
Binding-Folding Induced Regulation of AF1
Transactivation Domain of the Glucocorticoid Receptor
by a Cofactor That Binds to Its DNA Binding Domain
Anna S. Garza2, Shagufta H. Khan1, Carmen M. Moure3, Dean P. Edwards3, Raj Kumar1*

1 Department of Basic Sciences, The Commonwealth Medical College, Scranton, Pennsylvania, United States of America, 2 Department of Internal Medicine, University of

Texas Medical Branch, Galveston, Texas, United States of America, 3 Department of Molecular and Cellular Biology and Pathology, Baylor College of Medicine, Houston,

Texas, United States of America

Abstract

Intrinsically disordered (ID) regions of proteins commonly exist within transcription factors, including the N-terminal domain
(NTD) of steroid hormone receptors (SHRs) that possesses a powerful activation function, AF1 region. The mechanisms by
which SHRs pass signals from a steroid hormone to control gene expression remain a central unresolved problem. The role
of N-terminal activation function AF1, which exists in an intrinsically disordered (ID) conformation, in this process is of
immense importance. It is hypothesized that under physiological conditions, ID AF1 undergoes disorder/order transition via
inter- and intra-molecular communications, which allows AF1 surfaces to interact with specific co-regulatory proteins,
critical for the final outcome of target gene expression regulated by SHRs. However, the means by which AF1 acquires
functionally folded conformations is not well understood. In this study, we tested whether binding of jun dimerization
protein 2 (JDP2) within the DNA binding domain (DBD) of the glucocorticoid receptor (GR) leads to acquisition of
functionally active structure in its AF1/NTD. Our results show that signals mediated from GR DBD:JDP2 interactions in a two
domain GR fragment, consisting of the entire NTD and little beyond DBD, significantly increased secondary/tertiary structure
formation in the NTD/AF1. This increased structure formation facilitated AF1’s interaction with specific co-regulatory
proteins and subsequent glucocorticoid response element-mediated AF1 promoter:reporter activity. These results support
the hypothesis that inter- and intra-molecular signals give a functionally active structure(s) to the GR AF1, which is
important for its transcriptional activity.
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Introduction

The glucocorticoid receptor (GR) is a ligand-activated intracel-

lular transcription factor with the domain structural arrangement

typical of the nuclear hormone receptors (NHRs) superfamily [1],

[2], [3], [4], [5]. Like other NHRs, GR regulates transcription of

target genes by binding DNA at specific glucocorticoid response

elements (GREs) and by interacting with other coregulatory

proteins [6], [7], [8], [9]. However, precisely how transcription is

regulated by the GR is largely unknown. There are at least two

defined transcription activation functions (AFs) that provide

protein interaction surfaces for coregulatory proteins: AF1 in the

N-terminal domain (NTD) and a conserved ligand-dependent AF2

in the ligand binding domain (LBD) [10], [11], [12], [13], [14],

[15]. A major challenge is to understand the role of these AFs.

Availability of crystal structure of the LBD has immensely helped

in our understanding about AF2 functions [16]. The lack of

knowledge is most marked concerning the way in which AF1 (that

controls majority of GR’s transcriptional activity) functions [17],

[18], [19]. This activity appears to be cell/coactivator-dependent

[20], [21], [22], [23], [24]. Because AF1 exists in an intrinsically

disordered (ID) conformation, understanding its structure:function

relationship has languished. It is known that AF1 interacts with

other co-regulatory proteins, and the available data strongly

suggest that conditional folding of AF1 is the key for many of these

interactions and subsequent transcriptional activity [17]. How and

what kind of functionally folded conformation AF1 adopts is an

important question. Recent studies have shown that several ID

regions/domains undergo a disorder/order transition upon direct

interaction with their target proteins including GR AF1 [25], [26],

[27]. However, it is not known whether a binding partner protein

that interacts with the GR outside AF1 domain also leads to

imposition of a functionally active conformation in AF1.

