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Abstract

Negotiation and trade typically require a mutual interaction while simultaneously resting in uncertainty which decision the
partner ultimately will make at the end of the process. Assessing already during the negotiation in which direction one’s
counterpart tends would provide a tremendous advantage. Recently, neuroimaging techniques combined with multivariate
pattern classification of the acquired data have made it possible to discriminate subjective states of mind on the basis of
their neuronal activation signature. However, to enable an online-assessment of the participant’s mind state both
approaches need to be extended to a real-time technique. By combining real-time functional magnetic resonance imaging
(fMRI) and online pattern classification techniques, we show that it is possible to predict human behavior during social
interaction before the interacting partner communicates a specific decision. Average accuracy reached approximately 70%
when we predicted online the decisions of volunteers playing the ultimatum game, a well-known paradigm in economic
game theory. Our results demonstrate the successful online analysis of complex emotional and cognitive states using real-
time fMRI, which will enable a major breakthrough for social fMRI by providing information about mental states of partners
already during the mutual interaction. Interestingly, an additional whole brain classification across subjects confirmed the
online results: anterior insula, ventral striatum, and lateral orbitofrontal cortex, known to act in emotional self-regulation and
reward processing for adjustment of behavior, appeared to be strong determinants of later overt behavior in the ultimatum
game. Using whole brain classification we were also able to discriminate between brain processes related to subjective
emotional and motivational states and brain processes related to the evaluation of objective financial incentives.
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Introduction
Neuroscientific studies of the brain mechanisms of social

decision-making offer new insight which helps to incorporate

human behavior into economic models. In the framework of

neuroeconomics, cognitive and neural constraints of the complex

processes of social decision-making are explored [1–5]. Experi-

mental paradigms from game theory are well suited to the

investigation of neural correlates of decision-making, because

profound empirical insight into human behavior is provided [1,6].

Using a real-time noninvasive technique based on fMRI, we

investigated the neural correlates of social decision-making and

tried to already infer the decisions made by participants involved

in social interaction from brain activation during scanning. We

employed a well-established economic game called the ultimatum

game (UG), in which two players split a given amount of money.

One player acts as the proposer, retaining one share of the money

and offering the remaining share to the other player (the

responder). The responder can either accept or reject the

proposer’s offer. If the offer is accepted, the money is split as

proposed. If the offer is rejected, neither player receives anything.

According to the notion of profit maximization, the proposer is

expected to offer the smallest possible sum of money and the

responder to accept this offer, because even the smallest profit is

preferable to no monetary reward [6]. Contrary to this

assumption, it has been repeatedly shown that the results of

negotiation in this game do not conform to the expected game-

theoretic equilibrium outcomes. Instead, low (unfair) offers of 10–

20% of the total sum of money are rejected in more than 50% of

cases [6,7], suggesting that emotions, attitudes, and expectations

influence players’ decisions.

Social interaction as in the ultimatum game may lead to

conflicts between players’ goals and internal attitudes and social

norms, which elicit emotions. These conflicts require considerable

cognitive effort to be resolved [2,8,9]. Consequently, previous

fMRI studies on decision-making report the involvement of

cortical and subcortical brain regions related to cognitive control,

such as prefrontal cortex, anterior cingulate cortex, and regions

connected to emotional response such as amygdala and insular

cortex (for a review see [1]). Decision-making processes in social

interaction scenarios have already been examined using functional

magnetic resonance imaging (fMRI) [3,4,10,11]. For example,

Sanfey et al. reported activation of anterior cingulate cortex,

anterior insula, and dorsolateral prefrontal cortex when presenting

unfair offers vs. fair offers in a single-shot version of the UG [10].
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In the single-shot UG, the responder plays just one trial against a

single proposer, whereas in the repeated UG, a responder interacts

repeatedly with the same proposer. Generally, the behavior in the

repeated version of the game is influenced by strategic reasoning

and the interaction of the players is more competitive than in the

single shot version [12].

However, the statistical analysis used in these studies relies on the

comparison of mean blood oxygen level dependent (BOLD) signals

calculated from many trials, leaving the question open whether these

effects are strong enough to be reliably detected in single decisions

before the decision is revealed by the subject, and without prior

knowledge of the actual offer in the trial [13]. Multivariate

classification is well suited to such a ‘‘brain-reading’’ task. Brain

states have been decoded from the temporal and spatial patterns in

fMRI data [14–17]. The application of pattern classification to fMRI

data was done in the fields of fear perception [18], visual perception

[15], goal-related intentions [17], or lie detection [19]. However, in

conventional fMRI decoding, these methods are applied offline in the

post-experimental analyses. We aimed to predict the decisions before

volunteers communicated them and therefore combined the

multivariate classification of brain states with real-time fMRI

(rtfMRI). This technique allows for online analysis of BOLD activity,

for example in the framework of brain computer interfaces [20–22].

To date, real-time multivariate analysis of fMRI data has been

conducted in very few studies [23–25]. La Conte et al. and Sitaram et

al. combined whole-brain classification and rtfMRI to implement

neurofeedback experiments. Posse et al. combined a classifier with

neuroanatomically constrained boosting to analyze rtfMRI data

recorded during visual stimulation, finger tapping, auditory attention,

and mental calculation. In none of these studies were the online data

used to continuously retrain the classifiers during the experiment to

improve classification performance.

