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In recent years the study of resting state brain networks (RSNs)
has become an important area of neuroimaging. The majority of
studies have used functional magnetic resonance imaging (fMRI)
to measure temporal correlation between blood-oxygenation-
level–dependent (BOLD) signals from different brain areas. How-
ever, BOLD is an indirect measure related to hemodynamics, and
the electrophysiological basis of connectivity between spatially
separate network nodes cannot be comprehensively assessed
using this technique. In this paper we describe a means to charac-
terize resting state brain networks independently using magneto-
encephalography (MEG), a neuroimaging modality that bypasses
the hemodynamic response and measures the magnetic fields as-
sociated with electrophysiological brain activity. The MEG data are
analyzed using a unique combination of beamformer spatial filter-
ing and independent component analysis (ICA) and require no prior
assumptions about the spatial locations or patterns of the net-
works. This method results in RSNs with significant similarity in
their spatial structure compared with RSNs derived independently
using fMRI. This outcome confirms the neural basis of hemody-
namic networks and demonstrates the potential of MEG as a tool
for understanding the mechanisms that underlie RSNs and the na-
ture of connectivity that binds network nodes.

functional connectivity | neural oscillations

In recent years interest has grown in the study of connectivity
between spatially separate functionally specific brain regions.

The way in which separate areas synchronize to form networks is
integral to information processing (1, 2). Abnormal communi-
cation between regions is thought to be the basis for a number of
neurological pathologies (e.g., schizophrenia) (3). It follows that
if we are to generate a complete understanding of brain function
(and dysfunction), then elucidation of the role of brain networks
will be critical. The majority of research in this area has been
conducted using functional magnetic resonance imaging (fMRI).
During the “resting state”, blood-oxygenation-level–dependent
(BOLD) fMRI signals originating in spatially separate brain
regions are correlated in time (4–6). This correlation implies
connectivity between those areas, even in the absence of a task.
Temporally correlated BOLD signals have led to the discovery of
a number of resting state networks (RSNs) that are consistent
across time and subjects. These networks are known to have
functional relevance and clinical significance (7, 8). Whereas
RSNs have also been investigated using noninvasive measures of
electrophysiology [electroencephalography (EEG) (9) and mag-
netoencephalography (MEG) (10–12)], this investigation has
been limited to analysis in sensor space or has relied on prior
assumptions about spatial locations or patterns of the networks.
To date, it has not been shown that MEG (or EEG) can in-
dependently measure the spatial pattern of RSNs in the manner
that has been demonstrated in fMRI (13). This result would
confirm a neural basis for the spatial patterns of RSNs and the
utility of MEG as a tool for understanding the mechanisms that
underlie network formation. Here, we use a unique methodology
to independently discover RSNs in MEG data and to test the

hypothesis that RSNs, derived from MEG data, match closely an
equivalent set derived from fMRI data.
MEG involves measurement of magnetic fields that are in-

duced by synchronized current flow in neuronal assemblies (14).
Unlike their electrical equivalent (EEG), magnetic fields are not
distorted by inhomogeneous conductivity in the head. This dif-
ference, coupled with higher sensor density and complex source
reconstruction algorithms (15–18), gives MEG improved spatial
resolution compared with EEG. The direct nature of MEG, its
high spatial resolution, and its excellent temporal resolution
make it the most attractive noninvasive technique for measure-
ment of electrodynamic connectivity. The utility of MEG as a
means to investigate RSNs has been shown in recent papers:
de Pasquale et al. (11) showed correlation between resting state
temporal MEG signals originating in nodes of the default mode
network (DMN) and the “task positive” or dorsal attention
network (DAN). Liu et al. (12) examined correlations between
oscillatory power envelopes at the sensor level showing that
significant envelope correlation could be measured across
hemispheres. Brookes et al. (10) used seed-based envelope cor-
relation in conjunction with beamformer spatial filtering meth-
ods to show interhemispheric motor cortex connectivity in source
space. These reports showed that RSNs measured using fMRI
are mirrored in MEG data. However, the ill-posed inverse
problem (projecting sensor space data into the brain) means that
separating real from spurious connectivity in MEG remains
difficult (19). Following source-space projection, MEG signals
from spatially separate voxels are not necessarily independent.
This outcome is a result of source-space blurring (caused by lead
field geometry) and misattribution of sources due to errors in
inverse modeling. These effects combine to cause “signal leak-
age” across voxels, which can result in artifactually high corre-
lation values that do not reflect genuine connectivity. This
problem is limiting MEG research into RSN formation.
In this paper we show networks derived from 5-min resting

