold pressures calculated at

the points shown in Fig. 6 (including those at zero vocal tract

length). The values of kent listed in Fig. 6 are based on

E¼ 0.1538 cm and F¼ 1.37, which are determined from

B*c and P0 of Fig. 4. Both of the curves show that the inert-

ance of the vocal tract lowers the phonation threshold pres-

sure for an important physical range of vocal tract lengths in

accord with Titze’s earlier predictions.3,9 It is interesting that

the approximately linear decrease of phonation threshold

with increasing vocal tract inertance does not continue

unabated for the larger values of vocal tract length shown in

Fig. 6. It levels off, and in the case of n0¼ 0.20 cm, there is

a shallow minimum near a vocal tract length of 30 cm.

III. ADDITIONAL RESULTS

In Fig. 7 measurements of the phonation threshold pres-

sure carried out by Titze, Schmidt, and Titze7 with two differ-

ent concentrations of CMC powder are compared with

calculations based on Eq. (17). The higher concentration

requires larger values of the product B*c and the constant P0,

consistent with an interpretation of increased viscous damp-

ing. Equation (17) readily reproduces the linear trends of the

data that begin near n0¼ 0.05 cm. The deviations of the data

from linearity below 0.05 cm are those referred to in the Intro-

duction, and the merits of two possible explanations, colli-

sions of the vibrating membrane with the opposite wall,7 or

viscosity effects based on Poiseuille flow,10 will be addressed

in the next section. The behavior of the trends in Fig. 8 is sim-

ilar to that of Fig. 7, except for very small n0, where one does

not see any effects that differ from the linear trend. Adding

fibronection to the hyaluronic acid implant leads to larger val-

ues for the product B*c and for the constant P0.

IV. VISCOSITY AND POISEUILLE’S FORMULA

The calculations of Secs. II and III have been based on

the Bernoulli relations of Eq. (3) for the pressures within the

glottis. Lucero10 explored the consequences of adding vis-

cosity effects by supplementing Bernoulli’s equation with

Poiseuille’s formula to consider viscosity within the glottis.

FIG. 5 (Color online). Glottal flow rate as a function of time for a rectangu-

lar hemilarynx with a fixed half-width of 0.08 cm. The two calculated curves

coincide.

FIG. 6. (Color online) Phonation threshold pressure as a function of vocal

tract length for n0¼ 0.1 cm and n0¼ 0.2 cm.

FIG. 7. (Color online) Phonation threshold pressure (onset) as a function of

glottal half-width for viscous solutions containing sodium carboxymethyl

cellulose (CMC) powder. The glottal length Lg is taken to be 2.3 cm for this

calculation.7 The solid lines were determined from Eq. (17).
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Under his assumption that the inverse area dependence of

Poiseuille’s formula is adequately considered by taking the

area at the glottal midline, Lucero’s formula for the connec-

tion between the flow rate and the subglottal pressure is

Psub ¼
ktqU2

g

2A2
2

þ
12lL2

gTUg

A3 0ð Þ ; (19)

where l¼ 1.81� 10�5 Pa s is the viscosity of air,26 and A(0)

is the glottal area when z¼ 0. His formula for the average of

the driving pressure is

Pg ¼
qU2

g

2A2
2

1� A2

A1

� �
þ

6lL2
gTUg

A3 0ð Þ ; (20)

The three areas in these equations, the volume velocity Ug,

and the average pressure Pg are time dependent although this

is not shown explicitly.

Lucero’s work requires two important emendations to

be relevant for Chan and Titze’s 2006 experiments. First,

one must use the appropriate vocal fold thickness T (1.1 cm

instead of 0.3 cm) and vocal fold length Lg (2.22 cm instead

of 1.4 cm) used in Chan and Titze’s model. Second, one

must remember that the 2006 experiments were based on a

hemilarynx rather than a full larynx. Thus the first factor in

Eqs. (11) above should be Lg instead of 2 Lg [Eqs. (11),

(12) and (13) of Lucero’s paper must be modified]. This

factor of 2 does not alter any of the results when the viscos-

ity is neglected as explained in the text following Eq. (12)

in Sec. II C, because their derivation depends on the dimen-

sionless area ratio A1/A2. However, for the viscosity terms

of Eqs (19) and (20), the dependence on the areas does not

take the form of a dimensionless factor but arises through

factors such as the quotient A2/A3(0), and thus the net effect

is to modify the viscosity parts of the relevant equations by

a factor of 4. After modifying Lucero’s equations to

describe a hemilarynx instead of a full larynx, one can

reproduce the steps that lead to Eq. (21) of his paper and

thus show that the appropriate form for the square root of

the threshold pressure is

P
1=2
th ¼

3lT

2 n0 þ n
� �2

ffiffiffiffiffiffi
2kt

q

s

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ktl2T2

2q n0 þ n
� �4

þ
kt
bBc n0 þ n
� �

T

vuut ; (21)

