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Abstract

Background: Models of immunity to malaria indicate the importance of CD8+ T cell responses for targeting intrahepatic
stages and antibodies for targeting sporozoite and blood stages. We designed a multistage adenovirus 5 (Ad5)-vectored
Plasmodium falciparum malaria vaccine, aiming to induce both types of responses in humans, that was tested for safety and
immunogenicity in a Phase 1 dose escalation trial in Ad5-seronegative volunteers.

Methodology/Principal Findings: The NMRC-M3V-Ad-PfCA vaccine combines two adenovectors encoding circumspor-
ozoite protein (CSP) and apical membrane antigen-1 (AMA1). Group 1 (n = 6) healthy volunteers received one intramuscular
injection of 2610‘10 particle units (1610‘10 each construct) and Group 2 (n = 6) a five-fold higher dose. Transient, mild to
moderate adverse events were more pronounced with the higher dose. ELISpot responses to CSP and AMA1 peaked at 1
month, were higher in the low dose (geomean CSP = 422, AMA1 = 862 spot forming cells/million) than in the high dose
(CSP = 154, p = 0.049, AMA1 = 423, p = 0.045) group and were still positive at 12 months in a number of volunteers. ELISpot
depletion assays identified dependence on CD4+ or on both CD4+ and CD8+ T cells, with few responses dependent only on
CD8+ T cells. Intracellular cytokine staining detected stronger CD8+ than CD4+ T cell IFN-c responses (CSP p = 0.0001, AMA1
p = 0.003), but similar frequencies of multifunctional CD4+ and CD8+ T cells secreting two or more of IFN-c, TNF-a or IL-2.
Median fluorescence intensities were 7–10 fold higher in triple than single secreting cells. Antibody responses were low but
trended higher in the high dose group and did not inhibit growth of cultured P. falciparum blood stage parasites.

Significance: As found in other trials, adenovectored vaccines appeared safe and well-tolerated at doses up to 1610‘11
particle units. This is the first demonstration in humans of a malaria vaccine eliciting strong CD8+ T cell IFN-c responses.

Trial Registration: ClinicalTrials.gov NCT00392015
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Introduction

Sterile protective immunity against malaria can be induced in

animals or human volunteers by radiation-attenuated Plasmodium

sporozoites [1], which invade the host hepatocyte but cannot

develop into blood stage parasites [2,3]. Protection is thought to be

mediated primarily by interferon-gamma (IFN-c) secretion by

CD8+ and probably also CD4+ T cells recognizing parasite

proteins expressed on the surface of infected hepatocytes, with

anti-sporozoite antibodies contributing to protection [4,5,6].

Humans can also acquire anti-malaria immunity through natural

exposure, after repeated episodes of parasitemia. This acquired

immunity limits parasite density and clinical disease and appears

to be mediated by antibodies to blood stage parasites [7], with cell

mediated immunity (CMI) contributing [8,9]. These findings

suggest that a vaccine inducing both cell and antibody-mediated

immunity targeting multiple pre-erythrocytic and blood stage

antigens could solidly protect humans against malaria.

Viral vectors, used singly or in heterologous prime-boost

combination, may constitute a suitable platform for inducing

multiple immune responses against multiple parasite stages [10,11]

[12]. In particular, their ability to stimulate CD8+ T cell responses

could improve on the partial protection afforded in humans by

single antigen, protein-based vaccines such as RTS,S, which elicits

strong antibody responses [13,14,15], moderate CD4+ T cell

responses [16,17], but no appreciable CD8+ T cell responses [18].

Recombinant adenoviruses, for example, have induced protection

against malaria and other infectious agents in mice [19,20,21,22],

eliciting high titer antibody [22] and IFN-c responses [23,24]

including T cell effector memory phenotype, and elevated CD8+
T cell responses including multifunctional responses [25]. To

establish proof of principle for this approach, we selected a

replication incompetent, serotype 5 adenovirus (Ad5) to construct

two adenovectors expressing malaria proteins for human testing.

Ad5 enters dendritic cells via the CAR receptor [26], while

transduction of hepatocytes and Kupffer cells likely involves a

different pathway associated with heparin sulfate proteoglycans

[27,28]. In contrast, Ad35, a less prevalent alternative to Ad5,

targets CD46 [27,29].

The two-component NMRC-M3V-Ad-PfCA vaccine was

developed jointly by the US Military Malaria Vaccine Program,

GenVec, Inc and USAID. The circumsporozoite protein (CSP)

was chosen as a pre-erythrocytic stage test antigen because of its

protective role in the RTS,S vaccine [30], and the apical

membrane antigen-1 (AMA1) [31] was chosen as the erythrocytic

stage test antigen because of protection seen in animal studies [32]

and the association with clinical immunity in humans in endemic

areas [33]. AMA1 is also expressed in sporozoites and late liver

stages [34], and could potentially contribute to protective

immunity against pre-erythrocytic stages. Recently a virosomal

vaccine containing the repeat structure of CSP and loop 1 of

domain III of AMA1 has elicited antibodies in humans that

inhibited sporozoite invasion of hepatocytes in vitro and induced

lymphocyte proliferative responses to AMA1 [35,36], with no

evidence of immune interference by either peptide.

Two clinical studies were performed. In the first, we tested the

safety, tolerability and immunogenicity of low and high doses of

the two-component NMRC-M3V-Ad-PfCA vaccine in healthy

Ad5 seronegative adults (Groups 1 and 2). In the second, we tested

the safety, tolerability, immunogenicity and efficacy of the CSP

component alone, given in two doses to both Ad5 seronegative and

seropositive volunteers (Group 3, companion paper Tamminga et

al). Here we report the results of Group 1 (low dose) and Group 2

(high dose) showing that NMRC-M3V-Ad-PfCA was safe and well

tolerated, and induced strong, primarily CD8+ T cell interferon-

gamma (IFN-c) responses. The results indicate a potential trade-off

between cell-mediated and antibody mediated immunity, the

former best induced by the lower dose of the vaccine, the latter by

the higher dose.

Methods

The protocol for this trial and supporting CONSORT checklist

are available as supporting information; see Checklist S1 and

Protocol S1.

Ethics
The study protocol for the clinical trial presented in this

manuscript was approved by the National Naval Medical Center,

Naval Medical Research Center and Walter Reed Army Institute

of Research Institutional Review Boards, in compliance with all

applicable federal regulations governing the protection of human

subjects. All study subjects gave written informed consent. This

study was conducted according to all Federal Regulations

regarding the protection of human participants in research

including The Nuremberg Code, The Belmont Report, 32 CFR

219 (The Common Rule) and all regulations pertinent to the

Department of Defense, the Department of the Navy, the
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Department of the Army, the Bureau of Medicine and Surgery of

the United States Navy and the internal policies for human subject

protections and the standards for the responsible conduct of

research of the Naval Medical Research Center (NMRC) and US

Army Medical Research and Materiel Command (USAMRMC).

NMRC holds a Department of Defense/Department of the Navy

Federal Wide Assurance for human subject protections, and a

Federal Wide Assurance (FWA 00000152) from the Office for

Human Research Protections (OHRP) for cooperation with the

Department of Health and Human Services. All NMRC key

personnel are certified as having completed mandatory Command

human research ethics education curricula and training under the

direction of the NMRC Office of Research Administration (ORA)

and Human Subjects Protections Program (HSPP).

Participants
Volunteers were healthy malaria-naı̈ve civilian and military

adult men and women, age 18–50 years. The study was conducted

at the Naval Medical Research Center (NMRC) Clinical Trials

Center in Bethesda, Maryland. The protocol was described to

potential volunteers by an investigator. Volunteers were required

to demonstrate adequate comprehension of the requirements and

risks of participation in the study by passing a written Assessment

of Understanding. Informed consent was obtained and volunteers

were screened for participation using inclusion and exclusion

criteria detailed in the clinical protocol (supplementary material),

which included good health and no significant prior exposure to

malaria.

Groups 1 and 2 required the enrolment of 12 healthy adult

volunteers, six in each group, all of whom were classified as

seronegative when tested for neutralizing antibodies to adenovirus

serotype 5. Volunteers were considered seronegative if prescreen-

ing titers were #1/500 using an adenovirus 5 neutralization assay

that is monitored by luciferase reporter gene expression (NVITAL,

Bethesda, MD) [37]. Volunteers with previous history of exposure

to malaria or prior participation in malaria vaccine trials were

excluded.

Interventions
NMRC-M3V-Ad-PfCA (NMRC - Multi-antigen Multi-stage,

Malaria Vaccine - Adenovectored - P. falciparum CSP & AMA1

antigens) is a combination of two separate recombinant Ad5

constructs expressing the 3D7 strain of P. falciparum CSP (NMRC-

MV-Ad-PfC) or AMA1 (NMRC-MV-Ad-PfA). The vector is

derived from GV11D (GenVec, Inc.) and is missing the E1 and E4

regions required for replication, as well as part of the E3 region

(Figure 1). The CSP and AMA1 genes were codon-optimized for

expression in human cells and were inserted in the E1 region

under the transcriptional control of a modified human cytomeg-

alovirus promoter. The PfAMA1 gene is identical to native

PfAMA1. The PfCSP gene was altered by the deletion of 16 of the

38 native NANP repeats (64 amino acids), and insertion of 23

amino acids (derived from the 39-noncoding bovine growth

hormone polyadenylation sequence) at the C-terminus. Although

the glycosylphosphatidylinositol (GPI) anchor residues at the C-

terminus have reduced immunogenicity in other studies [38], the

GPI anchor contains T-epitopes that could potentially contribute

to protection and thus was retained.