Here our goal was to discriminate complex brain states

occurring in social interactions on the basis of the BOLD signal

in a small number of distinct brain regions in real time. Including

only few relevant brain areas allowed us to adapt the model

parameters of a Relevance Vector Machine (RVM) classifier [26]

during the ongoing experiment to improve online classification

performance. In a second offline analysis step, we trained a

multivariate pattern classifier on the whole brain across subjects

and tested the transfer of the brain activation over subjects. This

latter step allowed us to a posteriori evaluate if the pre-selected brain

areas used in the online approach were adequate. We were also

able to investigate hypotheses about the role of brain processes

related to subjective emotional and motivational states during

decision-making and to distinguish them from brain processes

related to the evaluation of an objective financial incentive.

Materials and Methods

Subjects and paradigm
Ten healthy male subjects (23–28 years, mean: 24.761.6 years)

with normal or corrected to normal vision were examined after

providing written informed consent. The experiments were

approved by the local ethics committee of the Medical Faculty

of the University of Magdeburg. One subject was excluded from

the study after reporting doubts about whether he was playing

with human partners. Data from two subjects served for the initial

training of the classifier that was subsequently used to examine

seven subjects. To avoid cross-gender effects, only male volunteers

participated in the study [27].

At the beginning of a session, participants met two male

individuals, who were introduced to them as the proposers in the

UG. Participants were told that the actual proposer would be

chosen randomly from these two individuals for each single trial and

that proposers do not interact with each other during the

experiment. This procedure was chosen because personal contact

between responder and proposer is considered to be an essential

prerequisite to establishing a social bond between players [4,10,28].

During scanning, the actual offers were made by a computer in a

predefined order. This ensured a controllable set of offers.

Brain activity was measured and analyzed using rtfMRI and real-

time pattern classification while each volunteer completed 60 trials

of 22 s length each. In each trial the amount to be split was shown

for 2 s. Subsequently, the offer was shown to the volunteer for 12s.

The BOLD signal of the first 10 s after showing the offer was used to

predict the upcoming decision. During the following response phase

of 4 s length, participants pressed one of the two buttons to convey

their decision. Finally, the payoff in the current trial was presented

for 4 s and the next trial started immediately (see Fig. 1 for the trial

design). The amount of money to share was 3 euros in every trial

and five types of offers were presented at the following rates

(percentage of 3 euros share for proposer: responder): 6650:50,

8665:35, 12670:30, 21680:20, 13690:10. These offers were

presented in a random order. As usual in economic bargaining

games, reimbursement for the volunteers was determined solely by

their earnings in the ultimatum game. During the experiment no

cumulative earnings were presented. After the experiment, every

participant completed a questionnaire to assess whether he had any

doubts about having played with a human partner at any time

during the experiment. Also the questionnaire assessed the

emotional states during the experiment and the perceived decision

behavior concerning timing and fairness.

Stimuli were backprojected with an LCD beamer onto a

transparent screen. Subjects had to press buttons with their left or

right index finger to convey their decisions on the given offers. The

mapping between buttons and responses (for either accepting or

rejecting) was switched randomly for each trial and displayed at

the beginning of each response phase. This prevented the

classifiers from using brain activity related to preparation of

motor responses [29,30].

Imaging protocol and real-time prediction
The blood oxygen level dependent (BOLD) response was

measured in a 3 Tesla whole-body MRI scanner equipped with

Avanto gradient system (Siemens Medical Systems, Erlangen,

Germany). The imaging protocol consisted of a gradient echo EPI

sequence for BOLD imaging with repetition time (TR) of 2 s, time

to echo (TE) of 29 ms, and a flip angle of 90u. Thirty-one slices with

axial slice orientation covering the whole brain were acquired. The

matrix size was 64664 and spatial resolution was 3.463.464 mm3.

The vendor’s EPI BOLD sequence (system version VA25A) and

the corresponding image reconstruction programs were modified

to export each EPI volume immediately after acquisition and

internal motion correction to the host computer of the MR

scanner (see Fig. 2 for a scheme of the hardware and the dataflow).

All further preprocessing steps, statistical data analysis and

classification were performed on an external computer (‘‘External

PC’’ in Figure 2, Pentium IV, 3.0 GHz, 2 GB Random Access

Memory, Windows XP) which received the preprocessed EPI

volumes via a 100 MBit/s network connection.

The locations of the regions of interest (ROIs) used in the online

procedures were pre-specified on the basis of functional MRI data

from preliminary experiments including two participants (120

trials) using the same experimental paradigm. The results of a

whole-brain offline trained Support Vector Machine (SVM)

classifier indicated signal changes predictive of the volunteers’

decisions in anterior insula, lateral prefrontal cortex, and occipital

Real-Time Prediction of Human Decisions
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cortex (see also Table S1). The informative brain areas revealed in

the pilot study were in concordance with those reported in the

literature on social interaction where in particular anterior insula

and lateral prefrontal cortex were found to be involved in decision

making in the ultimatum game [2,10]. Therefore, we selected

prefrontal cortex, anterior insula and visual cortex as ROIs for the

online classification. Table 1 lists the MNI coordinates of the

centre points and volumes of these ROIs (also shown in Fig. 3).