state MEG measurements in 10 individuals. Following artifact
rejection our MEG data are frequency filtered into bands of
interest (δ, θ, α, β, and γ) and projected into source space using
a beamformer spatial filter (16). The amplitude envelope (Hil-
bert envelope) of source-space neural oscillatory signals is
computed and temporally down-sampled. These envelope signals
are used to investigate statistical interdependencies between
brain regions. High temporal correlation between envelopes is
taken to imply connectivity and thus network behavior. To elu-
cidate temporal interdependencies, MEG envelope data are
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processed using both temporal independent component analysis
(ICA) and seed-based correlation analysis.
ICA is a powerful multivariate method for finding the un-

derlying processes that make up multidimensional (e.g., spatio-
temporal) data and has been successfully applied to resting state
fMRI data to measure the spatial structure of RSNs (13). ICA
has been used extensively for artifact rejection in MEG, but not
to investigate RSN structure. A recent paper (20) has, however,
shown that ICA applied to short time Fourier-transformed MEG
data allows investigation of the sources of rhythmic activity. Here
we apply ICA to temporally smoothed source-space–projected
Hilbert envelope data to elucidate the spatiotemporal signatures
of electrodynamic RSNs. We compare MEG (temporal) ICA
results to seed-based correlation approaches and to previously
published work (21) showing RSNs identified using spatial ICA in
fMRI. We use temporal ICA in MEG in contradistinction to
spatial ICA in fMRI, as the temporal and spatial dimensions offer
the most information in MEG and fMRI, respectively. Results
show significant similarity between the two modalities and suggest
some advantages of ICA over seed-driven approaches.

Results
The spatial maps representing temporally independent time
signals (tICs), extracted from MEG Hilbert envelope data via
temporal ICA, were generated (Materials and Methods). Of the
25 tICs generated, 8 RSNs’ spatial maps were unambiguously
paired with RSNs derived from application of spatial ICA to
resting state fMRI data (21) and these are shown in Fig. 1 A–H
(Upper, fMRI; Lower, MEG). Fig. 1A shows the DMN identified
independently using fMRI and MEG data filtered into the
α-band. Separate network nodes were observed in medial frontal
cortex and the left/right inferior parietal lobules as expected (22).
Fig. 1B shows a left lateralized frontoparietal (FP) network and
Fig. 1C shows a right lateralized mirror image. These task-pos-
itive networks have been reported in fMRI studies (21, 23) and
show compelling similarity across modalities with a similar left–
right split. Fig. 1 D–H shows MEG-based tICs originating in the
sensorimotor network (Fig. 1D), the medial parietal region (Fig.
1E), the visual cortex (Fig. 1F), the medial frontal cortex (Fig.
1G), and the cerebellum (Fig. 1H). In all cases a single fMRI-
independent component can be found that matches the MEG.
Note the difference in spatial resolution of the two modalities,
with fMRI exhibiting improved spatial resolution compared with
MEG. This difference is particularly noticeable in medial frontal
cortex where several spatially separate peaks/nodes are observed
in fMRI, but these are merged in MEG.
Spatial matching of components across modalities was ach-

ieved using a quantitative spatial Pearson correlation metric,
with statistical significance measured using Monte Carlo simu-
lations (SI Materials and Methods). Significant cross-modal spa-
tial agreement was observed in all networks shown in Fig. 1 apart
from the cerebellum. The Hilbert envelope signals on which the
MEG ICAs were based represent the amplitude envelope of
neural oscillations. This observation thus supports work showing
that neural oscillations mediate functional connectivity between
network nodes. We failed to obtain unambiguous spatial corre-
lates of 2 of the 10 networks reported previously (21).
To further confirm the results shown in Fig. 1, a seed-based