The vectors were constructed using GenVec’s AdFAST

technology using a homologous recombination system in E. coli

to generate new adenovirus recombinants that were amplified in

the 293-ORF6 cell line, which functionally complements the

essential E1 and E4 deletions in the Ad5 vector [39]. Expression of

the PfCSP and PfAMA1 proteins was confirmed by Western blot

analyses using the PfCSP-specific NFS1 and the PfAMA1-specific

4G2 (dc1) monoclonal antibodies. The integrity of the vectors was

confirmed by PCR, restriction enzyme digest and DNA sequence

analyses of each strand. The vectors were manufactured in the

293-ORF6 cell line, under serum-free suspension culture by

GenVec, Inc (Gaithersburg, MD). The supporting 293ORF6 cell

line provides the E1 and E4 proteins in trans [39]. Production lots

passed purity, identity and sterility tests. Each construct was vialed

separately at 161011 particle units (pu)/mL in Final Formulation

Buffer (FFB) (total volume 0.6 mL/vial). Each lot of vaccine and

FFB remained within specifications for the duration of the clinical

trial. The constructs were vialed separately in final formulation

buffer (FFB) and equal proportions were mixed, diluted to a final

concentration with FBB as needed and then loaded into a single

syringe prior to injection (1 mL injected in total).

Since this was the first human study of these vaccines, a

staggered schedule of immunizations was used and the safety and

tolerability results from this study were reviewed by a Safety

Figure 1. Schematic of Ad5-PfCSP and Ad5-PfAMA1 vectors. The parent adenovector was a serotype 5 adenovirus carrying deletions in E1, E4
and part of the E3 region with a transcriptionally inert spacer inserted into the site of the E4 deletion (TIS1), the resulting replication defective vector
called GV11D. Codon-optimized CSP or AMA1 genes were inserted into the E1 region under the control of a cytomegalovirus promoter (hCMV IE).
SV40 pA = simian virus 40 polyadenylation sequence.
doi:10.1371/journal.pone.0024586.g001
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Monitoring Committee and a written report was submitted to the

FDA prior to proceeding to the study of NMRC-MV-Ad-PfC

administered alone in two doses described in the companion paper

Tamminga et al. The schedule and doses of Trials 1 and 2 are

shown in Table 1.

Lower dose Group 1 (n = 6): 0.5 mL from each vial (containing

the CSP or the AMA1 construct) were mixed with 4 mL of FFB in

an empty vial giving a final volume of 5 mL at 261010 pu/mL

(161010 pu/mL of each construct). Six volunteers received

261010 pu of NMRC-M3V-Ad-PfCA as a single dose into the

deltoid muscle of the non-dominant arm by needle injection.

Higher dose Group 2 (n = 6, eight months later): 0.55 mL from

each vial were mixed in an empty vial without the addition of FFB

and one mL was withdrawn for intramuscular injection (161011 pu,

or 561010 pu of each construct, a five-fold dose escalation).

In this dose escalation trial, six malaria-naı̈ve volunteers lacking

evidence of prior exposure to human Ad5 (as determined by

adenovirus neutralizing assay) received one intramuscular (IM)

injection into the deltoid muscle of 261010 particle units (pu) of the

combination vaccine (Group 1) and approximately one year later,

after demonstration of safety, six additional volunteers received a

single five-fold higher dose of 161011 pu (Group 2). A single

administration was selected because it has been noted that a single

dose is often more effective than two doses [40].

Objectives
The primary objective was to assess the safety and tolerability of

low and high doses of NMRC-M3V-Ad-PfCA vaccine. Individuals

seronegative for neutralizing antibodies to Ad5 (NAb) were

selected to reveal the full reactogenicity of the vaccine as others

had reported that Ad5-specific NAb lowered the frequency of

adverse events (AEs) [41]. The second objective was to measure

the immunogenicity of two different doses of the vaccine in Group

1 (lower dose) and Group 2 (higher dose).

Outcomes
To evaluate safety, tolerability and reactogenicity, AEs were

recorded after each immunization. Solicited local and systemic events

were recorded during a 14 day follow-up period while unsolicited

events were collected over a 28 day follow-up period. Serious AEs

were collected throughout the duration of the study for each group.

Safety assessments were recorded by telephone interview (day 1),

direct observation and questioning (days 2, 7, 10, 14 and 28) and by a

diary card (days 0 to 7, for self-recording of oral temperature and

symptoms). Safety laboratory assays, including complete blood count

and a chemistry panel, were performed on samples collected at the in-

person visits detailed above except during the day 10 follow up visit

when only immunogenicity analysis was performed. In addition, a

urinalysis was performed on day 14. All clinical laboratory tests were

performed at the NNMC clinical laboratory. Only those laboratory

abnormalities that were gradable by protocol or FDA/CBER

guidelines are reported here. The in-person follow up period for

Groups 1 and 2 was approximately 1 year. Local, systemic, and

laboratory AEs were graded using severity scales detailed in the

protocol (supplementary material). Telephone or email follow-up for

all study subjects is to extend for a total of five years per FDA request.

Sample size
The study was designed to demonstrate the vaccine’s safety and

tolerability profile in a small number of volunteers, thereby

providing evidence that the frequency of serious or severe vaccine-

related AEs was sufficiently low to continue testing in larger

numbers of volunteers. If none of the twelve immunized volunteers

experienced a serious or severe vaccine-related AE, the following

predictions could be made regarding vaccine safety: there was a

46% level of confidence that the true rate of severe or serious

vaccine-related AEs in the general population would be less than

5%; alternatively, there was a 72% level of confidence that the true

rate of these events in the general population would be less than

10%; or, as a third example, there was a 93% level of confidence

that the true rate would be less than 20%. These figures were

determined using the exact binomial method (1-p)n = 1-c where p

is the probability that a subject has an event, n is the total number

of subjects and c is the level of confidence.

Immunological endpoints
Immunological assessments were performed pre-immunization;

10 days (d); and 1, 4, 7, 10 and approximately 12 months (m) post

immunization.

Synthetic peptides and peptides pools. Peptides used for

ELISpot assays were synthesized by Mimotopes, VIC, Australia

(.80% purity).). The full length P. falciparum CSP sequence

(GenBank no. X15363) was covered by a series of 15 amino acid

(aa) peptide sequences over lapping by 11 aa. These were

combined into nine pools (Cp1–Cp9) containing three to 12

peptides, such that most pools contained previously characterized

T cell epitopes [42,43,44,45] (Table 2). Similarly, 15 aa peptides

spanning the full length of P. falciparum AMA1 (Gene Bank ID

810891) were combined into 12 pools each containing 10–13

peptides (Ap1–Ap12) and 10 pools contained a previously

identified T cell epitope [46] (Table 3).

Table 1. Vaccine constructs, doses, and times of immunization.

Vaccine Trial Group (n) Particle units (pu) per dose # doses Total dose (pu)

CSP AMA1 Total

NMRC-M3V-Ad-PfCA
(CSP & AMA1 mixed)

1 1 (6) 161010 161010 261010 1 261010

2 (6) 561010 561010 161011 1 161011

NMRC-MV-Ad-PfC
(CSP only)

2 3 (15) 161010 0 161010 2 261010

Trial 1: Dose escalation study: Group 1 was immunized with a single dose, a safety review was conducted, then Group 2 was immunized with a single five-fold higher
dose.
Trial 2: Challenge study. Group 3 was immunized twice using the Group 1 dose of CSP, with 16 weeks between doses. Fifteen volunteers received the first dose, 14
volunteers the second, and 12 volunteers underwent malaria challenge 21 days following the second immunization. Data from Trial 2 are presented in the companion
paper, Tamminga et al.
doi:10.1371/journal.pone.0024586.t001
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Interferon-gamma Enzyme Linked Immunospot Assays

(IFN-c ELISpot Assays). Antigen-specific circulating peripheral

blood mononuclear cells (PBMC’s) were evaluated by modification

of previously described methods [47]. Briefly, freshly isolated or

cryopreserved PBMC at 100 K, 200 K, or 400 K suspended in

100 mL complete medium were stimulated with CSP and AMA1

15-mer peptide pools suspended in 100 mL of complete medium at

10 mg/mL of each 15-mer peptide in the pool tested. The positive

Table 2. CSP peptides used in ELISpot and ICS assays.

Pool CSP aa # Pep* Class HLA restriction Residues Sequence

1+ 1–39 7 I A2.1 supertype 1–10 MMRKLAILSV

I A2 supertype 7–16 ILSVSSFLFV

II DR (A2.1 and A2 supertype) 1–20 MMRKLAILSVSSFLFVEALF

2+ 29–71 8

3 61–107 9 I B8 81–89 KLRKPKHKK

4 97–283 12 II DR 105–116 NANPNVDPNANP

5 273–319 9 II DR (B7) 281–300 QGHNMPNDPNRNVDENANAN

I B7 86–94 MPNDPNRNV

6+ 309–331 3 I A1 310–319 EPSDKHIKEY

I A2.1 319–327 YLNKIQNSL

II DR (A2.1) 316–335 IKEYLNKIQNSLSTEWSPCS

7 321–335 6 II Th2r 326–343 SLSTEWSPCSVTCGNGIQ

8 345–367 3 II B35-Th3r 346–365 IKPGSANKPKDELDYANDIE

9+ 357–397 8 II DR 363–383 DIEKKICKMEKCSSVFNVVNS

II DR (A2 supertype) 375–397 SSVFNVVNSSIGLIMVLSFLFLN

I A2 supertype 386–394 GLIMVLSFL

PfCSP peptide sequences and residue numbers were based on those of the P. falciparum clone 3D7 (GenBank no. X15363). Previously identified Class I and II CSP
epitopes were distributed among peptide pools, except pool 2.
*Number of 15mer peptides in each pool.
+Peptide pools used in ICS assays.
doi:10.1371/journal.pone.0024586.t002

Table 3. AMA1 peptides used in ELISpot and ICS assays.