These preliminary data sets were also used to obtain an initial

solution for the model parameters of the real-time classifier used in

the online experiment. This allowed us to start prediction without

first acquiring an exhaustive set of individual data. Importantly,

using only a small set of ROIs reduced the feature space

sufficiently allowing us to continuously adapt the classifier in real

time by retraining with newly arriving individual data.

In the online experiments, custom rtfMRI analysis software was

used to process the incoming image data as soon as they were

acquired [31]. During online processing, data sets were normalized

to 36363 mm3 MNI space (Montreal Neurological Institute [32])

and detrended to remove linear signal drifts. The BOLD signal of

homologous left and right brain areas were pooled. Then the mean

BOLD signal in the ROIs during the baseline period (1st and 2nd

scan immediately following the offer) were compared to the mean

BOLD signal during the active period (3rd to 5th scan) by calculating

one t-value per ROI. Note that we only used data acquired during

ten seconds immediately following the presentation of the offer to

predict the subject’s intended decision in single trials. Thus all data

for prediction was acquired before the mapping for the manual

decision was revealed. Specifically, we calculated t-values compar-

ing the BOLD response in the first four seconds (scans 1&2) and

seconds 6–10 (scans 3&4&5) which were fed into the real-time

classification. Because the BOLD response requires approximately

five seconds to develop [33,34] we can use the data acquired in the

first four seconds after the offer was presented as a baseline. The

BOLD response to the offer can be expected to be fully developed

6–10 seconds after the offer and the difference between BOLD

following the offer and baseline is the trial specific effect of the offer.

The three t-values per trial served as input for the online

classifier, a nonlinear Relevance Vector Machine Classifier [26]

(Software available at www.miketipping.com/index.php?page = rvm),

was used to decide on each trial i whether an offer would be accepted

or rejected. The training set X of the classification problem is defined

as:

X~ (xi,yi)jxi[R3, and yi[ 1,0f g
� �

: ð1Þ

We refer to y as decision vector. Its elements yi take a value of 1 for

an accepted offer and 0 for a rejected offer.

During the experiment, the initial training set (Xinitial) was

continuously expanded by including the t-values and decision from

the n-1th trial into the training data (Xn) of the nth trial:

Figure 1. Single trial design in the ultimatum game with cumulative event times. (a) Each trial started by displaying the amount to be split
(3 euros) for 2 s. (b) Subsequently, the offer was shown to the volunteer, who then had 12 s to make up his mind. This time was required for BOLD
activity to build up and to subsequently use it to predict the upcoming decision. The classification result was indicated to the experimenter 1–2 s
before the response screen (c) was shown to the participant. During the response phase (4 s), participants pressed one of the buttons to convey their
decision. After the response, the payoff (split sum as proposed when the offer was accepted or no money for both players when offer was rejected) in
the current trial was presented for 4 s (d). The outcome of a rejected offer is shown.
doi:10.1371/journal.pone.0025304.g001

Real-Time Prediction of Human Decisions
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Xn~ Xinitial|(xn{1,yn{1)jxi[R3, and yi[ 1,0f g
� �

: ð2Þ

The classifier was continuously retrained in each trial using the

expanded training set. As such, the system adapted the model

parameters based on subject-specific activation states in real time

and included these in the forecast of volunteers’ future decisions to

improve classification accuracy.

The RVM applied in online prediction makes use of Bayesian

inference to obtain sparse solutions for classification. By comput-

ing a posterior distribution, it provides probabilistic classification

and has the same functional form as the well-known Support

Vector Machines:

y~wT j xð Þ: ð3Þ

Here w depicts a weight vector and j xð Þ is a kernel function that

can be used to express a non-linear relationship between x and y.

The goal is to compute the posterior probability of class

membership P ytjxð Þ given the input x and target class yt. This is

solved by computing the weight posterior p wjyt,að Þ, where a
denotes a hyperparameter. More details are described in [26].

Offline estimation of the guessing level of the real-time
classifier

To test the reliability of the online prediction, we determined

individual empirical guessing levels to ensure that the online

discrimination rates were not obtained by pure guessing but

exploit information inherent to the data. The theoretical guessing

level of a two-class experiment (e.g. accept or reject an offer) is

50% (perfect coin toss). However, other factors, such as the relative

frequencies of the two classes in the training set, may influence the

Figure 2. Schema of information flow in the experimental setup. The components highlighted in gray depict the vendor-specific
measurement system (Siemens Trio with SYNGO Version VA25A). Initially, the original MR data are fourier-transformed and motion-corrected by the
vendor image processing unit (Image PC). The reconstructed data are then transferred to the host computer (External PC). There the data are
processed using custom software (rtExplorer). This software performs pre-processing, statistics, online classification, and documentation of the
classification results. The participants’ responses are processed in the stimulus PC and transferred to the external PC for evaluation of the classification
and for retraining the classifier during the ongoing session.
doi:10.1371/journal.pone.0025304.g002

Table 1. Regions of interest used in the real-time
classification.

Brain Region Center Coordinates [mm] Volume [mm3]

x y z

LPFC

left 250 28 11 3798

right 50 28 11 3798

Anterior Insula

left 238.5 20 21 2925

right 38.5 20 21 2925

Occipital Cortex 0 288 3 15606

MNI coordinates for the centre points of the regions used for the computation
of the t-values. The ROI volume is in mm3.
doi:10.1371/journal.pone.0025304.t001
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classifiers’ strategy and bias the guessing level to much higher

values than expected [13].