Jun dimerization protein-2 (JDP2) is a small bZIP protein that

contains the leucine zipper and the basic amino acid DNA binding

domain common to AP-1 factors but lacking an N-terminal

activation domain [28], [29], [30]. JDP2 is known to interact with

the DBD and the carboxyl terminal extension (CTE; a non-

conserved region on the immediate C-terminal side of the

conserved 2nd zinc finger of the core DBD) of human progesterone

receptor (PR) and enhance PR’s transcriptional activity, indepen-

dent of AF2 and p160 coactivators [31], [32], [33], [34]. In the
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present study, we sought to determine whether JDP2 can interact

with the GR and modulate its transcriptional activity. We show

that JDP2 interacts with GR’s DBD/CTE region and induces a

compact structure in NTD/AF1 in a manner that facilitates AF1’s

interaction with specific co-regulatory proteins and correlates with

the stimulation of AF1-mediated transcriptional activity.

Materials and Methods

Plasmids
The pGRE_SEAP vector (BD Biosciences, Palo Alto, CA)

contains three copies of a GRE consensus sequence in tandem,

fused to a TATA-like promoter (PTAL) upstream from the reporter

gene for secreted alkaline phosphatase (SEAP). GR500 encodes

amino acids 1–500 of the human GR, plus a five-residue

nonspecific extension [20], [21], [35]. TBP was cloned into the

pcDNA3.1(+) expression vector (Invitrogen, Carlsbad, CA), and

into pEYFP-C1 (BD Biosciences). Plasmids for pYFP-CBP and p-

YFP-SRC-1 constructs were kindly provided by Dr. M. Mancini,

Baylor College of Medicine. Construction of pCR3.1-JDP2

mammalian plasmid has been previously described (32). The

CFP-YFP fusion protein was generated as described [36], [37].

Expression and Purification. Construction, expression, and

purification of the GR500, GR465*, AF1, DBD, TBPC, and JDP2

have been described [21], [25], [32], [33], [36]. Protein purity

(95% or more) was analyzed by Coomassie blue staining.

GST-pull down assay. Purified GST-500; GST-465*, GST-

AF1, GST-DBD, or GST protein was immobilized on

glutathione-Sepharose beads. Purified JDP-2 or TBPC were

added to the GST-bound beads, and the mixture was further

incubated for 2 h. Any unbound protein was washed thoroughly.

To the washed beads, SDS-PAGE sample buffer was added, and

the sample boiled for 5 min in a water bath. Each sample was then

run on a SDS-PAGE gel and visualized by Coomassie Blue R-250

staining.

Circular Dichroism (CD) Spectroscopy. CD spectra of

GR500, JDP2, and GR500:JDP2 mixtures were recorded at 22̊C

on a Jasco-815 spectropolarimeter by using a 0.1-cm quartz cell,

with a bandwidth of 1.0 nm and a scan step of 0.5 nm. Similar

approaches were applied to other GR fragments (AF1 or DBD).

Each spectrum was corrected for the contribution of solute

concentrations, and is a result of five spectra accumulated,

averaged, and smoothed.

Cell Culture, Transient Transfection. CV-1 monkey

kidney epithelial cells (American Type Culture Collection) were

grown at 37̊C in MEM with Earle’s salts (Invitrogen) supplemented

with 10% (vol/vol) fetal bovine serum (Atlanta Biologicals,

Norcross, GA). CV-1 cells were plated on a 24-well plate (500 ml/

well) 1 day before the transfection and transfected using

Lipofectamine 2000 (Invitrogen) according to the manufacturer’s

protocol. Transfected cells were maintained at 37̊C in 5% CO2/

95% during the experiments.

Fluorescence Microscopy and FRET Analysis. CV-1 cells

were grown on a tissue culture dish with integrated slide (Matec)