where n is the displacement of the vocal fold from equilib-

rium and bB ¼ B= LgT
� �

, the damping constant per unit area,

has been introduced to more closely conform to Lucero’s

notation.27 This result approaches the limit of Eq. (1) for the

rectangular glottis when l¼ 0 and when n is small in com-

parison with n0. By redoing the steps in Lucero’s paper that

lead to his Eq. (17), one can also show that the displacement

n is related to the subglottal pressure by

bKn ¼ 6lT

n0 þ n
� �2

ffiffiffiffiffiffiffiffiffiffiffi
2Psub

ktq

s
; (22)

where bK ¼ K= LgT
� �

is the spring constant per unit area. As

discussed in the preceding text, in each place where the vis-

cosity l appears in these equations, our results differ from

Lucero’s by a factor of 4.

To determine the threshold pressure (Psub¼Pth), one

must simultaneously solve these two equations for Pth and n.

This is most easily done graphically after obtaining an

explicit expression for Psub
1/2 from Eq. (22). The two expres-

sions for the square roots of the pressures as functions of n
are shown in Fig. 9 for n0¼ 0.02 cm. Their intersection

determines values for Pth
1/2 (near 9.1 Pa1/2) and n (near

0.0208 cm) that give the simultaneous solution of Eqs. (21)

and (22). Carrying out this graphical procedure for a set of

values of n0 in the interval [0.0, 0.30 cm] leads to the dashed

curve shown in Fig. 10. The value of the product B c is cho-

sen to fit the threshold pressure observed by Chan and Titze

at n0¼ 0.3 cm, and the constant P0 is taken to be zero. This

curve is obtained by the same procedure Lucero10 used to

obtain curve 2 in his Fig. 3. For comparison, the result

obtained from Eq. (21) in the limit of no viscosity is also

shown. The transglottal coefficient kt is this calculation is

taken to be the difference of kent and kex, and those are taken

from Ishizaka and Flanagan2 [kent¼ 1.37, and kex¼ 2A2

FIG. 8. (Color online) Phonation threshold pressure (onset) as a function of

glottal half-width for 0.01% hyaluronic acid with and without fibronectin.

The solid lines were determined from Eq. (17).

FIG. 9. (Color online) Dependence of the square roots of the pressures in

Eqs. (21) and (22) on the equilibrium displacement n.
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1� A2=A0vt

� �
=A0vt, where A0vt¼ 6.0 cm2, the area of a small

region above the glottal exit in the experiment of Chan and

Titze when the vocal tract is not included] for Fig. 10.

Although the procedure used in the preceding text to

obtain the dashed curve of Fig. 10 is a useful guide to exam-

ine viscosity effects for small glottal widths, it is not an

accurate representation of these effects at small glottal

widths. The reason for this is that Lucero’s approximate

treatment of glottal flow has been followed; that is, to obtain

the analytic result of Eq. (21), one must neglect the viscosity

term in the relationship between the volume velocity and the

subglottal pressure in Eq. (19). If this approximation is not

made, then Eq. (19) may be used to find an exact expression

for the volume velocity, which is given by,

Ug tð Þ ¼ A2 tð Þ
��12lL2

gT A2 tð Þ
qkt A3 0; tð Þ

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Psub

qkt

þ
12lL2

g TA2ðtÞ
qkt A3 0; tð Þ

� �2
s �

; (23)

where the time dependence has been made explicit. Equa-

tions (6), (20), (23) and the hemilarynx versions of Eq. (11)

thus become a closed set of equations that can be solved

numerically for n(t) and Ug(t), and they can be used to find

accurate values for the threshold pressure at various values

of the glottal width n0. Results based on this numerical solu-

tion are shown by the solid line of Fig. 10. The procedure

used to find this curve is equivalent to that used by Lucero to

find curve 1 in Fig. 3 of his paper. All curves in Fig. 10 are

based on B c¼ 0.164 N.

Two weaknesses of the calculations based on the Pois-

euille formula are apparent in Fig. 10. First the slopes of the

calculated curves when n0¼ 0.10 cm or greater are steeper

than the linear trend of the 0.01% hyaluronic acid data. This

slope mismatch is the same that occurred in Fig. 10 of Chan

and Titze’s paper, and it is what prompted their observation

quoted near the end of the Introduction. The second weakness

is that the curves based on the Poiseuille formula exhibit an

upward trend at small glottal widths that clearly is not

expressed in the data. Moreover, none of the data in Chan and

Titze’s 2006 paper exhibit this upward trend. It is this lack of

agreement at small glottal widths that leads us to conclude

that surface wave model calculations that include Poiseuille’s
formula are not compatible with the data of Chan and Titze
(2006). It is worth noting that the trend of the Poiseuille-based

calculations of Fig. 10 does seem to be consistent with the

upward trend of the data in Fig. 7, which was taken from the

earlier work of Titze, Schmidt, and Titze. Figures 2–5 of that

work have this upward trend, which motivated Lucero’s

papers. However, in view of how the Poiseuille-based calcula-

tions compare with Chan and Titze’s measurements, it seems

that collisions with the opposing wall are a more likely expla-

nation of the upward trends in the 1995 paper of Titze,

Schmidt, and Titze than Poiseuille-based effects.