We estimated individual empirical guessing levels by permuting

the decision vectors in each subject’s data set. Permutation

destroys the coherence between the observed BOLD data and

volunteers’ decisions but retains other information such as class

size ratio. The classifier was then retrained, and all trials were

classified according to the new training set. These steps were

repeated 500 times to estimate the mean guessing level and the

95% confidence interval. Empirical guessing levels were calcu-

lated as the geometric mean of the guessing levels for the classes

accept and reject [13]. Only if the correct prediction rate of the

classifiers in the actual experiment exceeded the 95% confidence

interval of the empirical guessing level estimates did we assume

that the classifier learned from the inherent structure of the data

[35].

Offline whole brain classification
Additional offline classification was performed to assess

classification performance achievable using BOLD data from the

whole brain and to further investigate the neural correlates of the

decision process. Preprocessing included motion-correction, spatial

smoothing with a 9 mm Gaussian kernel, and linear detrending.

Furthermore, low-frequency signal fluctuations were removed

using a high-pass filter with a cut-off frequency of 0.01 Hz, and

BOLD volumes were normalized to 36363 mm3 MNI space.

Non-brain voxels were excluded by applying a MNI brain

template. Before combining the BOLD-data over subjects we first

z-scored every subject’s data individually. This normalization was

done voxel-wise and as a result the BOLD-time series of each

voxel had a mean of 0 and a standard deviation of 1. The volumes

of the 2nd, 3rd, and 4th scan after the presentation of the offer were

averaged for every subject. This resulted in 420 average functional

brain volumes serving as single samples for whole brain

classification. Our learning algorithm thus provides a cross-subject

model based on single trial data. We then used this to classify the

single trial data of the single subject excluded from the classifier

training.

The 2nd, 3rd, and 4th volumes after offer presentation were

chosen because the participants reported in the post-scanning

questionnaire that they made their internal decisions quickly (i.e.

always in less than 5 seconds) after an offer was revealed and

always before the accept/reject screen was shown. We thereby

also avoided including information about the actual motor

response, because in the interval included the participants did

not know the mapping of the two buttons for accepting or

rejecting the offer.

We used feature selection, a very common approach in pattern

classification, to reduce the number of features (voxels) in the input

space. This was done on a training set by correlating signal

changes with the volunteers’ two different decisions. Voxels with

correlation values between 20.15 to 0.15 were excluded. Since we

wanted to analyze which voxels the trained classifier judged as

informative we chose this relatively liberal value to somewhat

reduce the number of voxels used for classification without being

overly restrictive. Approximately 104 voxels were retained for

subsequent classification using this criterion.

For offline classification, we used a publicly available implemen-

tation of a SVM [36]. We used a linear classifier because it allows

direct analysis of informative features learned during training [37].

Generalization performance was tested in a leave-one-average-

volume-out cross-validation (LOOCV) which also included feature

selection. In LOOCV, one trial is excluded from feature selection

and training. The trained classifier is then used to predict the class

label of the excluded trial. These steps are repeated for all trials, and

the result (the percentage of correct classified decisions) represents a

measure of the generalization power of the classifier. The correct

prediction rate is finally calculated as:

number of correct classified decisions in LOOCV

total number of decisions in LOOCV
|100:

Figure 3. The regions of interest (ROIs) used for online classification projected onto anatomical data of one participant. Three
distinct brain regions were used for classifying the volunteers’ decisions: anterior insula (AI), lateral prefrontal cortex (LPFC) and occipital cortex (OC).
See Table 1 for MNI coordinates and volumes of the ROIs.
doi:10.1371/journal.pone.0025304.g003
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Guessing level of the whole brain classification and
discriminating volume

Theoretical and empirical guessing levels were determined

analogous to the approach in real-time prediction, in a

permutation test with 500 repetitions.

We extracted the spatial patterns used by the classifier to

discriminate between different brain states from the weight vector w

(Eq. 3). Therefore, w was transformed from feature space into the

original voxel space and scaled to the length of one. The absolute

weight value of each voxel reflects its importance for the

discrimination of brain states. To obtain a probability distribution

of the weight for each voxel, we permuted the class labels 1000

times. This provides a probability distribution under the null

hypothesis of no relationship between class labels and the intrinsic

structure of the data [38]. Based on these distributions, we

computed the p-values for each voxel to determine which voxels

were significantly predictive for the class label. The threshold for the

reported discriminating volumes was set to p,0.05 (uncorrected).

Results

Behavioral analysis and real-time prediction
The percentages of acceptance for the five types of offers are

depicted in Figure 4. The acceptance/rejection ratios are in

accordance with previous studies employing the repeated UG

[39–41]. A dramatic drop in the acceptance rate for offers around

20% or less of the amount to be split indicates that these offers

were judged as unfair by our participants.