for 1 day before transfection. Several control experiments were

included. Independent CFP and YFP-expressing constructs were

tested for FRET as negative control. As a positive control, a CFP-

YFP construct that linked CFP-YFP by eight amino acids was co-

expressed. CV-1 cells were cotransfected with 1 mg of pGRE-

SEAP reporter and 3 mg of pECFP-YFP (positive control), 1.5 mg

of pECFP-C1, and/or 1.5 mg of pEYFP-C1 (negative control). To

test the dependence of FRET on AF1 in the GR, cells were

cotransfected with 1.5 mg of pEYFP-TBP, -CBP, or –SRC-1 and

1 mg of pGRE-SEAP. Pairs of pGRE-SEAP received 1.5 mg of

pECFP-GR500. Cells were washed 24 h later twice with isotonic

pH 7.4 PBS, fixed with 4% formaldehyde/PBS for 10 min and

washed twice with PBS. Cells were visualized using a Zeiss LSM-

510 META confocal microscope (Carl Zeiss, Thornwood, NY)

with a Plan-Apochromat 6361.4 oil-immersion objective and 6.1

Amp Argon laser. Pre- and post-bleach (PB) images were collected

at 12-bits resolution on two channels: 458 nm for CFP and

514 nm for YFP. Five images were taken, two before and three

after the PB, with 20-sec intervals. To assure more than 90% PB,

an arbitrarily selected region of interest, containing examples of

both nuclear and cytoplasmic compartments, was irradiated with

the 100% intensity laser line at 514 nm at 200–2000 iteration.

Increased CFP (donor) fluorescence intensity upon YFP (acceptor)

was indicative of positive FRET and its efficiencies (FE) were

calculated by the equation: FE% = (IDA2IDB)/(IDA)6100. Where,

IDA is donor intensity after PB (extracted from image 2 of time

series) corrected for background and fractional PB; IDB is donor

intensity before PB background corrected (estimated from image 3

of the PB time series). Images that showed any focal plane drift

were eliminated. In addition, we tested CFP, CFP-GR500, YFP,

and YFP-TBP alone each time to account for any bleed-through

and background FRET as recommended.

Reporter Gene Assays. We employed the secreted alkaline

phosphatase (SEAP) reporter system due to its high signal-to-noise

ratio and quantifiable transcriptional activity without the need for

cell disruption. CV-1 cells were cotransfected as described above

with 0.13 mg of pGRE_SEAP reporter vector, 0.13 mg of pECFP-

GR500, and 0.5mg of pcDNA3.1-TBP, pRSLV-CBP, or SRC-1.

The total amount of DNA added was kept fixed at 0.8 mg by

addition of empty pECFP vector. Medium (25 ml) was collected

27 h later and tested for the presence of SEAP (Great EscAPe

SEAP Detection Kit; BD Biosciences) according to the

manufacturer’s protocol. Data from different experiments were

normalized to GR500 activity.

Results

JDP2 interacts with the GR through its DBD
In the present study, we analyzed binding of JDP2 to GR and

mapped the region of interaction within GR by in vitro GST pull-

down assays. GST-GR500 (Figure 1A) was immobilized onto

glutathione Sepharose-4B resin, incubated with JDP2 and bound

JDP2 was detected by Coomassie blue stained SDS gels. Figure 1B

shows that GR500 interacted efficiently with JDP2 (lane 9) but not

with the free GST control (lane 3). To map the region of GR

required for interaction with JDP2, various fragments of GR were

used in pull-down assays. A construct containing the AF1 domain

(amino acids 77–262 of human GR; AF1) did not interact with

JDP2 (lane 6), whereas a GR fragment consisting of amino acids

398–500 (DBD) did interact with JDP2 (lane 15). These results

suggest that JDP2 interacts with the DBD of the GR. To further

map the region of the DBD, we used a fragment of the GR, which

consists of amino acids 1–465 of the human GR plus 21 extra

amino acids (GR465*; that is random in nature and does not

match GR sequences beyond amino acid 465 [21]. Our results

show that JDP2 fails to interact with this GR fragment (lane 12)

suggesting that binding of JDP2 to GR requires amino acid

sequences 465–500. This region encompasses part of the 2nd zinc

finger in the DBD core plus part of the CTE and thus corresponds

with the same region of PR that interacts with JDP2 [33]. We have

earlier shown that TATA box binding protein (TBPC) interacts

with the AF1 domain of the GR [25]. As a control, we used TBPC

to demonstrate that our data showing interactions between the GR

DBD and JDP2 is specific. We determined the binding of TBPC to

Binding Folding of Glucocorticoid Receptor
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each of the fragments used for JDP2 interactions. As expected,

TBP does not show any interaction with GST alone (lane 2)

whereas it interacts with each of the GR fragments that possess

AF1 domain (lane 5 for AF1; lane 8 for GR500; lane 11 for

GR465*). When we used GST398-500 (DBD) alone, we could not

detect any interaction of TBPC with this GR fragment (lane 14).

