
Detection of pigment network in dermatoscopy images using
texture analysis

Murali Ananthaa, Randy H. Mossb,*, and William V. Stoeckerc

aD2 Technologies, 104 W. Anapamu St., Santa Barbara, CA 93105, USA
bDepartment of Electrical and Computer Engineering, University of Missouri-Rolla, Rolla, MO
65409-0040, USA
cStoecker and Associates, 1702 E. 10th St., Rolla, MO 65401-4600 and Dermatology M173,
University of Missouri Health Sciences Center, Columbia, MO 65212, USA

Abstract
Dermatoscopy, also known as dermoscopy or epiluminescence microscopy (ELM), is a non-
invasive, in vivo technique, which permits visualization of features of pigmented melanocytic
neoplasms that are not discernable by examination with the naked eye. ELM offers a completely
new range of visual features. One such prominent feature is the pigment network. Two texture-
based algorithms are developed for the detection of pigment network. These methods are
applicable to various texture patterns in dermatoscopy images, including patterns that lack fine
lines such as cobblestone, follicular, or thickened network patterns. Two texture algorithms, Laws
energy masks and the neighborhood gray-level dependence matrix (NGLDM) large number
emphasis, were optimized on a set of 155 dermatoscopy images and compared. Results suggest
superiority of Laws energy masks for pigment network detection in dermatoscopy images. For
both methods, a texel width of 10 pixels or approximately 0.22 mm is found for dermatoscopy
images.
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1. Introduction
Malignant melanoma is a lethal form of skin cancer that has claimed many lives in recent
years. Over the past decade the number of people affected by this disease has doubled in
most parts of the world. In the United States alone, around 53,600 new cases of melanoma
are estimated in 2002 [1]. The number of deaths estimated from this deadly disease is
around 7400 in 2002 [1]. Since melanoma can be cured if detected early, accurate and early
detection is extremely important for the survival of the patient.

Epiluminescence microscopy (ELM), also known as skin-surface microscopy, dermatoscopy
or dermoscopy, was described in 1921 [2] and later in 1987 [3]. It is a non-invasive tool to
improve the early diagnosis of malignant melanoma. Initially, it was designed to be used
with complex microscopic equipment. However, ELM now is used in a general clinical
setting with an inexpensive hand-held otoscope-like unit [4]. ELM combines oil immersion
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with standard magnifying optics and incident surface lighting to permit in vivo visualization
of features of pigmented melanocytic neoplasms that are not discernable by examination
with the naked eye. ELM offers a completely new range of visual features such as the
pigment network, solid pigment, radial streaming, globules, blue/gray veil, etc., to aid the
diagnostic process.

The procedure consists of first applying alcohol or mineral oil to the pigmented skin lesion.
A transparent material is then pressed against the lesion after which it is examined under
tangential illumination with magnification. This technique reduces the reflected light from
the irregular surface of the stratum corneum and thus makes the epidermis more transparent
so that structures at the dermal–epidermal junction and upper dermis may be visualized [4].
The use of ELM can increase experts’ diagnostic accuracy for pigmented lesions, assisting
in clinically differentiating melanoma from its benign simulators [3,5].

Texture analysis is the attempt to quantify texture notions such as ‘fine’, ‘rough’ and
‘irregular’ and to identify, measure, and utilize the differences between them [6]. A point
has no texture; only a region can have a texture. The most prominent feature that
discriminates between textured and non-textured images is their coarseness, or the size of
textural primitives. Coarseness of an image is not absolute but depends on the scale at which
the image is processed or viewed. Reducing the size of the image makes a textured image
seem smoother, while magnifying the image brings forward the rough structure of the
surface. Textural features and texture analysis methods can be loosely divided into two
categories: statistical and structural. Statistical methods define texture in terms of local gray-
level statistics that are constant or slowly varying over a textured region. Different textures
can be discriminated by comparing the statistics computed over different sub-regions.
Structural texture models try to determine the primitives of which the texture is composed.
While statistical features measure gray value variations in an image neighborhood, structural
features explicitly characterize properties of textural primitives, such as their size and shape
[7]. This study develops a statistical technique for detecting pigment network.