As depicted in Figure 5, the average online prediction accuracy

reached 69.7%62.4%. The average empirical guessing level

derived from permutation tests was 52.3%62.8% (average 2.5%

and 97.5% quantiles were 47.2% and 55.3%, respectively). The

real-time prediction accuracy was significantly above guessing level

(p,0.0038, binomial distribution). The significant prediction results

show that the classifier captured information about rejection or

acceptance of an offer which was available in brain activity before

the participant revealed his decision. With our approach, we were

able to predict the participants’ decisions 1–2 s before their response

(Figure 1). The online processing algorithm (pre-processing, real-

time classification) was executed in less than 0.5 s (time required for

retraining of the classifier was 0.4 s on average).

To assess the gain in correct predictions achieved by

continuously retraining the classifier, we simulated the online

procedure both with and without retraining. The overall

prediction accuracy increased by 10.7% when novel data were

used to retrain the classifier showing a clear benefit of retraining

with individual data (Figure 6).

In addition to binary classification accuracy, RVM classification

provides a continuous posterior probability estimate for each

classified decision. The mean probability estimates for the five

types of offers are depicted in Figure 7. Acceptance of an offer is

indicated by a probability exceeding 0.5.

The analysis of the activation of the signal variation immedi-

ately following an offer showed a clear difference between frontal

and posterior ROIs. Higher BOLD signal in AI and LPFC

predicted rejection, whereas a higher BOLD signal in OC

predicted acceptance of an offer (Fig. 8). This finding suggests

different functional roles during the evaluation of the offer for

frontal and posterior sensory areas.

Offline whole brain classification
In an additional offline analysis, we pooled the single trial fMRI

data from all but one subject (leave on subject out) to train

classifiers and test generalization among subjects. This improved

the correct classification rate greatly to an average of 81.2%. The

average guessing level of the offline classification determined in

permutation tests was 51.1%62.3% SD (average 2.5% and 97.5%

quantiles were 47.3% and 55.1%, respectively). Again, the correct

classification rate clearly exceeds the 95% confidence interval for

guessing. This results clearly shows that there is information about

rejection or acceptance of a decision in the BOLD data that is

similar among participants. Moreover, this analysis allowed us to

derive brain areas informative about a participant’s decision from

a larger set of subjects and to validate the choice of the ROIs in the

online experiment. Table 2 lists the discriminating volumes

extracted from the trained linear SVM (see also Fig. S1).

Importantly, the brain areas revealed by this analysis include the

predefined ROIs used for real-time classification. Both, bilateral

LPFC and OC were revealed as informative by the classifier. The

only discrepancy was that bilateral AI was used in the online

experiment but the offline classifier revealed only right AI as an

informative ROI. In addition, offline classification found infor-

Figure 4. Overall percentage of acceptance rates of the offers in the ultimatum game. Values are calculated as rate of accepted offers over
seven volunteers. Labels on the x-axis show the split rate: (proposer: responder).
doi:10.1371/journal.pone.0025304.g004
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mative differences consistent over subjects in medial frontal gyrus

(MFG), ventromedial prefrontal cortex (vmPFC), ventral striatum

(VS), CRUS I in cerebellum, right orbitofrontal cortex (OFC), and

posterior superior temporal sulcus (pSTS).

The decision process we investigated so far includes at least two

sub-processes: one related to the evaluation of the offer (e.g. low or

high earning) and another related to the choice of the response

(reject or accept an offer). We analyzed our data according to

choices in the previous offline analysis. However, since choice and

offer value are correlated over the full scale of offers it is possible that

BOLD activity related to evaluation of offer value is more predictive

about the subjects’ UG responses than choice related BOLD

activity, at least on the full scale of offers. To investigate this

hypothesis each trial received two labels: one for the offer (low or

Figure 5. Real-time prediction accuracy of the RVM classifier in the ultimatum game. The arrows mark the empirical guessing levels.
doi:10.1371/journal.pone.0025304.g005

Figure 6. Improvement of online prediction due to continuous retraining. The number of additional correct predictions using individual
data acquired during the experiment in a sliding window of six trials are shown. Each window includes 42 single predictions (6 trials times 7 subjects).
doi:10.1371/journal.pone.0025304.g006

Real-Time Prediction of Human Decisions
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Figure 7. Mean posterior probabilities for accepting an offer assigned by the RVM to single offers in the UG. Means and standard
deviations plotted were calculated over the seven volunteers tested in online analysis. The labels on the x-axis depict the split rate: (proposer:
responder).
doi:10.1371/journal.pone.0025304.g007

Figure 8. Mean fMRI signal differences in the ROIs used in the online UG to predict acceptance vs. rejection for the five types of
offers. Differences were calculated between 1st to 2nd and 3rd to 5th scan after the offer and averaged over the seven participants. Bold signal in AI
(slope linear fit 0.062, p,0.05) and LPFC (slope linear fit 0.11, p,0.05). In contrast, signal decreases in OC when the likelihood of acceptance
decreases (slope linear fit 20.16, p,0.05).
doi:10.1371/journal.pone.0025304.g008