The constant P0 was taken to be zero in the calculations

of Figs. 9 and 10 because such a constant was not part of

Lucero’s original work. In Sec. II D in the preceding text,

arguments were presented to show that the constant P0 should

be a part of a more realistic treatment of the fluid surface

interaction, and hence in some sense, it is a missing piece of

the surface wave model. Calculations based on nonzero P0

are presented in Fig. 11 and compared with the 0.01% hyal-

uronic acid data of Chan and Titze. There the transglottal

coefficient kt is taken to be the entrance loss coefficient kent

of Eq. (16) because kex is set equal to zero. As was the case

in Sec. II, introducing a nonzero value for P0 allows one to

choose a smaller value for the product Bc, which serves to

make the slope of the calculated curves in the large n0 region

consistent with the linear trend of the hyaluronic acid data.

However, the problem of the upward trend at small n0 per-

sists for both the graphical and the numerical solutions, and

the calculations summarized in Fig. 11 also support our claim

that Poiseuille-based calculations are not consistent with

Chan and Titze’s data. Thus the discrepancy between the

Poiseuille-based calculation and the 2006 data of Chan and

Titze claim implies that the flow in the narrow channels rep-

resented by the small glottal widths is not fully developed

into a parabolic distribution, which is required for the deriva-

tion of the Poiseuille formula.

FIG. 10. (Color online) Comparison of calculated phonation pressure

thresholds that include the Poiseuille formula for viscosity with the 0.01%

hyaluronic acid data (onset) of Chan and Titze when P0 is taken to be zero

[constant E¼ 0 in Eq. (16)].

FIG. 11. (Color online) Comparison of calculated phonation pressure thresh-

olds that include the Poiseuille formula for viscosity with the 0.01% hyal-

uronic acid data (onset) of Chan and Titze when the constants E (0.5283 cm)

and F (1.37) are taken from the hyaluronic acid data.
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V. CONCLUSIONS

The assumptions underlying the surface wave model have

been re-examined to see what modifications are necessary to

remove a discrepancy between the threshold pressure formula

[Eq. (1)] derived by Titze3 in 1988 and experiments with physi-

cal models of the vocal fold mucosa7–9 that he and his colleagues

carried out in the 1990s and 2006, namely, that the observed

threshold pressure did not approach zero as the glottal width

became very small. This discrepancy was removed by a careful

re-examination of the properties of the entrance loss coefficient

and its implications for the phonation threshold pressure. It was

shown that the derivations of the surface wave model did not

require the entrance loss coefficient to be constant as assumed in

Titze’s original work. Moreover, it was shown in Fig. 3 that the

entrance loss coefficients calculated directly from M5 pressure

distribution data became large at small glottal widths and that

the variation of these coefficients at small widths was consistent

with an inverse dependence of the glottal width. The implication

of this interpretation of the data of Fig. 3 is that one should

expect the product n0 kent of Eq. (15) to be a constant as n0

approaches zero, and thus the threshold pressure should not

approach zero in this limit. A new parameterization of the sur-

face wave model, which was consistent with these observations,

was introduced in Eqs. (16) and (17). The new parameterization

was shown to require the determination of two constants, Bc and

P0, for each of the experiments reported by Chan and Titze. The

freedom of the additional parameter removes the discrepancy

between the linear trend of the data and the measured threshold

pressures. It was also shown (Fig. 4) that including the inertance

effects of the vocal tract used in some of the experiments of

Chan and Titze gave a reasonable account of the observed differ-

ences in threshold pressure when a vocal tract was added.

Lucero’s use of the Poiseuille formula to consider vis-

cous effects at small glottal widths was examined. His formu-

las were adapted to the hemilaryngeal configurations used in

the 1995 experiments of Titze, Schmidt, and Titze and the

2006 experiments of Chan and Titze. The Poiseuille-based

approach was shown possibly to be consistent with the 1995

experiments but not with the 2006 experiments. Because the

latter experiments are more recent, and they represent a larger

threshold pressure data set near n0¼ 0.1 cm and smaller, one

would assume that they give a more accurate picture of the

behavior of the threshold pressure of physical models of the

vocal fold mucosa at small glottal widths and thus that

the Poiseuille-based calculations exaggerate the effect of vis-

cosity at small glottal widths. A consequence of this assertion

is that collisions of the silicone membrane with the opposing

wall are a more likely explanation of the upturns in the 1995

data at small glottal half-widths than the Poiseuille effect.
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