An excellent set of techniques is presented in Ref. [8] by Fleming and co-authors. Structural
analysis is performed based on a line extraction algorithm developed by Steger.
Asymmetrical line contrast is corrected and holes are identified. Gaps are filled with
dynamic contour or snake modeling. Additional pre- and post-processing to segment lesions
and identify hairs and bubbles was needed. This series of algorithms, although
computationally intensive, produced a mean network line width and mean hole area that
correlated well with malignant melanoma. Our hypothesis is that a simple texture-based
network identification method is needed for a global pigment network assessment. Many
benign lesions have large structureless areas, with virtually no regular pigment network.
Other benign lesions such as spindle-cell nevi may lack repeating lines but instead present
with a cobblestone or follicular pattern. However, previously reported methods, as they are
not texture-based, find only line-based patterns and not dot or globular textures. Our goal is
to map the presence or absence of pigment network on a block-by-block basis, so that spatial
analysis of the network such as asymmetric network can be reported, and to do this
regardless of the specific type of network present, as long as it presents with a recurring
pattern that yields an identifiable texture.

Two approaches were analyzed for detecting the pigment network. The first method is the
neighboring gray-level dependence matrix (NGLDM) developed by Sun and Wee [9] and
the second method uses the lattice aperture waveform set (LAWS) developed by Laws [10].
The first method is described in Ref. [9] and the application of that method to skin texture
determination is discussed in Ref. [11]. The NGLDM and LAWS methods are discussed in
the following sections. Our hypothesis is that both methods can detect pigment network with
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good accuracy. The purpose of this paper is to present optimized results for each method and
to determine which is superior for determination of pigment network.

2. Laws energy masks
Laws [10] investigated many local measures of texture (called ‘micro-features’) in
combination with a number of global ‘macro-statistics’. His two-tier approach combined co-
occurrence, correlation and statistical moment methods with a variety of data aggregation
steps and compiled both inter- and intra-method comparisons using principal component
analysis. He incorporated the best concepts from these methods into a new model that
convolves the image with 3 × 3, 5 × 5 or 7 × 7 masks and computes the energy of the results
as texture attributes [10]. The following analysis was performed using the Laws
methodology.

Fig. 1 shows the one-dimensional convolution masks, called LAWS, of orders three and
five, that can be used to create the two-dimensional masks used in this study. The vectors
are weighted toward the center and are either symmetric or antisymmetric. All but the Level
vector are zero-sum. The vectors in each set are independent, but not orthogonal to each
other.

The higher order masks can be generated from the third-order set by convolution. For
example, the fifth order mask L5 can be generated by convolving L3 with itself. The two-
dimensional masks are created by convolution of a vertical vector with a horizontal vector. It
can be seen that a vector of size N can give rise to N2 different masks. Each mask represents
a characteristic feature that can be detected such as Level, Edge, Spot, Wave, Ripple,
Undulation and Oscillation [6]. Laws determined that the variance or standard deviation was
the best single transform to extract texture information from the filtered images. Since
circular convolution with a zero-sum mask gives rise to a zero-mean field, the variance will
be the average of the squared-filtered values and represents the energy of a filtered image
[6]. Laws approximated the standard deviation by the average absolute value of the filter
pixels and accepted the caveat that a dark field with bright spots is indistinguishable from a
bright field with dark spots.

3. Neighboring gray-level dependence matrix (NGLDM)
This is a rotation-invariant texture determination method developed by Sun and Wee [9] that
we have found to be the best of three texture determination methods for analysis of
smoothness in skin tumors [12]. This method defines a matrix that considers the relation
between a pixel and all its neighbors instead of just in one direction, eliminating angular
dependency. Sun and Wee defined five texture attributes: small number emphasis, large
number emphasis, number nonuniformity, second moment, and entropy.

The NGLDM entries record, for the (i,j)th position in the NGLD matrix, the number of
pixels (these are called index pixels) in the image that have gray level i and have j
neighboring pixels (1) within a predetermined distance d of the index pixel, and (2) within a
predetermined range a of the gray level of the index pixel. For example, for a distance of
one, the NGLDM has all zero entries after the eighth column, as a pixel has at most eight
neighbors. We empirically varied a and d to find the optimal a and d for this domain of a = 4
and d = 5. The large number emphasis index which Sun and Wee called N2 was found to be
a useful index, as it appears to measure the coarseness of visual pigment texture. Screening
the entire image to find areas with a large enough N2 successfully found pigment network
candidates.
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4. Methods
4.1. Images and pre-processing

One hundred fifty-five dermatoscopy images, 62 malignant melanomas and 93 benign
lesions (nevocellular nevi and dysplastic nevi), were digitized at a resolution of 512 × 480 in
full 24-bit color. Images were acquired with a Heine Dermaphot camera and Fujichrome
film.