Real-Time Prediction of Human Decisions
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high) and one for the choice (accepted or rejected) and we trained

two classifiers with trials of the same dataset sorted in the two

different ways (choice or value). The datasets used for classifier

training have to be balanced with respect to each of the four possible

label combinations (low/accept, high/accept, low/reject, and high/

reject) to avoid unwanted classifier bias. In order to maximize the

number of trials available in the four label combinations we

distinguish high from low offers around the categorical decision

border between 80:20 and 70:30 split rates where acceptance rate

sharply drops. We labeled 50:50, 65:35, and 70:30 trials as high

offers and 80:20 and 90:10 trials as low offers. The combination

reject/high offer contained the lowest number of samples (n = 19),

restricting the number of trials used in the other three combinations

in the training of the classifier. In order to avoid selection bias, we

evaluated classifier performance on 200 balanced subsets of 76

samples each of which included the 19 rejected/high offers and 19

samples randomly drawn from each of the other three label

combinations. The average LOOCV classification accuracy

revealed that it was possible to discriminate high from low offers

on the basis of the single trial BOLD activity (65.9% correct 66.2%

SD) with some success. On the contrary, discrimination according

to choice (accept/reject) was around chance level (56.4% correct

65.9% SD). This result indicates that brain processes related to the

evaluation of offer value rather than the choice related activation

allows the prediction of the subject’s response on the wide range of

offer values used in the offline prediction.

Although no systematic brain activation difference related to

choice (reject/accept) may exist over a wide range of offer values,

this does not rule out, that a strong link between choice and brain

activity exists that may manifest in a predictable and restricted

regions along the offer scale where a large change in choices

(accept/reject) is found. In the following analysis we aim to

demonstrate such an isomorphism between brain activity and

behavior for choice related activity. The reasoning behind this

analysis follows previous work from us and other groups [42,43]

and is outlined below. We assume that brain activation related to

choice should easily discriminate between two adjacent offers if

these differ greatly in their acceptance rate and little if they differ

little in their acceptance rate. Behaviorally, trials with split rates

50:50, 65:35, and 70:30 trials were mostly accepted and trials with

80:20 and 90:10 trials were mostly rejected. Discrimination

between trials with different offers within the same category

(accepted or rejected) should be low because choice related brain

activity should be very similar in trials from the same category.

Importantly, choice related brain activity should reproduce the

categorical border between acceptance and rejection of offers

observed between 70:30 and 80:20 split ratios. Consequently, a

classifier trained to discriminate between trials either of these two

split ratios should produce particularly high discrimination rates

because these offers cross the category border between acceptance

and rejection. In addition, classifiers trained on adjacent pairs of

offers from within a category should be less discriminable.

We tested this prediction by training an SVM in an LOOCV to

discriminate between adjacent offers. Therefore, we repeatedly (200

times) selected 42 examples from each split rate. The number of trials

used per repetition was limited by the class with the lowest number of

examples, in this case the number of trials in the 50:50 split rate. In

concordance with our hypothesis we found the highest discrimination

rate between trials from 70:30 and 80:20 splits (71.4%65.53% SD).

The single trial discrimination rate was at guessing level for the

comparisons among trials between split rates 80:20 vs. 90:10

(53.4%65.3% SD), and 65:35 vs. 70:30 (54.6%64.7% SD), and

moderate for the discrimination between split rates 50:50 vs. 65:35

(65.9%65.2% SD). It is important to note that this pattern of results

cannot be explained by value differences between offers. The 70:20

offer differs by 10% (or 0.3 Eurocent) from the 80:20 offer, the same

amount the 80:20 differs from the 90:10 and even less than the 65:35

differs from the 70:30, and the 50:50 from the 60:35 offer (Fig. S3).

This result indicates that there exists informative brain activity that

reflects choice rather than evaluation of the offer value. The

discriminative brain areas found at the choice category border

70:30 vs. 80:20 are listed in Table 3 together with those areas

discriminative for offers 50:50 vs. 65:35 (see also Fig. S2).

Discussion

Real-time analysis of decision processes
In this study, we show that it is possible to predict the behavior

of social agents acting as responders in the UG in real time using

BOLD measurements of brain activity to detect complex

emotional and cognitive states. Offline analyses confirmed the

ROIs selected for online prediction on two pilot subjects and the

rejection rates. More detailed analyses of the information about

split rate and decision outcome available in the BOLD-data

strongly supports the notion that brain activity related to expected

subjective value of an offer rather than choice predict the subjects

behavior over a large range of offer values. the mere decision

process. Importantly, we find that information about choice in the

BOLD activity predicts the behaviorally observed categorical

change from offer acceptance to rejection.

BOLD modulation related to emotional and regulatory
processes predicts imminent behavior in the UG

We found that AI and LPFC are both predictive of the rejection

of an offer on a trial-by-trial basis, in the online as well as in the

Table 2. Volumes discriminative for decisions in the offline
classification.

Brain Region

Center Coordinates
[mm] Volume [mm3]

x y z

Medial Frontal Gyrus 4 58 6 1629

Ventromedial PFC 22 32 24 999

Orbitofrontal Cortex

Right 20 58 28 783

Anterior Insula

Right 36 24 2 1278

Lateral Prefrontal Cortex

Left 245 28 28 405

Right 40 32 22 2115

Ventral Striatum 2 12 24 1278

Posterior STS

Left 255 242 27 1089

Right 54 246 26 1215

Occipital Cortex (V1) 22 290 5 4941

Cerebellum (Crus I)

Left 247 270 235 1476

Right 50 272 232 1521

MNI coordinates of discriminating volumes found with linear SVM in the offline
procedure. Weight values were thresholded at P,0.05 and minimum cluster
volume was 300 mm3. STS: superior temporal sulcus.
doi:10.1371/journal.pone.0025304.t002
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offline analysis. Both brain areas are involved in emotion regulation

and adjustment during social interaction [10,44–48] as well as in the

evaluation of negative emotions such as disgust [49,50]. Increasing

activation in AI and LPFC may reflect the experienced level of

unfairness which in turn leads to the rejection of the offer in a given

trial. In accordance with this interpretation, AI was found to be

informative about split level when comparing 70:30 splits to 80:20

splits (Table 3) but not when comparing 50:50 splits to 65:35 splits.