correlation analysis was also undertaken. Fig. 2 shows results in
four networks: left FP, right FP, motor, and visual. In all cases
the seed locations were derived on the basis of fMRI. Correla-
tion maps show Pearson correlation measured between tempo-
rally down-sampled Hilbert envelopes from the seed location
and all other locations. As for ICA, time courses were concate-
nated across subjects to create the maps. Fig. 2A shows results
for the motor network: Top, fMRI; Middle, MEG with a seed in
right primary motor cortex; and Bottom, MEG with a seed in left
primary motor cortex. Fig. 2B shows equivalent results for the FP
networks: Top, fMRI; Middle, MEG (seed in right parietal); and
Bottom, MEG (seed in left parietal). Fig. 2C shows the visual
network: Top, fMRI;Middle, MEG (seed in right primary visual);

and Bottom, MEG (seed in left primary visual). In all cases note
reasonable similarity across modalities.
Fig. 2D shows correlation between the posterior node of the

right FP network and the right motor cortex compared with
correlation between the posterior and anterior nodes of the right
FP network. Here, Pearson correlation is computed within sub-
jects and SE across subjects is shown (to show that the effect is
not driven by just a few subjects). Fig. 2E shows the equivalent
result for the left hemisphere. In both cases, despite the motor
area being anatomically closer to the parietal region than the
frontal lobe, correlation within the FP network was significantly

Fig. 1. Comparison of brain networks obtained using ICA independently on
MEG and fMRI data. (A) DMN (α); (B) left lateral frontoparietal network (β); (C)
right lateral frontoparietal network (β); (D) sensorimotor network (β); (E)
medial parietal regions (β); (F) visual network (β); (G) frontal lobes including
anterior cingulate cortex (β); (H) cerebellum (β). (A–H) Upper, fMRI (thresh-
olded at Z = 3); Lower, MEG [thresholded at a correlation coefficient of 0.3,
apart from the left lateralized frontoparietal network (B) in which the
threshold was reduced to 0.16 for visualization].
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(P < 0.05) higher than correlation between networks. Fig. 2F
shows similar results comparing within- and across-network
correlation in the FP and visual networks. Taken together,
results shown in Fig. 2 support those given in Fig. 1 and show
that, even without ICA, networks observed in fMRI are mirrored
in MEG data. However, MEG results are spatially less well de-
fined using correlation analysis compared with ICA. Specifically,
a large region around the seed location is highlighted and is due
to signal leakage between voxels in close proximity to the seed.
This leakage is usually referred to as “seed blur” and is less
apparent in our MEG ICA. Note also that unlike ICA, corre-
lation images in the FP network yield regions of high correlation
in the opposite hemisphere.
Although compelling, the results presented above could be

driven by individual temporal components existing at multiple
brain locations as a result of signal leakage. To investigate this
further, and to also assess the contribution of different fre-
quencies to the observed connectivity, we carried out a further
seed-based correlation analysis. This time pairs of locations of
interest were identified (using seed locations from the MEG ICA
maps to ensure maximal sensitivity to MEG effects). Temporal
correlation between down-sampled Hilbert envelopes from these
location pairs was measured as a function of carrier frequency
(i.e., δ, θ, α, β, and γ). Further, to obtain a statistical null distri-
bution, and to test that the observed correlations were not arti-
facts of spatial filtering, we used multiple simulations similar to
those previously described (10) (Materials and Methods). Fig. 3A
shows results in the FP networks whereas Fig. 3B shows results in
the DMN (motor and visual networks are given in SI Materials
and Methods). Inset images in Fig. 3 show seed locations pro-
jected onto a single slice in Montreal Neurological Institute
(MNI) space: The red line shows correlation measured using real
data, the green line shows correlation measured using simulated
data, and the blue area shows the correlation required for sta-
tistical significance (P < 0.05), derived from the null distribution.
Note that in all cases significant connectivity is observed and also

that a frequency profile is apparent with correlations peaking in
the β-band. In Fig. 3B, iv we examine correlation between the
right inferior parietal lobule and the primary visual cortex. Note
that primary visual cortex is anatomically closer to the right
posterior parietal lobule and yet no significant correlation is
observed.
Finally, we return to results of the MEG and fMRI ICA. Fig. 4