Pool AMA1 aa # Pep* Class T epitope% Residues Sequence

1+ 1–63 13 II PL186 14–35 EFTYMIFNRGQNYWEHPYQKS

PL187 41–51 INEHRPKEY

2+ 53–115 13 PL188 92–103 NLFSSIEIVERS

3+ 105–167 13

4+ 157–219 13 PL189 188–204 PLMSPMTLDEMRHFYKD

5 209–271 13 PL190 218–229 SRHAGNMIPDND

PL191 259–271 NGPRYCNKDE

6 261–323 13 PL192 279–288 AKDISFQNYT

7+ 313–375 13 PL171 348–366 DQPKQYEQHLTDYEKIKEG

8+ 365–427 13 PL193 390–402 YKSHGKGYNWGNY

9 417–479 13 PL172 444–461 SLYKNEIMKEIERESKRI

10+ 469–531 13

11+ 521–583 13 PL194 527–538 EYKDEYADIPEH

PL173 571–588 GNAEKYDKMDEPQHYGKS@

12 573–622 10 PL173 571–588 GNAEKYDKMDEPQHYGKS@

AMA1 peptide sequences and residue numbers were based on those of the P. falciparum clone FC27. Gene Bank ID 810891. Previously identified Class II AMA1 epitopes
were distributed among peptide pools, except pools 3 and 10.
*Number of 15mer peptides in each pool.
%As described in reference 46.
+Peptide pools used in ICS assays.
@Epitope PL173 overlaps AMA1 peptide pools 11 and 12.
doi:10.1371/journal.pone.0024586.t003
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control was CEF-Class I Peptide Pool Plus (CTL, Ohio, USA)

consisting of 32 peptides corresponding to defined HLA class I-

restricted T-cell epitopes from cytomegalovirus, Epstein-Barr virus

and influenza virus. Cultures were incubated for 36 hours (hr) at

37uC, 5% CO2. Each PBMC sample was assayed in triplicate or

quadruplicate and the number of IFN-c-secreting cells recognized

as spot-forming cells (sfc) was counted using an automated

ELISpot reader (AID, GmbH, Germany). For each triplicate or

quadruplicate, outliers were rejected if any single value contributed

more than 50% of the standard deviation of the triplicate (or

quadruplicate) and if its value was three-fold greater or less than the

average of the remaining two (or three) values. After removing

outliers, the mean sfc per million PBMC (sfc/m) obtained in

negative control wells was subtracted from the value of each test

well. Negative counts generated by this background subtraction

were converted to zero. The mean of the test sample was then

calculated and expressed as sfc/m. For each sample tested, the

response against CSP or AMA was presented as responses against

each individual peptide pool as well as the summed sfc/m responses

against all pools representing the antigen.

Criteria for positive ELISpot response. For each CSP and

AMA1 peptide pool tested against any given bleed, a positive

response was defined as (1) a statistically significant difference

(p = ,0.05) between average of the number of spot forming cells in

triplicate or quadruplicate test wells and the average of triplicate or

quadruplicate negative control wells (Student’s two tailed t-test),

plus (2) at least a doubling of spot forming cells in test wells relative

to negative control wells, plus (3) a difference of at least ten spots

between test and negative control wells. The volunteer was

designated as a responder when positive against at least one of the

pools tested at any post immunization sampling.

Characterization of IFN-c-producing cells by cell

depletion or enrichment studies. ELISpot assays were

carried out with PBMCs after depletion of T cell subsets using anti-

human CD4+- or anti-CD8+-coated Dynabeads M-450 (Dynal,

Great Neck, NY) following the manufacturer’s instructions. Mock

depletion was done by using Dynabeads coated with sheep anti-

mouse IgG. Flow cytometry confirmed that T-cell subset depletions

were .99% in all experiments. The data is presented as the %

change in activity after T cell subset depletion.

Intracellular cytokine staining (ICS). For each volunteer,

matched pre- and post-vaccination samples were tested

simultaneously. ICS was performed under a similar protocol as

published previously [48]. Briefly, vials of cryopreserved test cells

were thawed, washed, and resuspended at 106106 cells/mL in

20% fetal calf serum (FCS) (Hyclone, Logan, UT) in complete

RPMI (cRPMI) (RPMI-1640 (BioWhittaker, Walkersville, MD)

supplemented with penicillin/streptomycin (Sigma, St. Louis,

MO), 2-ME, non-essential amino acids, pyruvate, and glutamine

(Gibco, Grand Island, NY). All stimulants were diluted in cRPMI

with costimulatory antibodies anti-CD28 and anti-CD4+9d (BD

Bioscience, San Jose, CA) at a final concentration of 1 mg/mL

each (referred to as M+). Due to cell availability, only subsets of the

CSP (C1, C2, C6, and C9) and AMA1 (A1, A2, A3, A4, A7, A8,

A10, and A11) peptide pools were tested at 10 mg/mL for each

peptide. CEF peptide pool (Anaspec, San Jose, CA) was used at

2 mg/mL each peptide as an antigen-specific CD8+ positive

control for each volunteer. A bridging volunteer whose responses

were well characterized in our lab was included in each assay and

responses to M+, CEF and Staphylococcal enterotoxin B (SEB)

(Sigma; 0.5 mg/mL) were monitored to be within the normal

range. Stimulants were added to cells and incubated at 37uC with

5%CO2 for 2 hr. Golgi Plug (Brefeldin A) (BD Bioscience) was

added at a final concentration of 0.6 mL/mL and incubated at

37uC with 5%CO2 overnight, approximately 13–15 hr. Cells were

stained with anti-CD3 Alexa Fluor 700, anti-CD4+ PerCP, and

anti-CD8+ Pacific Blue (all BD Bioscience) and 1 mg/mL of live/

dead fixable blue dye (Invitrogen), incubated and washed. Cells

were permeabilized with Cytofix/Cytoperm solution (BD

Bioscience), incubated and washed. Cells were stained

intracellularly with anti-CD3 AlexaFluor700, anti-CD4+ PerCP,

anti-CD8+ Pacific Blue, anti-IFNFITC, anti-TNF PE, and anti-

IL-2 APC, incubated and washed. Cells were resuspended and

acquired on a BD LSRII using FACSDiVa (BD Bioscience)

software.

7-color flow cytometry was used to investigate the phenotype of

responding cells, and dead or dying cells were excluded from

analysis. Cells were phenotyped as CD4+ and CD8+ T cells and

assessed for functionality (cytokine secretion) by staining for IFN-c,

TNF-a and IL-2. The gating strategy involved progressively

measuring total cells; viable cells only; lymphocytes; T cells; CD4+
CD8+ populations; and finally a specific cell type expressing a

specific cytokine (Figure S1). Histograms were used to determine

the total production of IFN-c, IL-2, and TNF-a for the CD4+ or

CD8+ populations (a total of 6 histograms). Boolean gates were

used to determine cells producing combinations of cytokines.

Results were tabulated and transferred to Microsoft Excel and

Prism (GraphPad) for graphing and statistical analysis. Data for

peptide pools were corrected for media response at each time

point.

All pre- and post-vaccination PBMC samples for a given

volunteer were run in a single assay. The total IFN-c responses (T-

IFN-c) for the CD4+ and CD8+ T cell subsets were measured

regardless of which other cytokines were expressed. The T-IFN-c
included IFN-c+ IL-2+ TNFa+, IFN-c+ IL-2+ TNFa2, IFN-c+
IL-22 TNFa+ and IFN-c+ IL-22 TNFa-containing cells.

Multifunctional responses were calculated as cells that produced

2 cytokines (IFN-c + IL-2+ TNFa2, IFN-c+ IL-22 TNFa+, IFN-

c2IL-2+ TNFa+) or all 3 cytokines (IFN-c + IL-2+ TNFa+).

Finally, we examined the relative proportion of cells producing

any 1, 2 or 3 cytokines, where cells secreting just TNFa or IL-2

were included in the singles category. For time points after

immunization, responses were corrected for pre-bleed responses so

that magnitudes depicted are attributable to vaccination.

Enzyme-Linked Immunosorbent Assay (ELISA). ELISA

was used to measure total IgG antibody titers against the P.

falciparum CSP central repeat region using a hexameric synthetic

peptide (NANP)6 as the capture antigen and against P. falciparum

AMA1 using recombinant ectodomain protein [49]. Briefly, plates

were coated overnight at 4uC with (NANP)6 or AMA1 (100 mL/

well, 0.5 mg/mL), after which they were blocked with 0.5% boiled

casein buffer for 1 hr at 22uC. Test samples were added to the

plate, diluted in eight sequential two-fold dilutions (done in

triplicate) and incubated for 2 hr at 22uC. Secondary antibody

(Affinity Purified Peroxidase Labeled Goat anti-Human IgG (c),

KPL, Gaithersburg, MD: Cat# 074-1002) at a 1:4,000 dilution,

was added and incubated 1 hr at 22uC. A stop solution (20% SDS)

was added and the plates were read using a Spectromax 340OC

Plate Reader (Molecular Devices, Sunnyvale, CA). Between each

incubation step the wells were washed in PBS using a SkanWasher

Plate Washer (Molecular Devices) with four washing cycles of

400 mL each. Titer was defined as the serum dilution required

yielding an optical density reading of 1.0. Seroconversion was

established when post-immunization antibody titers differed

significantly (p,0.05, two tailed student t-test) from pre-

immunization titers.

Immunofluorescent Antibody Assay (IFA). P. falciparum

sporozoite-specific antibodies were assayed by immunofluorescent
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staining of air-dried P. falciparum sporozoites and P. falciparum

parasitized red blood cells as described previously [50].

Functional assay. In vitro growth inhibition of cultured P.

falciparum strain 3D7 blood stages was performed at the GIA

Reference Center at the National Institutes of Health by Dr.

Carole Long [51].

Statistical methods
SAS software was used to conduct all analyses [52] unless

mentioned otherwise. A mixed model, ANOVA model III, was

used to compare means of T cell responses (ELISpot, ICS)

between experimental groups and antigens. The model consisted

of group and time as fixed effect, a two-way interaction of group

versus time as fixed effect, and the individual as random effect.