Moreover, this finding is in concordance with Sanfey et al. [10],

who also found that higher BOLD activation in AI indicated the

rejection of an offer. A competing hypothesis is that activation in AI

is not directly connected to the evaluation of negative emotional

content but rather refers to attentional processes as reaction to

salient environmental stimuli. As part of the ventral attention system

the AI is thought to support the reorientation of the attention focus

to external stimuli [51]. In this context it was suggested that

activation of the ventral attention system may be connected to

switching ‘‘internally directed’’ activities to behaviorally salient

external stimuli, also in social cognition [52].

As opposed to AI and LPFC, activation in early visual cortex

decreased with unfavorable split rates. It has been shown that

attention strongly influences the responses of cortical neurons

[53,54]. Different levels of attention elicited by offers with different

split rates, i.e. a fair offer may induce stronger attention because it

reflects fair behavior and higher monetary outcome, may result in

different activation in early visual cortex. However, one could also

argue that the behavioral relevance is comparable for high and low

offers in the UG and thus should lead to comparable attentional

effects. The role of attention-related activation in encoding of

decision behavior in the presented social context is not fully

explored and may be subject to further investigation.

In sum, the results from the online experiment suggest that

activation in brain areas reflecting the subject’s emotional and

motivational state and self-regulatory processes can be used to

discriminate accepted from rejected offers.

Reward-related brain areas predictive of altruistic
punishment and financial incentive

When playing against a computer that is creating offers in a

random order, it makes no sense to reject an offer from an

economic perspective. Thus, the participants’ best strategy to

optimize monetary gain would have been to accept any offer.

However, responders in our study rejected unfair offers (20% of 3

euros and less) significantly more often than fair offers. This is the

behavior expected in the repeated version of the UG (Figure 4)

with two humans playing, and corroborates the participants’

reports that they thought they were playing with a human. In such

a social setting of reciprocal cooperation, altruistic punishment,

sacrificing potential monetary gain, can serve to optimize gains in

the long run.

Thus, in the ultimatum game the acceptance of an offer is

correlated with the expectation of a financial incentive but, in

addition, hedonic states following costly punishment of an unfair

offer may also contribute to adjustment of behavior [55,56]. We

hypothesized that processing of the financial incentive and altruistic

punishment is likely to involve different brain circuits although the

same behavioral result, the acceptance or rejection of an offer, is

observed [55,57]. We probed this hypothesis by comparing the

discrimination power of brain activity according to financial

incentive vs. discrimination power tracking a categorical change

from acceptance to rejection signifying altruistic punishment. We

found that BOLD activation in VS signified the categorical border

and discriminated between offers with a 70:30 split rate vs. 80:20

split rate but not between 50:50 and 65:35 offers (Table 3 and Fig.

S2). The first pair differs with respect to the number of accepted

offers, whereas the number of accepted offers is approximately

equal and the difference in financial incentive is even higher in the

second pair. This implies that, in our social setting, activation in VS,

an important component of the reward network, is linked to

hedonic states following punishment of unfair offers rather than

financial incentive. OFC, another informative brain area of the

reward circuit, provides similar information. Interestingly, OFC has

previously been linked to the evaluation of threatening and/or

punishing stimuli that may lead to the adjustment of behavior

[9,58]. In contrast, ventral medial prefrontal cortices discriminate

accepted from rejected offers when all split rates are included

(Table 2) but they do not discriminate 70:30 from 80:20 split rate

trials (Table 3) where the categorical transition between accepted

and rejected offers occurred. This suggests that, in contrast to VS

and OFC, activation in ventral medial prefrontal cortices is related

to the evaluation of monetary gain rather than hedonic states

following punishment of unfair offers. This is in agreement with

results from previous studies linking ventral medial prefrontal

cortices to evaluation of primary as well as secondary rewards like

monetary gain [59]. Thus, the result of the offline analysis adds

further support to the conclusions that activation in brain areas

reflecting the subject’s emotional and motivational state and the self-

Table 3. Discriminating volumes found in the offline
classification of offers.

Brain Region

Center Coordinates
[mm] Volume [mm3]

x y z

Classification of offer types 70:30 vs. 80:20

Lateral Orbitofrontal Cortex

Left 241 49 212 1404

Right 38 47 212 845

Anterior Insula

Right 38 25 1 1836

Inferior Parietal Sulcus

Left 245 249 44 459

Ventral Striatum
(N. Accumbens)

6 14 210 1080

Cerebellum (Crus I)

Left 243 276 236 702

Classification of offer types 50:50 vs. 65:35

Medial Frontal Gyrus 3 54 2 3240

Medial Orbitofrontal Cortex 26 28 212 1485

Lateral Orbitofrontal Cortex

Right 23 55 212 2160

Lateral Prefrontal Cortex

Right 39 23 30 999

Inferior Parietal Sulcus

Left 251 249 42 2214

Occipital Cortex (V1) 24 293 1 2835

Cerebellum (Crus I)

Left 243 273 235 918

MNI coordinates of discriminating volumes for classification between offers
70:30 vs. 80:20 and 50:50 vs. 65:35. Weight values were thresholded at p,0.05.
Minimum cluster volume was 300 mm3.
doi:10.1371/journal.pone.0025304.t003
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regulatory processes thereof can be used to discriminate accepted

from rejected offers in the social UG.