Because dermatologists differ in their assessment of pigment network irregularity as well as
other dermatoscopic features, a gold standard for presence of pigment network, especially
the extent to which it is present on the lesion, does not exist. It would be desirable to study
detection rates using a formal classifier, but we feel this type of study is more meaningful
when the pigment network is included with other features for a formal classifier for
pigmented lesions. In this study, we therefore are comparing blocks of images, with the
entire image scored by a dermatologist for presence or absence of pigment network, with
empirically determined classification algorithms.

Dullrazor [13] was applied to all images to remove hair. For each of the 155 tumor images,
for each 64 × 64 block, 49 per image, a dermatologist (WVS) scored the block for pigment
network presence or absence: full (entire block contains pigment network), partial (pigment
network exists in a portion of the block), or none. Boundary blocks incompletely contained
within the tumor were not included in the analysis. Luminance images were calculated from
the RGB (red, green, blue color space) color images by the equation: luminance = 0.29R +
0.59G + 0.11B.

Two algorithms, namely the NGLDM numbers and the Laws energy masks, were used for
the detection of the pigment network. Our reason for choosing these and not other texture
measures is based on earlier work by Harris [6] which showed that Laws energy masks and
NGLDM indices were superior to fractal and symmetric autoregression measures in this
domain and work by Chang [14] and Cheng [15] which showed inability of orthogonal
masks and wavelet analyses to improve on the NGLDM and Laws results in the domain of
pigmented skin lesions. The performance and results of the two algorithms we have chosen
are discussed in the sections that follow.

4.2. Methods for NGLDM numbers
The NGLDM large number emphasis was also used for detecting the pigment network. The
algorithm makes use of a two-step process. Image blocks of 64 × 64 size are used as input to
the algorithm and a threshold of 5800 is set. All the blocks that are above this threshold are
considered for the color filtering stage. The red color component is averaged over a block.
The average of the red and the green components is also taken because it was observed in
some cases that the green component of the image shows the pigment pattern more
prominently than the red component. A blue check was done similar to the one carried out in
the Laws analysis (see Section 4.3). The flow chart in Fig. 2 shows the steps involved in
detecting the pigment network.

4.3. Methods for laws energy masks
For 512 × 480 dermatoscopy images, Laws energy masks smaller than 9 × 9 or larger than
13 × 13 were not as effective at measuring the pigment network. All the Laws energy
measures are calculated for the luminance image on masks of size 9 × 9, 11 × 11 and 13 ×
13, as these were the scales at which the texture content was mainly concentrated. The
masks used were LxEx and ExLx. Here x can take values 9, 11 and 13. LxEx and ExLx are
formed by convolving Level and Edge one-dimensional vertical masks with the one-
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dimensional horizontal masks. The luminance image was divided into 64 × 64 blocks and
the mask was convolved with the image blocks. The resultant convolved image elements
were squared, added and averaged over the size of the block. This process was carried out
for all the blocks in the image and for masks of sizes 9 × 9, 11 × 11 and 13 × 13. The results
were stored in data files. These energy measures were used for the first stage of detection of
pigment network. A threshold was set and only those blocks whose energy values were
greater than the threshold are considered for the color filtering stage. In the color filtering
stage the blocks that have the red component greater than a threshold and the average of the
red and the green components greater than a threshold were used for deciding the presence
of pigment network. These thresholds were optimized for best results. Also excessive blue
content in the image is checked. If a block exists with a blue color component exceeding a
third threshold then that block is ignored, as it is likely a blue veil. Throughout the analysis
only blocks that are fully enclosed within the tumor are considered. This is done to avoid the
edge effects caused by the partial blocks. The flow chart in Fig. 3 shows the steps involved
in the detection of pigment network. Most features in the image are detectable in the 9 × 9
and 11 × 11 scale.