Natural log transformation was used on the outcome measure to

stabilize the variance. For flow cytometry, acquired data files were

analyzed using FlowJo version 8.7.1 (Tree Star, Inc.), and SPICE

4.1.6 (developed by Mario Roederer, Vaccine Research Center,

NIAID/NIH). One-way ANOVA with Dunnett’s post-test was

performed for comparisons between pre- and post-vaccination

time points (as indicated), using GraphPad Prism version 5.00 for

Windows (GraphPad Software, San Diego, CA, USA). For

comparison of activities between groups at specific time points

Mann Whitney U tests and two-tailed probabilities were used. To

compare MFI activities of triple and single IFN-c secreting CD4+
and CD8+ T cells for Group 1 volunteers, the average MFI for

each volunteer using CSP and AMA1 peptides was log10-

transformed, values entered into Mann-Whitney U tests and the

two-tailed significance calculated.

Results

Participant flow
Participant flow is shown in Figure 2. Recruitment took place

between October 2006 and January 2008. 36 healthy, malaria-

Figure 2. Flow diagram of volunteers in Groups 1 and 2. The first six volunteers were allocated to Group 1 and the subsequent six volunteers
to Group 2. *Reasons for exclusion: lost to follow up (2), moved out of area (1), deployed (1), job commitments (1).
doi:10.1371/journal.pone.0024586.g002

Table 4. Demograpic characteristics of volunteers enrolled in
Group 1 and Group 2.

Group 1
N = 6

Group 2
N = 6

Male # 5 2

Female # 1 4

Age range 18–20 years 0 1

Age range 21–30 years 3 2

Age range 31–40 years 2 1

Age range 41–50 years 1 2

Overall age range years 22–43 19–49

Median age years 32.5 33.5

Mean age years 32.6 34.0

Caucasian # 3 3

African-American # 2 3

Hispanic # 1 0

Asian # 0 0

Individual Ad5 NAb titers ,12,,12,,12
,12,34,359

,12,,12,,12,
,12,19,48

The demographic distribution was similar in all categories, except there were
more males than females in Group 1, and more females than males in Group 2.
doi:10.1371/journal.pone.0024586.t004
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naı̈ve, civilian and military adult men and women, aged 18–50

years, were assessed for eligibility and 16 were excluded. A further

five were excluded for other reasons, and three were assigned to

the follow-on efficacy study (Tamminga et al). The remaining 12

volunteers who met all screening criteria were assigned sequen-

tially into the low vaccine dose Group 1 (n = 6) and then the higher

vaccine dose Group 2 (n = 6). Ten of the 12 immunized volunteers

completed active follow up for one year. Two volunteers were lost

to follow up after completing 28 weeks of participation following

vaccine administration.

The demographic make-up of the participant volunteers is

shown in Table 4. The vaccine groups were similar in age and

ethnicity although Group 1 had more males (5) than Group 2 (2).

All 12 immunized volunteers received their scheduled vaccinations

and were analyzed for safety and immunogenicity.

Local and systemic adverse events
Solicited post-immunization AEs recorded in each 14-day

follow-up period are shown in Table 5. The most common local

side effect was injection site pain and/or tenderness, occurring in

five of six (83%) volunteers in both Group 1 (low dose) and Group

2 (high dose). Most of these events were mild in severity. Ipsilateral

axillary lymphadenopathy with axillary tenderness occurred in two

Group 1 volunteers following immunization, attributed to the

effects of the vaccine. No volunteer in Group 2 developed

lymphadenopathy although one volunteer did experience ipsilat-

eral axillary tenderness accompanied by medial arm pain.(re-

corded as unsolicited AEs – see below). No Grade 3 local AEs

occurred in either group.

The most common systemic, vaccine-related AEs in Group 1

were headache, myalgia, and nausea, each occurring in two of six

volunteers, mostly of mild severity. In Group 2, headache and

nausea and/or vomiting each occurred in three of six volunteers,

also mostly of mild severity, but Group 2 volunteers also developed

malaise (four of six), subjective (two of six) or objective (two of six)

fever and chills (four of six). Although most of these events were

mild, malaise was more commonly of moderate severity.

One volunteer in Group 2 (v23) reported an episode of severe

chills, myalgia, and headache along with milder dizziness and

malaise; she reported that this was followed by a sensation of

difficulty talking and swallowing, throat swelling, blue discolor-

ation to her fingernails and nausea (with these latter complaints all

resolving that evening). The onset of symptoms was approximately

8 hours post vaccination while the volunteer was at work; these

events were not observed by the study team. Pulse oximetry taken

during the episode at the request of the volunteer, by a nurse at the

volunteer’s place of employment, was reportedly normal. Because

of the timing, this cluster of symptoms was listed as probably

related to vaccination. This volunteer was one of two in Group 2

who experienced an objective fever with a temperature of 100.6uF
(Grade 1) on day 1 post vaccination. In addition, this volunteer

also experienced a Grade 3 decrease in absolute neutrophil count

and a Grade 1 decrease in WBC on day 2; both of these laboratory

AEs had normalized by day 8 (see below for laboratory AEs). One

Table 5. Local and systemic Adverse Events in Group 1 and Group 2.

Sign or Symptom Group 1 N = 6 CSP+AMA1 low dose Group 2 N = 6 CSP+AMA1 high dose

All Gr 3 All Gr 3

LOCAL

Pain/Tenderness 5 (83) 0 5(83) 0

Erythema 0 0 0 0

Induration/Swelling 0 0 1(17) 0

Warmth 0 0 1(17) 0

Hives 0 0 0 0

Lymphadenopathy 2(33)* 0 0 0

Limited arm motion 1(17)* 0 0 0

MEAN{ LOCAL 1.3 1.2

SYSTEMIC

Headache 2(33) 0 3(50) 1(17)

Malaise 1(17) 0 4(67) 0

Fever (objective) 0 0 2(33){ 0

Fever (subjective) 1 (17) 0 2(33) 0

Chills 0 0 4(67) 1(17) 1

Myalgia 2(33) 0 2(33) 1(17)

Arthralgia 1(17) 0 1(17) 0

Nausea/vomiting 2(33) 0 3(50) 0

Diarrhea 0 0 1(17) 0

Blurred vision 0 0 1(17) 0

Dizziness 0 0 1(17) 0

MEAN{ SYSTEMIC 1.5 4.0 0.5

Gr = severity grade.
*ipsilateral axillary tenderness.
doi:10.1371/journal.pone.0024586.t005
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vaccine-unrelated serious adverse event (SAE), hospitalization for

depression and alcohol use, occurred in a volunteer in Group 1

approximately 3 m after immunization. The volunteer had a prior

history of these conditions.

Overall, the number of systemic but not local AEs related to the

vaccine was significantly greater in Group 2 than in Group 1 when

these two groups were compared (systemic: 24 in Group 2 vs. 9 in

Group 1, p = 0.014) by Wilcoxon two-sample test, (and see analysis

in Tamminga et al when the five most common or important AE’s

are considered). Subjects who reported more local AE’s also

reported more systemic AE’s (data not shown).

Unsolicited adverse events
Volunteers were questioned for unsolicited symptoms for 28

days following vaccine administration. Their unsolicited AEs are

listed in Table S1. The unsolicited AEs considered definitely or

probably related to immunization were: ipsilateral arm stiffness

(n = 1) or pain (n = 1), axillary tenderness (n = 2, mentioned above,

associated with axillary adenopathy in two volunteers), and the

complex of symptoms experienced by v23, discussed above under

‘‘Local and Systemic Adverse Events’’. Several volunteers

experienced clinical syndromes of mild or moderate severity

consistent with adenovirus infection, but the timing relative to

immunization was variable suggesting that these were probably

not related to immunization. The rate of occurrence of these

miscellaneous clinical syndromes was consistent with background

infections circulating in the community during the periods of

immunization.

Laboratory adverse events
Safety labs were collected on days 0, 2, 7, 14, and 28 post

immunization (complete blood count with differential; chemistry

panel including sodium, potassium, blood urea nitrogen, creati-

nine, aspartate aminotransferase, alanine aminotransferase, phos-

phorous, glucose, calcium, albumin, total protein, bilirubin,

alkaline phosphatase; and, on day 14 only, urinalysis including

urine protein, glucose and blood). There was a fall in total white

blood cell count (WBC) recorded in most volunteers on day 2

following immunization, with complete or near complete recovery

by day 7. When examined by WBC subset, this consisted primarily

of reductions in neutrophils (Figure 3) and to lesser degree

lymphocytes. There was suggestive evidence of a dose-response, as

neutropenia in Group 1 reached Grade 1 in one of six and Grade

2 in two of six volunteers, while in Group 2 it reached Grade 2 in

two of six and Grade 3 in one of six volunteers. Only one volunteer

(Group 2) had a neutrophil count less than 1000 cells per mm3

(936 cells) on day 2 post immunization, with resolution by day 8.

There were no other laboratory trends noted.

Immunogenicity
T cell responses to CSP by ex vivo IFNc ELISpot

Assay. ELISpot CSP IFN-c responses of the six Group 1

volunteers (receiving the lower dose of vaccine, 161010 pu of each

construct totaling 261010 pu) were detected at 10 d post

immunization, peaked at 1 m (geometric mean response,

summed across peptide pools for each volunteer, 422, range

114–1066 sfc/m), declined at 4 m, but were detected as late as

12 m (Figure 4, upper panel). Although responses differed among

volunteers, all volunteers met criteria for positive responses at 4 m,

not all were positive at 7 m but all became positive again at 10 m

(Figure 5, left panel). ELISpot CSP IFN-c responses of Group 2

(561010 pu each construct totaling 161011 pu) were qualitatively

similar to those of Group 1 (Figure 4, lower panel), but were

significantly lower at 1 m (geometric mean 154, range 52–493 sfc/

m) and during the follow up period (p = 0.049, Anova). This

finding was reflected in the fewer numbers of volunteers meeting

criteria for a positive response in Group 2 compared to Group 1

(p = 0.045, Anova) (Figure 5, left panel).