Cross subject ROI based probabilistic classification
Unlike other offline ‘‘mind reading’’ approaches (compare e.g.

[13,15]), we used a cross-subject approach in the online analysis.

Nevertheless, the high prediction rate of 69.7% in the cross-subject

procedure confirms the good generalization of the classifier

between subjects. This indicates the identification of neural

mechanisms that are common between our volunteers. The

advantage of this approach is that it allows training of the RVM

classifier prior to measurement, simplifying the setup by providing

an initial solution of the classification problem without acquisition

of additional training trials. Our approach made it possible to

predict the subject’s choice from the first experimental trial on,

although this was with reduced accuracy. Importantly, continuous

retraining during the course of the experiment increased

classification performance by approximately 11% on average.

Moreover, RVM provides posterior probabilities for single trial

class membership, which can be useful in classification-based

neurofeedback (compare [23,25]). Subject-specific offline classifica-

tion resulted in 81.2% average accuracy and was, as expected,

superior to cross-subject online prediction performance. This

increase might be partly due to including subject-specific anatomical

information but also to the high dimensional feature space we used

in offline training. Thus, we would expect improvements in online

classification using a more elaborate training scheme that combines

non-subject-specific ROI-based classifiers with subject-specific

whole-brain classifiers. During an experiment, the classification

result would be calculated as a weighted average of the two

classification approaches with weights adjusted by the quantity of

information available for online classifier retraining. Fast imple-

mentations of procedures for preprocessing and training of whole-

brain fMRI data are necessary for this approach.

Implications of single trial online prediction of social
decision-making

Whether a responder in the UG finally decides to reject or accept

a specific offer depends on a multitude of internal factors. Among

these factors are emotions such as the feeling of being treated fairly

as well as rational considerations of reward maximization. The

extraction of this information about the way a social agent is tending

with a decision in real time before the decision was actually revealed

can have extensive consequences for negotiations and other social

interactions. However, the framework presented here for online

decision prediction can also be used to study the link between

neuronal and behavioral aspects of human decision-making In

future studies, this framework could be used to investigate how

decision-making processes are influenced by additional information

about the emotional or cognitive state of a communication partner

in an ‘‘augmented communication’’ scenario which feeds back

information about current hidden brain states of the partner. Our

approach could significantly extend previous work on effects of

overt social cues in social interaction [60,61], or emotional facial

expressions of social agents in bargaining games [62].

Conclusion
In sum, our results show that, in single trials, it is possible to

reliably predict acceptance or rejection of an offer from BOLD

measurements of brain activity before the subject reveals the

decision with an overt response. However, more detailed analyses

indicated that prediction of the decision was based on brain

processes related to the perception and evaluation of the offer

rather than processes related to the decision itself. Importantly,

AI, VS, and LOFC, brain areas related to emotional self-

regulation and reward processing for adjustment of behavior,

appeared to be strong determinants of overt behavior in the

ultimatum game. The decisions derived from the activation in

these brain areas paralleled the behaviorally observed categorical

transition from high likelihood of acceptance to high likelihood of

rejection of an offer when the split rate fell below 70:30. The

framework presented here can be used in future studies to

augment information available in social interaction with infor-

mation about current brain states that remain hidden in

traditional approaches.

Supporting Information

Figure S1 Discriminating volumes for classification of
accepted vs. rejected offers. The image shows discriminating

volumes for the SVM-classification of accepted vs. rejected offers.

The threshold is p,0.05 and clusters with a volume lower than

300 mm3 were excluded.

(TIF)

Figure S2 Discriminating volumes for classification of
offers 70:30 vs. 80:20 and 50:50 vs. 65:35. Shown are the

discriminating volumes for the SVM-classification of offers 70:30

vs. 80:20 (A) and 50:50 vs. 65:35 (B). The threshold is p,0.05 and

clusters with a volume lower than 300 mm3 were excluded.

(TIF)

Figure S3 Regression of prediction accuracies against
offer types in balanced set classification. The figure shows

a regression of the correct prediction rate of the balanced

classification of each offer against each other offer with the

absolute differences of responders earning (in Euro) of the two

discriminated offers. For example the rightmost point depicts the

classification accuracy in the discrimination of offer 90:10 vs.

50:50 (74.58%), which has the maximal difference in earnings for

the responder (1.2 Euro).

(TIF)

Table S1 Discriminating volumes in classification of
the pilot study data. Shown are discriminating volumes of the

combined data of two volunteers that participated in a pilot study

using the same experimental paradigm as the main study. The

results are derived from a multivariate analysis using whole brain

classification as described in the methods section of the manuscript

in Offline whole brain classification. Clusters of a volume lower than

500 mm3 are excluded.

(DOC)
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