A and B shows results of cross-correlation analysis between tICs
representing each of the eight networks shown in Fig. 1. Fig. 4A
shows an fMRI-derived matrix depicting temporal correlation
between BOLD time courses extracted from each of the net-
works. Because temporal ICA was used in MEG, a direct com-
parison between such matrices is not possible because MEG-ICA
forces orthogonality between tICs for each network. However,
the DMN was identified using α-band data whereas all other
networks were identified in β-band data. Because ICA was ap-
plied independently to each frequency band, orthogonality is not
imposed between the α-band DMN time course and the other
β-band–derived networks, and so a comparison of the temporal
correlation between the DMN and the other networks is possi-
ble. This comparison is shown in Fig. 4B alongside the fMRI
equivalent and shows that fMRI and MEG have similar patterns
of temporal correlation between the DMN and the other RSNs.

Discussion
We used source-space–projected MEG data to derive fluctua-
tions in the amplitude envelope of neural oscillatory activity
across frequency bands to investigate the electrophysiological
basis of eight RSNs robustly observed in fMRI. We then used
ICA to identify temporally independent envelope signals origi-
nating from the brain. These analyses have shown that a number
of tICs originate from spatially separate networks of brain
regions. The spatial signature of those networks is correlated
with RSN spatial maps identified using fMRI. These observa-
tions confirm the electrophysiological basis of hemodynamic
connectivity in these networks. Furthermore, unlike previous

Fig. 2. MEG seed-based correlation analysis in the β-band. (A) Motor network: Top, fMRI (ICA result); Middle, MEG, right motor seed; Bottom, MEG, left
motor seed. (B) FP network: Top, fMRI; Middle, MEG, right parietal seed; Bottom, MEG, left parietal seed. (C) Visual network: Top, fMRI; Middle, MEG, left
visual seed; Bottom, MEG, right visual seed. (D and E) Correlation between the parietal and motor areas compared with correlation between parietal and
frontal areas in the right (D) and left (E) hemispheres. (F) Comparison between correlation measured between left visual and left parietal, right visual and
right parietal, and left/right parietal and left/right visual. In D–F, colored overlays represent the network nodes and are based on fMRI data.
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publications (10–12) in this area, no a priori spatial information
was required to extract the MEG RSNs, making this a unique
independent verification of RSN spatial structure using electro-
physiological metrics.
The demonstration that the RSNs have electrophysiological

underpinnings is consistent with evidence from fMRI data that
RSNs are functionally meaningful. However, beyond this confir-
mation, we have been able to elucidate the electrophysiological
mechanisms underlying RSN behavior. Our Hilbert envelopes
represent the instantaneous amplitude of neural oscillatory acti-
vity, and thus our results confirm that neural oscillations play
a key role in synchronizing electrical brain activity across spatially
separate brain regions. Furthermore our results show some fre-
quency dependence; correlation between nodes of the FP, de-
fault mode, and motor networks was observed across the 10- to
30-Hz range, but was strongest in the β-band. This finding agrees
with work by Mantini et al. (9) who used concurrent EEG/fMRI
to show that the envelope of band-limited EEG signals correlates

with BOLD signals from separate network nodes. Finally we note
that resting state correlations occur on a relatively slow timescale
(>1 s), implying that fluctuations in network activity occur slowly
(at least in resting state measurements). This timescale is similar
to that accessible to BOLD fMRI and this may allow insight into
why fMRI has been successful in investigating RSNs.
The beamformer methodology used to project MEG data into

source space has previously been shown to represent a promising
technique for connectivity measurement (10, 15, 19, 24). Be-
amforming is an adaptive source localization algorithm, meaning
that source-space projection depends on the data. This outcome
means that signals whose spatial topography cannot be explained
by a dipolar source in the brain are suppressed, giving beam-
forming high spatial resolution and interference rejection prop-
erties. However, in beamforming, spatially separate but temporally
correlated sources are suppressed. At first sight this suppression
appears to be a major confound for network measurements; in-
deed using externally driven phase-locked responses (e.g., induced