To assess which peptide pools elicited the strongest responses,

we selected those contributing at least 33% of the sfc/m recorded

for the highest pool at a given time point. This analysis showed

that Cp1, Cp2, Cp6 and Cp9 were the most strongly recognized at

1 m through 10 m (Table 6, upper panel, seen also in Figure 4,

upper panel), while in Group 2, the same four pools were

dominant at 1 m but not at later time points (Table 6, upper

panel, seen also in Figure 4, lower panel).

T cell responses to AMA1 by ex vivo IFN-c ELISpot

Assay. As with CSP, low dose (Group 1) IFN-c ELISpot

responses to AMA1 were detected at 10 d, peaked at 1 m

(geometric mean response, summed across peptide pools for each

volunteer, of 862, range 353–2193 sfc/m) and declined at 7 m but

were still detected in all volunteers at 10 and 12 m (Figure 6, upper

panel), and were approximately two fold higher but with a similar

kinetic response compared to CSP. As with CSP, IFN-c ELISpot

responses to AMA1 over the course of the study were significantly

lower in the high dose group at 1 m (geometric mean of 423, range

135–1418 sfc/m) and for the duration of the study (Figure 6, lower

panel, p = 0.045, Anova) and demonstrated more positive

responders to AMA1 than Group 2 (p = 0.013, Anova) (Figure 5,

right panel).

In Group 1 for AMA1, 11 out of 12 individual peptide pools

were above the 33% cut off at 1 m, with Ap1, Ap4, Ap8 and Ap10

showing the strongest responses (Figure 5, right panel, seen also in

Figure 6, upper panel) and remaining dominant at 4, 7, and 10 m.

Ap11 also became dominant at 7 and 10 m, and Ap2 and Ap7 at

10 m. In contrast, in Group 2, 6 of the 11 peptide pools were

above the cut off at 1 m and the strongest recognition was of Ap3

Figure 3. Neutrophil kinetics in Groups 1 and 2 after
immunization. A fall in neutrophil count was observed in most
volunteers at 2–3 days post-immunization with return to normal or near
normal levels by day 7 post-immunization.
doi:10.1371/journal.pone.0024586.g003
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and Ap9, although Ap1, Ap4 and Ap10 as in Group 1 were also

dominant at 1 m and 4 m (Table 6, lower panel, see also Figure 6,

lower panel).

ELISpot CD4+ and CD8+ T cell depletion

experiments. The role of CD4+ and CD8+ T cells in

ELISpot responses was investigated by depletion of CD4+ or

CD8+ T cells using frozen PMBC’s from the low dose group

(36 hr stimulation assay as for fresh ELISpot) (Table 7). After

depletion, cell numbers were not further adjusted, and were tested

for IFN-c secretion. Due to limited availability of cells, only the

four dominant CSP and ten dominant AMA1 peptide pools were

tested. v006 was excluded, based on relatively low frequency of

recognition in ELISpot assays. Generally, responses by each

volunteer to peptide pools were reduced either by depleting CD4+
T cells only, or by depleting either CD4+ or CD8+ T cells. Only

three CD8+ T cell-specific activities were observed, one with v001

and Cp2, one with v008 and Ap3, and one with v012 and Cp1.

With v001, ELISpot activity in response to five peptide pools rose

Figure 4. ELISpot activity of serial bleeds of volunteers in Group 1 and Group 2 with CSP peptide pools. The ELISpot activities of each
volunteer at pre-immunization, 10 d and 1, 4, 7, 10 and 11–12 m are displayed using color-coded CSP peptide pools Cp1–Cp9. The inserts show the
values of the sum of each volunteer’s responses at each time point and the bar indicates the geometric mean of the group. At 1 month, geomean
values were higher (422 sfc/m PBMC’s) in the low dose Group 1 than the high dose Group 2 (154 sfc/m PBMC’s).
doi:10.1371/journal.pone.0024586.g004
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after CD8+ T cell depletion, suggesting that a subset of CD8+ T

cells might have suppressed total ELISpot activity. In general,

different outcomes for the various peptide pools were observed

with each volunteer. For example Cp2 was recognized as

containing a CD8+ T cell epitope by v001, a CD4+ T cell

epitope by v002 and v005, and both CD4+ and CD8+ T cell

Figure 5. Percent of Group 1 and Group 2 volunteers who responded to one or more CSP or AMA1 peptide pools at each time point
after immunization. ELISpot activity was determined to be positive or negative for a given peptide pool as described in Methods. A positive
volunteer is one who recognized one or more peptide pools at each of the time points 10 d and 1, 4, 7, 10 and 11–12 m after immunization. The
percent positive responders are displayed at each time point for CSP or AMA1.
doi:10.1371/journal.pone.0024586.g005

Table 6. Immunodominant CSP and AMA1 peptide pools by ELISpot assay.

Group 1 Group 2

Cp 10 d 28 d 4 m 7 m 10 m 12 m 10 d 28 d 4 m 7 m 10 m 12 m

1 1 3 3 1 2 2 1

2 6 5 3 2 2 2 1

3

4

5

6 2 1 1 1 1 1

7

8

9 3 3 1 4 1 1

Ap 10 d 28 d 4 m 7 m 10 m 12 m 10 d 28 d 4 m 7 m 10 m 12 m

1 2 2 2 2 1 1

2 1 1 1

3 3 2 1 2 1 2 1 1

4 3 4 2 1 1 2

5 1 3

6 1 3

7 2 5 1

8 4 4 1 1

9 2 1 4 2 1 1 1

10 3 3 2 2 1 2 1

11 1 3 1 1 1 1

12 1 1

The peptide pools that were most strongly recognized at each time point by a volunteer demonstrating an overall positive response were arbitrarily identified as
immunodominant if the response to that pool exceeded one-third the value of the responses to the pool with the peak response in that volunteer. The number of
volunteers who met criteria for immunodominance for a given peptide pool is shown in each box. Responses to CSP pools were consistent in both Groups but more
variable to AMA1 in Group 1 and Group 2.
doi:10.1371/journal.pone.0024586.t006
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epitopes by v008 and v012. It is likely that epitope mapping studies

using these volunteers would identify multiple class I and class II-

restricted epitopes in this region of CSP.

Total-IFN-c (T- IFN-c) responses to CSP peptides by

ICS. Using frozen PBMC’s, multi-parameter flow cytometry

and ICS were conducted at time points following immunization of

Groups 1 and 2, using the four most strongly stimulating CSP

peptide pools in ELISpot assays (Cp1, Cp2, Cp6 and Cp9,

Table 6). We first established that the mean ratio of CD4+ : CD8+
T cells in the gated CD3+ T cell population of each volunteer was

2.3 (range 1.9–2.5, data not shown). Then we compared the T-

IFN-c producing CD4+ or CD8+ T cells in each group that

included cells producing IFNc only and cells that produced IFNc
in combination with one or two other cytokines (IL2, TNF-a) but

not cells producing only IL2, TNF-a or their combination. In the

low dose group (Group 1), total CD8+ IFN-c responses to CSP

Figure 6. ELISpot activity of serial bleeds of volunteers in Group 1 and Group 2 with AMA1 peptide pools. The ELISpot activities of each
volunteer at pre-immunization, 10 d and 1, 4, 7, 10 and 11–12 m are displayed using color-coded AMA1 peptide pools Ap1–Ap12. The inserts show
the values of the sum of each volunteer’s responses at each time point and the bar indicates the geometric mean of the group. At 1 month, geomean
values were higher (862 sfc/m PBMC’s) in the low dose Group 1 than the high dose Group 2 (422 sfc/m PBMC’s).
doi:10.1371/journal.pone.0024586.g006
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Table 7. Percent change in ELISpot responses after depleting CD4+ or CD8+ T cells at 1 m time-point.

Peptide Pool V001 V002 V005 V008 V012

Depleted Cells: CD4+ CD8+ CD4+ CD8+ CD4+ CD8+ CD4+ CD8+ CD4+ CD8+

Cp1 * * * * * * * * NC 257

Cp2 NC 288 290 NC 2100 NC 277 288 255 277

Cp6 * * 268 272 2100 NC * * 276 NC

Cp9 2100 +300 274 NC 299 NC 261 293 2100 NC

Ap1 * * 251 2100 256 299 * * * *

Ap2 * * 292 NC 2100 245 280 269 * *

Ap3 * * 287 NC 293 234 NC 290 * *

Ap4 291 +283 262 280 257 267 * * * *

Ap5 279 +145 * * * * * * * *

Ap6 265 +148 * * * * 290 NC * *

Ap7 NC NC 290 261 * * 297 NC 284 265

Ap8 * * * * * * 267 295 257 233

Ap10 247 266 * * * * * * 277 292

Ap11 276 +78 252 275 280 NC * * 283 2100

IFN-c production by ELISpot assay was measured with and without depletion of either CD4+ or CD8+ T cell populations and is expressed as percent change in spot
forming cells with depletion. A negative value indicated IFN-c decreased by the indicated percentage after depletion, and a positive value indicated IFN-c increased
after depletion. All peptide pools tested in ELISpot depletion studies met criteria for positive in the absence of depletion (Figures 1 and 2). Any decrease or increase in
ELISpot responses of $25% following depletion was scored as positive and a number is provided in the table, while changes ,25% were scored as no change (NC).
*Not tested.
doi:10.1371/journal.pone.0024586.t007

Figure 7. T-ICS CD4+ and CD8+ IFN-c activity of serial bleeds of volunteers in Group 1 with CSP peptide pools. Four Cp peptide pools
that were most strongly recognized in ELISpot assays were used to determine ICS CD4+ and CD8+ IFN-c activity. The ICS CD4+ and CD8+ T cell
activities of each volunteer at 10 d and 1, 4, and 7 m (subtracting pre-immunization values) are displayed using color-coded CSP peptide pools.
Scales for each phenotype have been equalized to emphasize the lower CD4+ responses. The inserts show the values of the sum of each volunteer’s
responses at each time point and the bar indicates the geometric mean of the group. At 1 month CD8+ responses (geomean 0.21% CD8+ T cells, std
dev 0.14) were higher than CD4+ responses (geomean 0.044% CD4+ T cells, std dev 0.075).
doi:10.1371/journal.pone.0024586.g007
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generally peaked 1 m after immunization and were approximately

5 fold higher than total CD4+ IFN-c responses as a percent of

gated CD8+ or CD4+ T cells, respectively (geomeans 0.21%

CD8+ [range 0.0761–0.4131%], 0.044% CD4+ [range 0.002–

0.2125%]) (Figure 7). This difference between CD8 and CD4 was

highly significant comparing all time points (10 d to 7 m)

(p = 0.0001, Anova). When corrected for the 2.3 times larger

number of CD4+ vs. CD8+ T cells in the gated CD3+ T cell

population, the predominance of CD8+ over CD4+ T was

approximately 2-fold.