Taken together, our data clearly indicate that JDP2 interaction

requires the part of the core DBD and CTE region between amino

acids 465–500, in contrast with TBP that interacts directly with

AF1/NTD.

JDP2 binding to DBD in a two-domain GR fragment
containing the NTD and DBD (GR500) induces a compact
structure in NTD/AF1 domain

We next determined whether JDP2 interaction with the GR

DBD induces a compact structure in otherwise ID NTD/AF1

domain. We first analyzed far-UV CD spectra of JDP2, GR500,

and a GR500:JDP2 mixture (1:2 molar ratios), detecting ellipticity

for all three in a wavelength range of 190 nm and 260 nm

(Figure 2A). As expected, JDP2 spectrum shows two major

negative peaks at 208 nm and 222 nm, indicating that it adopts a

primarily a-helical conformation in solution [32], [38]. The

GR500 fragment exhibits characteristics of polypeptides that

contain a large amount of random coil with some underlying

helical content [35]. When the spectrum of a mixture of GR500

and JDP2 is compared with either alone, we found that the protein

complex (GR500:JDP2) has significantly higher secondary struc-

tural elements than either protein alone (Figure 2A). CD analysis

of a mixture of two interacting proteins that do not undergo a

conformational change should yield a spectrum that should be

more or less super-imposable in comparison to the theoretical sum

of the spectra of the two proteins measured independently. On the

other hand, if the observed spectrum of the protein mixture

significantly deviates from the theoretical sum, then the overall

protein conformation should have altered due to the interaction of

two binding proteins. To determine whether the observed increase

in secondary structural elements in the mixture of two proteins

results in increased structure formation, we compared the

theoretical sum (based on the sum of each data point arising

from each individual) to the experimental CD spectra collected

from a mixture of JDP2 and GR500 (Figure 2B). A comparison of

the spectra from observed vs. theoretical sums showed a

substantial increase in negative ellipticity at 222 nm in case of

the experimental spectrum, compared with the theoretical sum of

the individual spectra of JDP2 and GR500 (Figure 2B), suggesting

that the observed increase in secondary structural elements in the

complex are not additive, but due to the complex formation. Since

JDP2 is a well structured bZIP protein (as judged by the spectrum

in Figure 2A; and 32), our CD data strongly suggest that the

increased structural elements must be coming primarily from

GR500. A qualitative analysis of secondary structural elements

using K2d algorithm [39] from CD data showed a significantly

higher a-helical content in GR500 when bound to JDP2 in

comparison to unbound GR500. This increased helical content in

JDP2 bound GR500 appears to be coming at the expense of

mostly random coil configuration. Since JDP2 binds to the core

DBD and CTE, we further tested whether these observed changes

in GR500 are happening in the DBD or the NTD. In spite of the

fact that the DBD-CTE is sufficient to bind JDP2, as does GR500,

our CD analyses under similar conditions showed that there was

no significant structural change observed when the DBD (398–500

Figure 1. JDP2 binds to the C-terminal part of the GR DBD. A) A topological diagram of the GR500 fragment showing NTD (a.a. 1–420), AF1
(77–262), and DBD (421–481). B) Coomassie-stained SDS-PAGE gel showing the patterns of interactions between JDP2 or TBPC and various fragments
of the GR (indicated on the top). GST-pull down assay was performed to determine these in vitro interactions using purified recombinant protein in
each case.
doi:10.1371/journal.pone.0025875.g001
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a.a.) was mixed with JDP2 (Figure 3A,B). It has earlier been