5. Results
5.1. Results using laws energy masks

Note that pigment network can exist in both benign and malignant lesions. We chose to
demonstrate the results using an image that well illustrates the differences in the algorithms.
This image happened to be benign. Figs. 4–6 show the original image and the result of the
pigment network finder at scales 9 × 9 and 11 × 11, respectively. These were the two scales
that allowed the best results. In order to get best results from both scales, a weighted sum of
the above masks was formed. This weighted sum was determined empirically to optimize
results over combinations of two weights that summed to 100%. The 9 × 9 mask was
weighted 40% and the 11 × 11 mask was weighted 60%. It can be seen from Fig. 7 that for
the same image the weighted sum classifies better than either the 9 × 9 mask or the 11 × 11
mask. Note that although partial blocks are shown, these are not included in the analysis.
Figs. 8 and 9 are examples showing the performance of the pigment network detection
algorithm. The comparison of the performance of the various mask sizes on the image in
terms of percentage classified and percentage error is shown in Figs. 10 and 11, respectively.
It can be seen that for the combination of the 9 × 9 and 11 × 11 masks, the percentage
classified is the maximum. The error in classification is less for the combined mask when
compared to the 9 × 9 mask but slightly greater than for the 11 × 11 mask. The standard
deviation of the different methods were high and hence a two-sample T test was conducted
and the results proved the hypothesis that the combination of the 9 × 9 and 11 × 11 masks
was better than the individual masks.

For our 155-image set, a total of 2037 full blocks were tested. Fifteen blocks were classified
as pigment network by the algorithm and not by the dermatologist. Four blocks were
classified as having pigment network by the dermatologist and not having any network by
the algorithm. The source of errors (success rate of considerably less than 100%) as shown
in Fig. 10 is the presence of partial blocks.

Partial blocks, where pigment network is present over part of the 64 × 64 block, create a
problem. Approximately 20% of all blocks have partial pigment network by either
dermatologist or algorithm. It is this disagreement that leads to a success rate of around 80%
shown in Fig. 10.
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5.2. Results using NGLDM numbers
Fig. 12 shows the result of applying the NGLDM algorithm to the same image used to
illustrate the previous algorithm in Fig. 8.

5.3. Comparison of algorithms
Both the algorithms were tested on the same set of 155 images and the results were
compared with pigment network presence as determined by the dermatologist (WVS),
scoring the whole lesion for presence or absence of pigment network. Figs. 13 and 14 show
the performance in terms of the percentage classified, using algorithms shown in Figs. 2 and
3, and the percentage error, respectively. It can be seen that Laws energy masks did
significantly better than the NGLDM. This was also proved using the two-sample T test.
However, the Laws method fails on some cases as shown in Figs. 15 and 16 where the
residue of Dullrazor [12], a hair removal program, causes an error in texture measure,
leading to misclassification.

6. Discussion
The NGLDM large number emphasis and Laws energy masks were used for the detection of
the pigment network. It was observed that the pigment network finder using a combination
of 9 × 9 and 11 × 11 masks did better than the NGLDM large number emphasis and the
individual masks. The factors d and a used in calculating NGLDM numbers were chosen as
optimum by experimentation. The fact that d = 5 optimizes the NGLDM measure implies a
texture ‘unit’ width of about 10 pixels or 0.22 mm. Similarly the Laws filter dimensions
appear to be optimized between 9 × 9 and 11 × 11. (The Laws filters must have an odd
dimension by definition.) This again implies a repeating pigment texture unit or texel of 10
pixels or approximately 0.22 mm. Fig. 17 shows a clinical image taken after a dermatoscopy
image was taken of the same lesion. The large circle seen is the imprint on the skin of the
dermaphot glass plate used in taking the dermatoscopy image. It has a known diameter of 25
mm. The smaller rectangle shows the width of the dermatoscopy image, illustrating that the
512-pixel width of the dermatoscopy image corresponds to 11.9 mm, confirming the 10-
pixel texel width of 0.22 mm.

The significance of the pigment network is in its association with a benign lesion. The
pigment network is disrupted when malignant melanoma is present. We were able to
observe three general patterns for benign lesions.

1. The pigment network is present over most of the lesion. The pattern was observed
to be strongly correlated with a benign diagnosis (Figs. 7,9 and 12).

2. The pigment network is present in the center of the lesion. Often a lighter periphery
is observed.

3. There is solid pigment in the center and pigment network at the periphery. This
pattern is often present with dysplastic nevi. Fig. 4 shows the center-pigment-
absent variety.