The high dose group (Group 2) demonstrated a similar pattern

of total CD8+ and CD4+ T cell IFN-c responses to CSP by ICS as

the low dose Group 1 (Figure S2) but with lower magnitude

compared with Group 1, (geomeans 0.020% CD8+ [range

0.0003–0.3001%], 0.006% CD4+ [range 0.0013–0.0455%])

consistent with the lower magnitude observed with ELISpot

responses (p = 0.0001 for CD8+ T cells, p = 0.054 for CD4+ T

cells, Anova). CD8+ T cells predominated over CD4+ T cells as

with Group 1 but this difference did not reach statistical

significance (p = 0.13, Anova).

Total IFN-c responses to AMA1 peptides by ICS. Multi-

parameter flow cytometry and ICS were conducted using the eight

strongest stimulating AMA1 peptide pools (Ap1, Ap2, Ap3, Ap4,

Ap7, Ap8, Ap10, Ap11, Table 6) at the same time points as CSP

following immunization of Groups 1 and 2. As with CSP, low dose

(Group 1) total CD8+ T cell IFN-c responses to AMA1 generally

peaked at 1 m, were 5-fold higher than CD4+ T cell IFN-c
responses as a percent of gated CD8+ or CD4+ T cells,

respectively (geomeans 0.44% CD8+ [range 0.1315–1.3302%],

0.086% CD4+ [range 0.0126–0.4480%]) (Figure 8) and remained

so throughout the study (p = 0.003, Anova). This difference was

also approximately 2-fold after correcting for the larger number of

CD4+ compared with CD8+ T cells in the gated CD3+ T cell

population. As with CSP, Group 2 AMA1 ICS total CD4+ IFN-c
and total CD8+ IFN-c responses at 1 m (geometric means: 0.15%

CD8+ [range 0.0122–1.0671%], 0.035% CD4+ [range 0.0046–

0.1054%]) were lower than Group 1 (p = 0.008 for CD8+ T cells,

p = 0.014 (Anova) for CD4+ T cells), but unlike CSP, the

predominance of Group 2 CD8+ AMA1 T cell responses over

CD4+ just reached significance (p = 0.0485, Anova) (Figure S3).

Multifunctional T cell responses to CSP and AMA1. We

next evaluated multifunctional T cells that produced two or more

cytokines: IFN-c+ IL2+ TNF-a +; IFN-c+ IL-2+ TNF-a2; IFN-c
+ IL-22 TNF-a +; IFN-c2 IL-2+ TNF-a+.

Group 1 multifunctional T cell responses to CSP: the

frequencies of multifunctional CD4+ and CD8+ T cell populations

were similar as a percent of gated CD8+ or CD4+ T cells,

respectively, at 1 m (geomean 0.06% CD8+ [range 0.0181–

0.1244%], 0.027% CD4+ [range 0.0035–0.2507%]) (Figure 9,

panels A and C), although CD8+ multifunctional cell frequencies

were more sustained over the 7 m period tested than CD4+
multifunctional cells (p = 0.0016, Anova) (Figure 9). The frequen-

cies at 1 m represented an increase in the proportion of

multifunctional cells relative to 10 d for both CD8+ and CD4+
populations (Figure 9, panels B and D).

Group 1 multifunctional T cell responses to AMA1: as with

CSP, CD4+ and CD8+ multifunctional responses to AMA1 were

similar to each other at 1 m (geomean 0.13% CD8+ [range

Figure 8. T-ICS CD4+ and CD8+ IFNactivity of serial bleeds of each volunteer in Group 1 with AMA1 peptide pools. Eight Ap peptide
pools that were most strongly recognized in ELISpot assays were used to determine ICS CD4+ and CD8+ IFN-c activity. The ICS CD4+ and CD8+ T cell
activities of each volunteer at 10 days and 1, 4, and 7 months (subtracting pre-immunization values) are displayed using color-coded AMA1 peptide
pools. Scales for each phenotype have been equalized to emphasize the lower CD4+ responses. The inserts show the values of the sum of each
volunteer’s responses at each time point and the bar indicates the geometric mean of the group. At 1 month, CD8+ responses (geomean 0.44% CD8+
T cells, std dev 0.58) were higher than CD4+ T-INF-c responses (geomean 0.086% CD4+ T cells, std dev 0.17).
doi:10.1371/journal.pone.0024586.g008
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0.0358–0.3612%], 0.07% CD4+ [range 0.0043–0.2613%],

Figure 10, panels A and C), but, in contrast to CSP, were not

quite statistically significantly different throughout the study

(p = 0.062, Anova). As with ELISpot responses, multifunctional

T cell responses to AMA1 were higher than for CSP (Figure 10

compared to Figure 9). The frequencies at 1 m represented an

increase in the proportion of multifunctional cells relative to 10 d

for both CD8+ and CD4+ populations (Figure 10, panels B and D)

similar to the increase observed with CSP (Figure 9). Of note, the

proportion of multifunctional CD8+ T cell responses remained

elevated at 7 m (Figure 10, panels B and D).

Group 2 multifunctional T cell responses to CSP and AMA1:

Frequencies of multifunctional CD4+ and CD8+ T cells among

gated CD4 and CD8+ T cells were lower than those identified in

Group 1 for both CSP (geomeans 0.0045 CD8+ [range 0.0002–

0.0309%], 0.009% CD4+ [range 0.0004–0.0387%]) (Figure S4)

and AMA1 (geomeans 0.04% CD8+ [range 0.0130–0.0579%],

CD4+ 0.022% [range 0.0017–0.1217%]) (Figure S5). When

comparing CSP to AMA1, as with Group 1, the frequencies of

CD4+ T cell multifunctional responses to CSP (Figure S4, top

panel) were lower than to AMA1 (Figure S5, top panel) at 1 m.

Median Fluorescence Intensity (MFI). The MFI of the

IFN-c signal was calculated at 1 m for four IFN-c-secreting T cell

populations: CD4+ triple secretors (IFN-c + IL-2+ TNFa+), CD8+
triple secretors (IFN-c+ IL-2+ TNFa+), CD4+ single secretors

(IFN-c+ IL-22 TNFa2) and CD8+ single secretors (IFN-c+ IL-

22 TNFa2). The MFI for the IFN-c signals of each of these

populations was determined by (1) calculating the geometric mean

across 12 peptide pools (Cp1 Cp2 Cp6, Cp9, Ap1, Ap2, Ap3, Ap4,

Ap7, Ap8, Ap10 and Ap11) for each of the six volunteers in Group

1, and (2) calculating the geomean of these six values, yielding one

MFI value for each population. IFN-c+ MFIs for the two triple

secreting CD4+ and CD8+ T cell populations were approximately

7–10-fold higher than for the respective single secreting CD4+ and

Figure 9. Multifunctional CD4+ and CD8+ T cells of serial bleeds of volunteers in Group 1 with CSP peptide pools. A and C:
Multifunctional (any two cytokines) CD4+ and CD8+ T cell activities of each volunteer at 10 d, 1, 4, and 7 m after immunization (subtracting pre-
immunization values) are displayed using color-coded CSP peptide pools. At 1 month, CD4+ multi responses (geomean 0.027% CD4+ T cells, std dev
953) and CD8+ multi responses (geomean 0.06% CD8+ T cells, std dev 346) were similar. B and D: Pie charts representing the proportion of the
cytokine response indicated by cytokine subsets as shown; numbers on pie charts represent percent of that subset of the total cells.
doi:10.1371/journal.pone.0024586.g009
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CD8+ T cell populations (CD4+ triple geomean 6,009, range 699–

27,210; single geomean 839, range 267–5359; CD8+ triple

geomean 10,415, range 594–36,640; single geomean 1,067,

range 277–3960) (Figure S6). The significance of differences

between triple and single secretors was calculated in Mann-

Whitney U tests using two-tailed probabilities. The IFN-c+ MFI of

CD4+ and CD8+ T cell triple secretors was significantly higher

than single secretors (p = 0.002 for CD4+, p = 0.002 for CD8+,

respectively), but the difference between CD4+ and CD8+ triple

secretors was not significant (p = 0.39). Although the proportion of

double and triple cytokine secretors (Figures 9 and 10; panels B

and D) was small when compared to the proportion of single

cytokine secretors, this increase is greatly magnified by the 7–10-

fold increases in MFI. Assuming that IFN-c + MFI roughly

corresponds to the magnitude of the IFN-c response, these data

indicate that triple IFN-c secreting T cells contributed

disproportionately to the overall IFN-c response and thus may

be more potent immune effectors.