reported that TFE (50%, vol/vol) had no effect on the CD spectra

of JDP2, indicating that it is maximally folded in aqueous solution

[32]. In contrast, the GR500, or isolated AF1, is reported to

exhibit a substantial shift in conformation to more helical content

in TFE [40]. These earlier published data further support our

interpretations and validate our findings that binding of JDP2 to

GR DBD leads to imposition of a compact structure in the

otherwise ID AF1/NTD. To test for non-specific protein

interactions, we recorded the CD spectra of an NTD/AF1 and

JDP2 protein mixture (1:2 molar ratios). As expected, there were

no significant changes observed in the NTD/AF1 with JDP2 in

the absence of DBD/CTE binding site (Figure 3C,D), suggesting

that structural changes observed in GR500 are due to specific

binding of JDP2 to its DBD/CTE. These results confirm that the

increased structural elements observed in NTD/AF1 in the

presence of JDP2 are not due to a mere presence of another

protein in the mixture, but occurs as a result of JDP2 binding.

Taken together, these results support the conclusion that binding

of JDP2 to GR’s DBD causes the ID NTD/AF1 domain of GR to

fold into a more compact structure. In the present study, JDP2

binding-induced structural changes in the GR NTD/AF1 domain

represents a new feature of intra- and inter- molecular signaling

leading to imposition of secondary/tertiary in the ID NTD/AF1

domain.

JDP2-induced structure formation in the GR AF1
facilitates its interaction with specific transcriptional
activator proteins

It is presumed that AF1 makes physical interactions with other

factors in order to transactivate gene(s) and that conditional

folding is important for these interactions [17], [41]. We therefore

evaluated whether the conformation induced in the ID AF1

domain due to JDP2 binding is important for specific protein-

protein interactions. We applied the fluorescence resonance

energy transfer (FRET) method. Plasmids expressing cyan

fluorescent protein (CFP) and yellow fluorescent protein (YFP)

were obtained, and from that we generated constructs that express

the fluorophores linked to GR500 (CFP-GR500), TBP (YFP-TBP),

CBP (YFP-CBP), or SRC-1 (YFP-SRC-1). The GR500 construct

is constitutively active as a transcription factor while avoiding

the possibility of any contribution from AF2 [21]. The constructs

were co-transfected into GR-deficient CV-1 cells. Several

control experiments were included to test for FRET as negative

or positive controls. Our results show that GR500 interacts

directly with TBP (Figure 4A; left hand, upper panel), CBP

(Figure 4A; left hand, middle panel), or SRC-1 (Figure 4A; left

hand, lower panel) in the nuclei of GR-deficient CV-1 cells co-

transfected with GR500 6 each co-regulator. Interaction of AF1

with TBP (Figure 4A; right hand, upper panel) or CBP

(Figure 4A; right hand, middle panel) is greatly enhanced when

cells were co-transfected along with plasmid expressing JDP2.

However, co-transfection of JDP2 failed to produce any

significant change in the FRET efficiency between the GR

AF1 and SRC-1 under similar conditions (Figure 4A; right hand,

lower panel). A quantitative analysis of FRET data for each set

of experiments is shown in Figure 4B. These results suggest that

JDP2-induced conformational changes in ID NTD/AF1 allow

its protein surfaces to facilitate AF1’s interaction with specific co-

regulatory proteins, an essential requirement for activation

domains of SHRs to regulate transcriptional activity of target

gene [17].

Effects of JDP2 on TBP, SRC-1 or CBP mediated
enhancement of AF1-driven transcription

We tested the effects of JDP2-induced folding/binding events on

AF1-driven transcription using GR-responsive promoters, in

transient transfection-based reporter assays in GR-deficient CV-

1 cells. The promoter-reporter plasmid (GRE-SEAP) contains

three GREs upstream from a TATA-box and a reporter gene that

encodes alkaline phosphatase secreted into the medium. To test

the effects of these coregulators on transcription driven by human

GR AF1, we co-transfected CV-1 cells with a GRE-dependent

reporter gene, and constant amount of GR500 expression vector

alone or with added vectors expressing TBP, SRC-1 or CBP.