A skin lesion is typically benign if the network is present over most of the area of the lesion
or if a light net exists or if there is network in the center or if there is solid pigment in the
center and network in the periphery of the tumor. For early malignancy, the pigment pattern
appears in only one portion of the tumor and is generally asymmetric.
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7. Summary
The pigment network is an important feature of dermatoscopy images. A number of variants
of the pigment network are critical in diagnosing malignant melanoma. In this study, two
statistical texture determination methods are compared in detecting the pigment network,
using the dermatologist’s determination of the pigment network as the gold standard. One
hundred fifty-five dermatoscopy images were analyzed, including 62 malignant melanomas
and 93 benign lesions. All digitized images were divided into 64 × 64 pixel blocks, and all
blocks were classified as having no pigment network, partial or full pigment network. For
the 155 images, a total of 49 × 155 or 7595 blocks were included in the study. Two
experiments were performed. The first experiment (Section 4.3) was in optimizing results
for the Laws energy filters. Using 7 × 7, 9 × 9, 11 × 11 and 13 × 13 masks, the optimal
results were obtained between 9 × 9 and 11 × 11 masks. The best classification was obtained
with the Laws method using a weight of 40% for the 9 × 9 masks and 60% for the 11 × 11
masks. For the 2037 full pigment blocks, four blocks were erroneously classified as having
network by the dermatologist and not by the best Laws algorithm. For the 4585 blocks
lacking pigment as classified by the dermatologist, all but fifteen are correctly classified by
the algorithm using Laws energy masks. Approximately 20% were incorrectly classified
because of determination of a full block or empty texture block as a partial block and vice
versa. The second experiment (Section 4.2) compared the various NGLDM (neighborhood
gray level dependence matrix) indices N1 through N5 and optimized the distance and
intensity parameters d and a. It was found that the best results were obtained with the
NGLDM large number emphasis (N2). These results were not as successful as those noted
for the best Laws algorithm. It was noted that the optimal parameters for both methods
implied a texture unit of about 10 pixels in the dermatoscopy images, which corresponds to
a repeating texel of about 0.22 mm.

We have hypothesized that application of texture analysis can allow detection of the pigment
network. Our work is somewhat different to the approach of other investigators, who
identified and measured irregularities in the pigment network [8]. Instead of identifying
irregularities, our method identifies grossly any pigment network that is present, as defined
by texture measures, and therefore is not directly comparable to this previous work. We
have shown that the NGLDM method and the LAWS developed by Laws can both detect the
pigment network with reasonable accuracy, with somewhat better results obtained by the
latter.
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Fig. 1.
One-dimensional Laws masks of size 3 and 5.
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Fig. 2.
Flow chart illustrating steps for detecting pigment network using NGLDM numbers
(Thresholds TN1 = 5800, TN2 = 80, TN3 = 0, and TN4 = 150 worked well, as did TN1 =
5800, TN2 = 235, TN3 = 100, and TN4 = 200).
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Fig. 3.
Flow chart for detecting pigment network using Laws energy filters, where WLE is the
weighted combination of L9E9 and L11E11 and WEL is the weighted combination of E9L9
and E11L11. (Thresholds TL1 = TL2 = 30,000, TL3 = 130, and TL4 = 180 worked well).
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Fig. 4.
Dermatoscopy image of dysplastic nevus tumor having net-like pigment pattern at the
periphery.
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Fig. 5.
Result of pigment network finder using 9 × 9 mask. Note that the network finder requires a
complete block and this misses some peripheral areas with incomplete blocks.
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Fig. 6.
Result of pigment network finder using 11 × 11 mask.
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Fig. 7.
Result of pigment network finder using the weighted combination of 9 × 9 and 11 × 11
masks.
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Fig. 8.
Dermatoscopy image of benign nevus (108) with a relatively light pigment network
covering nearly the entire tumor.
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Fig. 9.
Result of pigment network finder.
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Fig. 10.
Performance of Laws masks of different sizes on various images (percentage classified
correctly).
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Fig. 11.
Performance of Laws masks of different sizes on various images (percentage error).
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Fig. 12.
Result of pigment network finder using NGLDM numbers on benign nevus in Fig. 8.
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Fig. 13.
Comparison of algorithms using Laws and NGLDM numbers (percentage classified
correctly).
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Fig. 14.
Comparison of algorithms using Laws and NGLDM numbers (percentage error).
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Fig. 15.
Dermatoscopy image of dysplastic nevus tumor with residual hair.

Anantha et al. Page 23

Comput Med Imaging Graph. Author manuscript; available in PMC 2011 October 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 16.
Result of pigment network finder showing erroneous classification.
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Fig. 17.
Clinical image showing location of dermatoscopy image allowing scale factor of 512 pixels
= 11.9 mm. Ten pixels, approximately 0.22 mm, correspond to optimal repeating texture
unit by both Laws and NGLDM analysis.
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