Concordance between ELISpot and flow cytometry

assays. We next examined the results of ELISpot and flow

cytometry assays to see if they were generally concordant. To

make this determination, we identified the single peptide pool

most strongly recognized by ELISpot assay for each volunteer for

CSP and for AMA1 at 1 m (Figures 4 and 6, respectively). We

compared this to the single peptide pool most strongly

recognized by ICS assay for each volunteer for CSP and

AMA1 at 1 m (Figures 7 and 8, respectively). Because not all

peptide pools were tested by ICS, this comparison was restricted

to the peptide pools that were tested. CD8+ T cells were selected

over CD4+ T cells for the comparison between ELISpot and

flow cytometry because they were the dominant responses

measured by the ICS assay.

Figure 10. Multifunctional CD4+ and CD8+ T cells of serial bleeds of volunteers in Group 1 with AMA1 peptide pools. A and C:
Multifunctional (any two cytokines) CD4+ and CD8+ T cell activities of each volunteer at 10 d, 1, 4, and 7 m after immunization (subtracting pre-
immunization values) are displayed using color-coded AMA1 peptide pools. At 1 month, CD4+ multi responses (geomean 0.072% CD4+ T cells, std
dev 94) and CD8+ multi responses (geomean 0.13% CD8+ T cells, std dev 14) were similar. B and D: Pie charts representing the proportion of the
cytokine response indicated by cytokine subsets as shown; numbers on pie charts represent per cent of that subset of the total cells.
doi:10.1371/journal.pone.0024586.g010
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In five of the six volunteers assessed for CSP responses, and four of

the six volunteers assessed for AMA1 responses, the most strongly

recognized peptide pool was the same for both ELISpot and ICS

assays (CSP: Cp2 for v001, v008 and v012; Cp1 for v005 and v006;

AMA1: Ap10 for v001 and v006; Ap4 for v002; Ap8 for v008). For

the two non-concordant volunteers assessed for AMA1 responses, the

two most strongly recognized peptide pools were the same for both

assays, but with the rank order different (Ap1 and Ap4 for v005; Ap8

and Ap10 for v012), also indicating approximate concordance. Only

for v002, where ELISpot and ICS were unmatched with regard to

CSP, was there discordance; this volunteer most strongly recognized

Cp2 by ELISpot, while CD8+ T cells did not recognize this pool by

ICS assay. However, CD4+ T cells from this volunteer did recognize

Cp2 by ICS assay and could account for the strong response by

ELISpot assay. When non-dominant pools were compared between

ELISpot and ICS assays, concordance was not as apparent as with

the dominant peptide pool. Concordance was also not as apparent

when CD4+ T cell responses were compared.

Antibody responses. Antibody responses measured by

ELISA to CSP and AMA1 were modest (Figure 11), peaking

1 m after immunization and trending higher in Group 2 than in

Group 1 (CSP, p = 0.23; AMA1, p = 0.06, Mann-Whitney U test

2-tailed). Conversion of AMA1 ELISA titers to micrograms of

immunoglobulin per milliliter, using quantified controls, revealed

a geometric mean antibody concentration for AMA1 of 8.13 mg/

mL (range 3.45–12.38 mg/mL) at 1 m post immunization for

Group 1 and 17.89 mg/mL (range 7.65–40.34 mg/mL) for Group

2, the latter significantly higher (p = 0.04, Mann-Whitney U test 2-

tailed). At 1 m, IFA antibody titers to P. falciparum sporozoites or

parasitized red blood cells likewise appeared higher in Group 2 at

1 m (but were not significantly different). Growth inhibition assays

using parasitized red blood cells were performed to see if the

antibodies inhibited the growth of P. falciparum in culture, and

although inhibitory activity increased marginally post-

immunization, particularly in Group 2 where antibody responses

were higher, it did not exceed 15% for any volunteer (data not

shown).

A summary of all immunogenicity assays, ex vivo IFN-c ELISpot,

intracellular cytokine staining (ICS), Median Fluorescence Inten-

sity (MFI), and antibody responses measured by ELISA and IFA,

is shown in Table 8.

Discussion

Interpretation
The first objective of this dose-escalation study was to assess the

safety and reactogenicity of the NMRC-M3V-Ad-PfCA vaccine.

This study demonstrated that NMRC-M3V-Ad-PfCA given as a

single dose of 261010 pu or as the five-fold higher dose of

161011 pu was safe and well tolerated in malaria-naı̈ve adult

volunteers. One volunteer receiving the higher dose experienced

severe chills, myalgia, and headache and additional symptoms

eight hours following immunization that resolved without

intervention. Transient, clinically unapparent neutropenia devel-

oped consistently in most volunteers during the first several days

following immunization, with one Grade 3 neutrophil decrease

occurring with the higher dose.

The second objective of this study was to measure the

immunogenicity of the 261010 pu and 161011 pu doses. This

vaccine induced strong IFN-c responses against both the CSP and

Figure 11. Group 1 and Group 2 anti-CSP and AMA1 antibody responses by ELISA and IFA. A and B: Box plots of the means and 25% and
75% percentiles of each group at 10 d and 1, 4, 7, 10 and 11–12 m after immunization. The first and third quartiles are the top and base of each box,
and the upper and lower bars represent the high and low values respectively. C: IFA titers of each group pre-immunization and at 1 month post-
immunization against sporozoites (left panel) and infected red blood cells (right panel). Bars represent geomeans.
doi:10.1371/journal.pone.0024586.g011
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AMA1 antigens in healthy, seronegative adults as demonstrated by

ex vivo ELISpot assay, with CD8+ T cell responses predominating

over CD4+ T cell responses in ICS assays. Both CD4+ and CD8+
T cell responses generally peaked at 1 m after immunization and

persisted for up to 12 m in many volunteers. Although pool-

specific responses for a given volunteer were consistent over time,

responses varied among volunteers and between antigens, likely

reflecting differences in genetic restriction. The dominant one or

two pools identified by ex vivo ELISpot assay for each volunteer at

1 m post immunization were also dominant for the CD8+ T cell

responses identified by ICS assay in nearly all (11/12) cases,

indicating that these pools likely contained immunodominant CD8

epitopes.

Our results constitute the first demonstration of a malaria

vaccine inducing a predominant CD8+ T cell (relative to CD4+ T

cell) response in humans as detected by ICS IFN-c assay, although

cytotoxic T lymphocyte responses, presumably mediated by CD8+
T cells, have been demonstrated following the administration of

DNA-vectored [47] and virally vectored malaria vaccines [53,54].

This result underscores the potential value of adenovectored

vaccines for eliciting mechanisms that may mediate protective

responses against infectious agents such as malaria where CD8+ T

cell responses are proposed to be critical effectors of protective

immunity. Similar responses have been induced by adenovectored

malaria antigens in animal models [24] and adenovectored HIV

antigens in humans [41].

Ex vivo IFN-c responses to CSP and AMA1 by both ELISpot

and ICS assays were statistically significantly higher when the

vaccine was administered at 161010 pu of each construct relative

to a five-fold higher dose. These results are generally concordant

with other clinical studies of adenovirus (serotype 5)-vectored

vaccines showing little change or a drop in responses in Ad5

seronegative individuals comparing 1010 pu to 1011 pu, with some

variation depending on the antigen tested [41,55,56]. The inverse

relationship between ELISpot responses and dose demonstrated in

our study may reflect an inverse relationship between the

frequency of multifunctional T cells and antigen load [57].

Because the loss of response at the higher dose was statistically

significant and is supported by other studies, we selected the lower

dose as optimal for further clinical development.

Interestingly, when ELISpot assays were performed following

depletion of either CD4+ or CD8+ T cells, most responses to

individual peptide pools were CD4+ T cell-dependent (17 of 39

assays, or CD4+ and CD8+ T cell-dependent (19 of 39 assays), and

in only three cases dependent on CD8+ alone. The paucity of

responses dependent solely on CD8+ T cells despite the

predominance of CD8+ T cell responses may indicate that

CD8+ T cell epitopes are nested within or adjacent to CD4+ T cell

epitopes or reflect the importance of CD4+ T cell help. In one

volunteer (v001), CD8+ depletions increased IFN-c levels

(observed by others [58]), possibly reflecting the presence of

regulatory T cells of the CD8+ phenotype that were inhibiting

autologous T cell responses and which potentially might negatively

affect vaccine efficacy [59].This is consistent with other findings

that CD8+ T cell responses depend on CD4+ T cells suggesting

that CD4+ and CD8+ T epitopes may overlap [60,61].

There was a tendency for the volunteers in each group to

recognize more pools from AMA1 than CSP (Table 6). This likely

reflects the longer length of the AMA1 construct compared with

CSP construct (622 vs. 333 amino acids, respectively), and may

explain why summed responses to AMA1 were larger than

responses to CSP. We found, like others [62], that the N-terminal

region of CSP (spanned by Cp1 and Cp2) was highly

immunogenic and induced both CD4+ and CD8+ T cell

responses. This region contains CD8+-restricted epitopes (amino

acids 1–10, 7–16 [42,43,63]) and CD4+-restricted epitopes (amino

acids 1–16 [60], 51–70 [44,60]). However, C-terminal peptide

pools Cp6 and Cp9 also induced strong T cell responses and

contain previously described T cell epitopes CST3 [64], Th2R

and Th3R [65], and several others [44]. This may be important

when comparing this vaccine to the protective vaccine RTS,S,

where the CSP N-terminal is absent [66]. The AMA1 peptide

pools recognized by ELISpot or ICS in this study overlapped

peptides recognized by proliferating T cells in a study in Africa

[46], including a peptide associated with a lower risk of

parasitemia [67] contained within peptide 13 in Ap5.