Fig. 3. MEG seed-based correlation analysis across frequencies. (A) The FP network. (A, i) Left lateral parietal [MNI (−48, −70, 20) mm] and prefrontal [MNI
(−34, 20, 44) mm] cortices. (A, ii) Right lateral parietal [MNI (42, −70, 24) mm] and prefrontal [MNI (18, 20, 40) mm] cortices. (B) DMN. (B, i) Anterior cingulate
[MNI (−4, 50, 14) mm] and right inferior parietal lobule [MNI (56, −54, 16) mm]. (B, ii) Anterior cingulate and left inferior parietal lobule [MNI (−56, −62, 16)
mm]. (B, iii) Left and right inferior parietal lobules. (B, iv) Connectivity between right inferior parietal lobule and the right primary visual cortex.

Fig. 4. (A) fMRI-derived temporal correlation matrix (%). (B) Comparison of temporal correlation between MEG and fMRI: Upper, correlation between the
DMN tIC (α-band) and tICs for all other networks (β-band); Lower, equivalent temporal correlation derived using fMRI.
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in the bilateral auditory cortices by binaural stimuli) (17) it is
possible to show failure of beamformer localization. Most impor-
tantly, in this work we compute temporal correlation, not between
raw source-space–projected time series, but between temporally
down-sampledHilbert envelopes. That is, it is possible for two signal
envelopes to be perfectly correlated without any correlation be-
tween their respective time series. Also, the resting state data ac-
quired are dominated by neural oscillations; we know from invasive
studies that these oscillations have stationary coherence domains of
typically <1 cm (25); and evidence suggests that coherence between
distant brain regions is likely to be transient coherence (24, 26–28).
Even if this transient coherence were zero phase lag, previous
simulation work has shown that it must persist for a significant
portion of the time window (300 s) of interest to affect beamformer
estimates of connectivity (24).
The fact that beamforming can successfully elucidate RSNs

and that this process relies on envelope correlation is an im-
portant neurobiological finding. In fMRI, connectivity is implied
by BOLD signal correlation between regions, but the precise
physiology and the exact causal network structures underlying
these correlations in general remain unknown. Here we have
measured significant correlation between the envelopes of elec-
trophysiological signals from distal cortical regions, implying
a neural oscillatory basis to BOLD functional connectivity.
However, as with fMRI, correlated signals are not necessarily
indicative of direct/causal functional connections. For example,
power/amplitude correlation could be driven by a third brain
region and could be caused by changes in attention or arousal.
Alternatively, correlated envelope modulations could be driven
by transient bursts of coherent activity within networks. A limi-
tation of the work shown here is that we assess only within-fre-
quency connectivity and there is a growing amount of literature
(e.g., ref. 29) suggesting power at high frequency is modulated by
the phase of lower-frequency signals; this result could also offer
an explanation of the envelope correlations observed. Whereas
the answer to these questions is inaccessible to fMRI, MEG
offers an exciting means to probe the underlying nature of such
covariations with a variety of metrics and models available.
ICA has been used previously and extensively for artifact re-

jection in MEG; however, its use in identification of oscillatory
signals has remained limited. This limitation is likely due to its
susceptibility to interference and the fact that amplitude-modu-
lated oscillatory signals exhibit a largely Gaussian statistical
distribution (and ICA relies on non-Gaussianity in recovered
sources) (20). Here, a combination of Hilbert envelope compu-
tation and temporal down-sampling acts to increase the signal to
noise ratio of MEG data and allow for identification of mean-
ingful tICs. An important methodological finding here is the
improvement in delineation of RSNs in ICA compared with
seed-based correlation. In the correlation results presented in
Fig. 2, a high degree of seed blur is observed, which reflects
signal leakage, a problem that is less apparent in ICA. The
nonindependence of MEG voxels means that any one MEG time
course contains a mix of activity originating at that location and
its surrounding regions. Via assessment of independence, ICA is
able to extract the components of a voxel time course that relate
to activity in one particular network while ignoring other com-
ponents, which are attributed to other tICs (and possibly other
networks).
Finally, ICA does not necessarily eliminate all spurious MEG