Lacking the LBD, GR500 is transcriptionally active without

steroid and can induce genes and/or apoptosis in cells to nearly

the same extent as steroid-bound holo-GR [21]. GR500 alone

Figure 2. JDP2 binding to the GR DBD induces secondary structure in ID NTD/AF1 domain. A) Far-UV CD spectra of recombinant GR500,
JDP2, and GR500:JDP2 mixture. B) Far-UV CD spectra of GR500:JDP2 mixture (experimental), and additive of GR500+JDP2 (theoretical sum of GR500
plus JDP2). Each spectrum presented is the average of five spectra recorded, corrected for the contribution of the buffer, and smoothed.
doi:10.1371/journal.pone.0025875.g002
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significantly increased reporter activity compared to empty vector

alone, and input of the plasmids expressing TBP, SRC-1 or CBP

gene enhanced the GR500 induction of the GRE–SEAP reporter

several fold (Figure 5). These reporter activities were significantly

enhanced when the plasmid expressing JDP2 was added

(Figure 5). However, in the case of SRC-1, under similar

conditions, we did not observe any significant increase compared

to other co-regulators (TBP or CBP). The level of expression of

GR500 was assessed using GR antibody and found to be

equivalent. The western blot on the top of Figure 5 shows the

level of GR500 expression in each case, and data represented are

corrected to the efficiency of transfections. These results strongly

suggest that the enhancement of GR-induced transcription by

TBP, SRC-1 or CBP can be achieved through the AF1 region,

and that JDP2 plays a role by inducing a functionally active

compact structure that facilitates binding of selective coactivators

to AF1 region. Enhanced GRE-mediated AF1 activity by JDP2

alone further confirms that JDP2 acts as a coregulator for the

GR.

Discussion

To promote molecular recognition with their physiological

binding partners, eukaryotic genomes contain a number of

proteins with ID regions/domains that are involved in signaling

and regulation in nucleated cells [42], [43], [44], [45], [46], [47],

[48], [49], [50]. Due to conformational flexibility, the ID AF1/

NTD of the SHRs can include or exclude a variety of binding

partners in a rapid and well coordinated manner for efficient and

target specific regulation of gene expression [17]. Identification of

a DBD-binding protein, JDP2 as a coregulator for GR AF1

activity represents a novel mode of regulation of AF1 activity.

Since JDP2 was previously known to mediate the PR’s AF1

activity through similar mechanisms [31], [32], [33], [34], [35], it

suggests that JDP2 mediated-AF1 activity may be a common

mechanism for all members of the SHR family. In fact, JDP2

binding is mapped to the same region of GR and PR requiring the

2nd zinc finger of the core DBD and the CTE [33]. Interestingly,

the CTE is a short ID region that is not conserved in amino acids

Figure 3. JDP2 binding to the GR DBD fails to induce any significant structural changes in DBD. A) Far-UV CD spectra of recombinant
DBD (a.a. 398–500), JDP2, and DBD:JDP2 mixture. B) Far-UV CD spectra of DBD:JDP2 mixture (experimental), and additive of DBD+JDP2 (theoretical
sum of DBD plus JDP2). Each spectrum presented is the average of five spectra recorded, corrected for the contribution of the buffer, and smoothed.
C) Far-UV CD spectra of recombinant AF1 (a.a. 77–262), JDP2, and AF1:JDP2 mixture. D) Far-UV CD spectra of AF1:JDP2 mixture (experimental), and
additive of AF1+JDP2 (theoretical sum of AF1 plus JDP2). Each spectrum presented is the average of five spectra recorded, corrected for the
contribution of the buffer, and smoothed.
doi:10.1371/journal.pone.0025875.g003
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sequence among SHRs and is capable of binding both proteins

and DNA. Studies have shown the CTE can adopt different

structures and conformation dependent upon whether it is bound

to DNA or free in solution.