The NMRC-M3V-Ad-PfCA vaccine induced a low frequency

of multifunctional CD4+ and CD8+ T cell responses (cells

producing any 2 or more cytokines), with differences in MFI

indicating that the triple secreting CD8+ T cells produced 7–10-

fold more IFN-c than single secretors, consistent with other studies

[57]. Thus, even though triple secretors remained less than 10% of

cells secreting IFN-c, TNF-a and/or IL2, their contribution to

overall IFN-c production was disproportionately large. Such cells

may be associated with protective immunity (leishmaniasis, HIV)

although the role of either CD4+ or CD8+ multifunctional T cells

in malaria, though suggested [25,68,69], remains to be proven.

Adenovectored vaccines have induced multifunctional CD8+ T

cell malaria and HIV-1 responses in mice and macaques

[70,71,72].

Table 8. Summary of immunogenicity activities.

Grp Assay T cell CSP p AMA1 P

1 ELISpot 4226337 0.049@ 8626697 0.045@

2 1546203 4236466

1 ICS CD8+ 0.21060.14 0.0001* 0.4460.58 0.003*

CD4+ 0.04460.075 0.08660.17

2 CD8+ 0.02060.12 0.13* 0.1560.46 0.049*

CD4+ 0.00660.017 0.03560.038

1 ICS CD8+M 0.0660.035 0.0016* 0.1360.14 0.062*

CD4+M 0.02760.095 0.07260.094

2 CD8+M 0.004560.013 0.74* 0.0460.172 0.26*

CD4+M 0.00960.013 0.02260.060

1 MFI CD8+3 10,41567,221 0.002$

CD8+1 1,0676432

CD4+3 6,00963.016 0.002$

CD4+1 8396295

1 ELISA 6926141 0.23@ 4,39561,718
863 (ug/ml)

0.06@

0.04@

2 93062,412 8,47865,650
18612 (ug/ml)

Sporozoites IRBC

1 IFA 8066425 0.19@ 64060 0.066@

2 1,43761,717 1,1406944

ELISpot was expressed as sfc/m; ICS as % CD4+ or CD8+ T cells; MFI as
geometric mean; ELISA as titer or concentration; IFA as titer. p values were
calculated by ANOVA over the course of this study and compare activities in
Group 1 and Group 2 (@), CD4+ and CD8+ activities in each group (*), or MFI in
CD8 triple cytokine secretors (CD8+3) and CD8+ single cytokine secretors
(CD8+1) ($). CD8+M and CD4+M are multifunctional T cells (secreting two or
more cytokines).
doi:10.1371/journal.pone.0024586.t008
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Antibody titers were low as measured by ELISA, and did not

significantly inhibit growth in vitro using 15% inhibition as a

positive threshold. Previous studies suggested that 15% growth

inhibition required approximately 30 mg/mL of purified human

anti-AMA1 antibodies [73], above the levels achieved in this trial

(8.13 mg/mL–17.89 mg/mL). Antibody titers to sporozoites as

measured by IFA were lower than the IFA titers commonly

achieved with the RTS,S vaccine [18], but antibody titers to

infected red blood cells were similar to the IFA titers achieved by a

recombinant AMA1 vaccine [74] in another human trial. When

the low dose and high dose groups were compared, there was a

trend toward higher antibody responses in the high dose group

that reached significance when AMA1 antibody in micrograms per

milliliter was compared, the reverse of what was observed for T

cell responses. Based on animal studies [75] and a recently

published clinical trial [76], superior antibody responses might be

obtained if this adenovectored vaccine were administered as part

of an appropriate prime-boost regimen, without losing potency for

inducing T cell responses.

Irradiated P. falciparum sporozoites induce sterile protective

immunity in humans, and CSP is a dominant protective antigen

[77,78]. ELISpot responses from irradiated sporozoite-protected

volunteers using CSP peptide pools were low, 41.6620.1 sfc/m

[79] compared with 4226337 sfc/m in this study. Antibody

responses from irradiated-sporozoite protected volunteers were

also low [80,81] compared to the vaccine-induced antibody

activities induced in this referenced study [80].

Generalizability
This study indicates the potential value of adenovectored

malaria vaccines to induce responses thought to be related to

protection, particularly for inducing the CD8+ immune responses

likely critical for targeting liver stage parasites, although CD8+ T

cell functionality might be dependent on the kinetics of antigen

expression and presentation [82,83]. Adenovectors expressing

CSP, AMA1 as well as additional antigens should be tested in

humans alone and in prime-boost regimens for efficacy against

experimental sporozoite challenge. One interesting prime-boost

strategy would be to combine adenovectors with protein-based

vaccines. This regimen may provide high-level protection against

malaria due to induction of strong CD8+/CD4+ T cell responses

and strong antibody responses as observed in preclinical studies

[48].

Limitations
The main conclusions of this study – the predominance of

CD8+ over CD4+ T cell responses and the inverse relationship

between dose and magnitude of ELISpot responses – are

strengthened by the fact that they applied equally to both antigens

studied, CSP and AMA1. However, it is possible that the findings

will not extend to other malaria antigens. T cell responses were

statistically significantly stronger in the lower dose group, while

antibody responses trended stronger in the high dose group,

indicating a potential trade-off between achieving cellular and

humor immunity; thus it may not be possible to achieve both

simultaneously using adenovirus-vectored vaccines, although

heterologous prime-boost vaccines could circumvent this limita-

tion. Notably, the study was limited to Ad5 seronegative

volunteers. Because neutralizing antibodies could diminish the

effect of the vaccine on the recipients, and because the primary

objective of this first-in-humans study was to assess safety, it was

important to restrict the study to seronegatives in order to

maximize the expression of adverse events. Whether a seropositive

status, however, could blunt adverse reactions or immune

responses will need to be evaluated.

Overall evidence
This vaccine trial supports the safety and tolerability of

adenovirus vaccines within the range tested 161010–161011 pu,

and indicates that two antigens may be safely and effectively

combined, and the first evidence (see also Tamminga et al) that

adenovirus-vectored malaria vaccines induce robust IFN-c CD8+
T cell responses in humans.

Supporting Information

Figure S1 Gating strategy to separate CD4+ and CD8+ T
cell populations for analysis of cytokine secretion.
Histograms were used to determine the total production of IFN-

c, IL-2 and TNFa for the CD4+ or CD8+ populations (a total of 6

histograms). Boolean Gates are used to determine cells producing

combinations of more than one cytokine, or one cytokine only.

(TIFF)

Figure S2 Total ICS CD4+ and CD8+ IFN-c+ activity of
serial bleeds of volunteers in Group 2 with four
dominant CSP peptide pools. Four Cp peptide pools that

were most strongly recognized in ELISpot assays were used to

determine ICS CD4+ and CD8+ IFN-c+ activity with Group 2

volunteers. The ICS CD4+ and CD8+ T cells activities of each

volunteer at pre-immunization, 10 d and 1, 4, and 7 m are

displayed using color-coded CSP peptide pools. Scales for each

phenotype have been equalized. *Not tested.

(TIFF)

Figure S3 Total ICS CD4+ and CD8+ IFN-c+ activity of
serial bleeds of volunteers in Group 2 with 8 dominant
AMA1 peptide pools. Eight Ap peptide pools that were most

strongly recognized in ELISpot assays were used to determine ICS

CD4+ and CD8+ IFN-c+ activity with Group 2 volunteers. The

ICS CD4+ and CD8+ T cells activities of each volunteer at pre-

immunization, 10 d and 1, 4, and 7 m are displayed using color-

coded AMA1 peptide pools. Scales for each phenotype have been

equalized. *Not tested.

(TIFF)

Figure S4 ICS multifunctional CD4+ and CD8+ T cells of
serial bleeds of volunteers in Group 2 following PBMC
stimulation with four dominant CSP peptide pools. The

multifunctional (any two cytokines) CD4+ and CD8+ T cells

activity of each volunteer at 10 d, 1, 4, and 7 m after

immunization are displayed using color-coded CSP peptide pools.

*Not tested.

(TIF)

Figure S5 Multifunctional CD4+ and CD8+ T cells of
serial bleeds of volunteers in Group 2 following PBMC
stimulation with eight dominant AMA1 peptide pools.
The multifunctional (any two cytokines) CD4+ and CD8+ T cell

activities of each volunteer at 10 d, 1, 4, and 7 m after

immunization are displayed using color-coded AMA1 peptide

pools. *Not tested.

(TIF)

Figure S6 Median Fluorescence Intensity of volunteers
at 1 m after immunization. The Median Fluorescent Intensity

(MFI) of the IFN-c signal for cytokine triple secretors and single

secretors was measured 1 m after immunization in CD8+ (left

panel) and CD4+ (right panel) T cell populations. Data from

Group 1 and Group 2 and from CSP and AMA1 are combined.

Ad5-Vectored falciparum Malaria Vaccine (CSP/AMA1)

PLoS ONE | www.plosone.org 19 October 2011 | Volume 6 | Issue 10 | e24586



The boxes represent 25th to 75th percentile, the bar within the box

the mean, the whiskers extend to 10th and 90th percentiles. The

significance of differences between activities was calculated using a

two-tailed Mann-Whitney U tests. Triple secretors appeared to

show a significant 7–10-fold higher signal intensity than single

secretors for CD4+ and CD8+ T cells, but CD4+ T cell triple

secretors appeared similar to CD8+ triple secretors.

(TIFF)

Table S1 Unsolicited adverse events experienced by
volunteers Days 0–28. Unsolicited adverse events were recorded

for 28 days following each immunization. Because of the theoretical,

even if remote, possibility of reversion of the vaccine to replication

competence, attention was paid to unexpected symptoms that might

have reflected adenovirus infection. However, the few clinical

syndromes observed in volunteers following immunization that were

consistent with adenovirus infection (upper and lower respiratory

infection, enteritis, urinary tract infection) bore no particular

relationship to immunization in terms of timing and appeared to

reflect background rates in the community.

(DOC)

Checklist S1

(DOC)

Protocol S1 Clinical protocol for NMRC-M3V = Ad-PfCA
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