connectivity. It remains conceivable that a single temporal
component could exist at multiple brain locations as a result of
misattribution of sources brought about by inverse modeling
error. Specifically, previous results (10) show correlation be-
tween beamformer weights from separate voxels is distributed
anisotropically around a seed location and thus a single temporal
component can be spread across the equivalent anisotropic vol-
ume. Such confounds must be taken into account. Although this
study does not present a method for dealing with this problem
directly within the ICA, we have investigated it in simulations.
This approach generates a null distribution that accounts for

spurious connectivity arising from (i) correlated beamformer
weights, (ii) field spread between the two sources of interest, and
(iii) correlated interference across MEG sensors. Through this
approach we have shown that correlations between nodes of the
default mode, frontoparietal, and motor networks genuinely
represent connectivity and not artifacts of poor source-space
reconstruction. This approach is more conservative than other
approaches testing for spurious connectivity (10). Although in-
terference from nonneuronal physiology (i.e., the cardiac/re-
spiratory cycles) or other brain sources is not explicitly accounted
for in simulation, it is reasonable to assume that it will be sup-
pressed (10, 30).

Conclusion
In this paper we have described a means to characterize resting
state brain networks using MEG data. MEG offers a useful way
to measure connectivity between brain regions because it
bypasses the hemodynamic response and measures the electro-
physiological basis of brain activity. Here, we assess connectivity
in source space by a unique combination of beamformer spatial
filtering and ICA. We have shown that ICA offers some
advantages compared with seed-correlation–based approaches;
however, ICA cannot eliminate all spurious connectivity from
MEG measurements and so should be used in conjunction with
other methods to test for nonindependent projected MEG sig-
nals. Most importantly, we have shown significant similarity be-
tween RSNs derived from MEG and fMRI data, confirming
a neural basis of hemodynamic networks. MEG offers the po-
tential to gain a better understanding of RSNs and the nature of
connectivity that binds network nodes. Finally, RSNs are of
considerable clinical relevance; the work presented here offers
exciting possibilities to probe the electrophysiological pathology
that underlies neuropathological conditions.

Materials and Methods
Data Acquisition. MEG data were acquired using the third-order synthetic
gradiometer configuration of a 275-channel whole-head CTF system. Subjects
were asked to lie in the scanner and view a centrally presented fixation cross
while 300 s of data were recorded. During data acquisition the location of
the subject’s head within the scanner was measured by energizing coils
placed at three fiducial points on the head (nasion, left preauricular, and
right preauricular). If any subject moved >5 mm during the experiment, data
from that subject were discarded. Following acquisition, the positions of the
coils were measured relative to the subject’s head shape using a 3D digitizer
(Polhemus isotrack). An MPRAGE structural MR image was acquired (Philips
Achieva 3T; 1 mm3 resolution, 256 × 256 × 160 matrix, TR = 8.3 ms, TR = 3.9
ms, TI = 960 ms, shot interval = 3 s, FA = 8°, and SENSE factor = 3). The
locations of the fiducial markers and MEG sensors with respect to the brain
anatomy were determined by matching the digitized head surface to the
head surface extracted from the anatomical MRI. MEG data artifacts were
removed via visual inspection.

Beamforming and Hilbert Envelope Computation. MEG data were frequency
filtered into the 1- to 4-Hz (δ), 4- to 8-Hz (θ), 8- to 13-Hz (α), 13- to 30-Hz (β),
and 30- to 50-Hz (γ) bands and projected into source space using a scalar
beamformer (16). Covariance matrices were generated independently for
each frequency band, using all 300 s of recorded data on a subject-by-subject
basis. All covariance matrices were regularized using a regularization value
of 4× the minimum singular value of the unregularized matrix. Voxels were
placed on a regular 5-mm grid spanning the entire brain and source orien-
tation at each voxel was based on a nonlinear search for maximum projected
signal-to-noise ratio. The forward solution was based on a dipolar model
(31). Following beamformer projection, source-space signals were normal-
ized by an estimate of projected noise and a Hilbert transform was applied
to each voxel time course to derive the “analytic signal”. The absolute value
of the analytic signal was computed to yield an amplitude envelope of os-
cillatory power, termed the “Hilbert envelope”. The Hilbert envelope at
each voxel was down-sampled to an effective sampling rate of 1 Hz. Source-
space envelope data were smoothed spatially (FWHM 5 mm) and trans-
formed to standard (MNI) space using FLIRT in FSL, and the voxel size was
resampled to an 8-mm grid. Datasets from all subjects were concatenated in
the time dimension across subjects.
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ICA. Temporal ICA was applied to the concatenated dataset using the fastICA
(research.ics.tkk.fi/ica/fastica) algorithm. Prewhitening was applied before
ICA to reduce the dataset to 30 principal components. Twenty-five in-
dependent components were derived. The spatial signature of each tIC (i.e.,
the maps shown in Fig. 1) was measured by Pearson correlation between the
tIC and the time course of each voxel in the concatenated dataset. This
process was implemented independently for each frequency band of in-
terest. Quantitative comparison between RSN maps derived using MEG ICA
and RSN maps from spatial ICA in fMRI (21) was undertaken using a spatial
Pearson correlation coefficient metric and statistical significance of spatial
correlation was measured using a Monte Carlo simulation approach. For full
details see SI Materials and Methods.

Seed-Based Correlation Analysis. Seed-based correlation analysis was un-
dertaken to support our MEG ICA in showing that independent temporal
signals arise from spatially orthogonal networks. Seed locations in the
motor, FP, and visual networks were derived in MNI space on the basis of
fMRI data. Down-sampled Hilbert envelopes were extracted for each of these
seed locations. To generate seed-based correlation maps (Fig. 2 A–C), data
were concatenated across subjects and Pearson correlation between seed
time course and down-sampled Hilbert envelopes for all other brain voxels
was computed. To compute correlation between seeds (Fig. 2 E and F),
Pearson correlation between seed time courses was measured within each
subject, and mean and SE across subjects were computed. Where connec-
tivity values between seed pairs were compared, a Wilcoxon sign-rank test
was used to assess statistical significance.

Cross-Frequency Analysis and Simulations. To compute connectivity spectra
(Fig. 3) seed and test locations were defined on the basis of the MEG ICA
maps. [This definition was chosen instead of MR seed locations (used above)
to account for slight differences in localization in MEG compared with fMRI.]
The Hilbert envelopes for the seed and test locations were derived and
temporally down-sampled to a 0.5-s time resolution. Pearson correlation
between down-sampled envelopes was computed for each subject in-
dividually. Results were averaged across subjects and SE across the group
was computed.

The validity of correlation measurements made between seed and test
locations was tested using a simulation approach (10). On each iteration of
the simulation, two dipolar sources were simulated at the seed and test
locations. The time courses for these two sources comprised Gaussian ran-
dom noise colored by frequency filtering to the band of interest. No sig-
nificant correlation existed between simulated seed and test time courses.
The source orientations and the variance of the source time courses were
equivalent to those derived by application of the beamformer to real MEG
data for the same subject, location, and frequency band. The simulated time
courses were multiplied by lead fields for the two locations/orientations and
300 s of simulated MEG data were constructed. Three hundred seconds of
MEG data were recorded (using the third-order gradiometer configuration
of the 275-channel system; sampling rate, 600 Hz) with no subject in the
scanner. These noise data were added to the simulated data, resulting in
a simulated MEG dataset. These simulated data were used repeatedly to
assess statistical significance of measured functional connectivity (FC) val-
ues. On each repetition of the simulation, different seed and test time
courses were used. Simulated MEG data were projected into the brain
using the same beamformer weights derived from and applied to the real
MEG data. Because our simulated data were designed to be similar to the
real resting state data, beamformer reconstruction of the simulated source
time courses was successful. However, no correlation between simulated
sources was introduced, meaning that following beamformer projection, if
FC analysis of simulated data generated high correlation, this result was
spurious and due to weights correlation, field spread, or correlated noise
across sensors. One hundred iterations of the simulation were run per sub-
ject. These values were mean corrected, concatenated across subjects, and
used to derive a statistical null distribution with which to test the significance
of cross-frequency correlation.
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