It has previously been shown that JDP2 and DNA binding had

distinct effects on conformation and folding of the hinge and NTD

regions of PR as assessed by partial proteolysis [32]. In the earlier

studies on JDP2 interaction with PR, JDP2 had no influence on

PR binding to its response element DNA by gel mobility shift

assays in vitro and a progesterone stimulated, PR-dependent

recruitment of JDP2 by ChIP assay to the MMTV promoter in

breast cancer cells was observed [31]. These data suggest that the

effect of JDP2 on transcriptional activity of PR is not due to

enhancing its binding to DNA. It has also been shown that

common residues in the PR CTE (R637/K638) that interact with

the minor groove of DNA and are required for binding and

functional response to JDP2 [33–34]. Previous crystallography and

NMR studies with PR showed that CTE is in a different

conformation when bound to DNA or JDP2 [33], [34]. Since

the CTE itself appears to be an ID region suggests the possibility

that CTE interactions are involved in mediating allosteric coupling

with the NTD through degenerate thermodynamic interactions

between domains of SHRs as proposed by Hilser and Thompson

[51]. From these data, it can be concluded that the ID CTE

interacts transiently with DNA or JDP2 through interconverting

conformers. Our FRET and promoter-reporter data (Figures 4

and 5) suggest that JDP2 binding does not interfere with the

binding of GR500 with cognate DNA response element and the

effect of JDP2 on transcriptional activity of GR is not due to

enhancing its binding to DNA response element.

In many cases, the unfolded or partially folded regions of

proteins take full shape when the protein interacts with its proper

Figure 4. JDP2:DBD binding-induced conformational changes facilitate interactions of AF1 with specific coregulatory proteins in
cell as assessed by FRET analyses. A) Representative same-cell images in the donor (CFP-GR500) and YFP-TBP, YFP-CBP, or YFP-SRC-1 channel
before and after PB. The areas within the white boxes were photo bleached. 1 and 4 = CFP- Pre PB; 2 and 5 = CFP- Post PB; 3 and 6 = YFP- Post PB.
Upper panel, CFP-GR500 and YFP-TBP (left hand); and CFP-GR500 and YFP-TBP in the presence of JDP2 (right hand). Middle panel, CFP-GR500 and
YFP-CBP (left hand); and CFP-GR500 and YFP-CBP in the presence of JDP2 (right hand). Lower panel, CFP-GR500 and YFP-SRC-1 (left hand); and CFP-
GR500 and YFP-SRC-1 in the presence of JDP2 (right hand). Cells were also cotransfected with a promoter-reporter construct, GRE-SEAP (as described
in Materials and Methods). B) Panel displays calculated average FRET efficiencies for each condition. Experiments were carried out three independent
times and were analyzed and calculated average FRET efficiencies 6 SD of 15 cells were graphed for each of the conditions.
doi:10.1371/journal.pone.0025875.g004
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binding partner(s), that is, the molecules to which it must bind to

carry out its function [48], [50]. Applied to the GR, this induced fit

model of folding hypothesizes that AF1 is not fully structured in vivo

until it binds one or another key partner molecule [17], [52]. We

hypothesize that an induced conformation, or limited set of

conformations, occurs in AF1 in order for it to carry out its

transcription function. In this version of the model the proximity

of the two proteins leads to rapid acquisition of functional

structure in AF1. In this study we show that complex formation

between the GR’s DBD/CTE and JDP2 is accompanied by

Figure 5. JDP2:DBD interaction-dependent cofactor-binding increases AF1-mediated transcriptional activity of a promoter
containing 3xGRE as assessed by SEAP-based promoter:reporter assay. CV-1 cells cotransfected with vectors containing genes for GR500
with or without other cofactors (as indicated). Results are expressed as means 6SE. Experiments were repeated at least three times. Levels of
significance were evaluated by a two-tailed paired Student’s t test and P,0.05 was considered significant. Graphs were normalized to transfection
efficiency of each construct assayed by immunoblot with specific antibody to GR (lower panel).
doi:10.1371/journal.pone.0025875.g005

Figure 6. Proposed mechanism of effects of JDP2 binding/folding in the stimulation of GR’s AF1 activity. Compared to the highly
structured GR’s DBD and LBD, the NTD/AF1 is mostly unstructured in solution (a). JDP2 interaction with the DBD/CTE transmits inter-domain signals
to the AF1/NTD, resulting into secondary/tertiary structure formation in it (b). This induced structure in the AF1/NTD creates interaction surfaces for
other coactivators (e.g., TBP and CBP) that mediate transcriptional activity of the AF1 (c). Undergoing conformational changes are indicated by
different shapes and colors.
doi:10.1371/journal.pone.0025875.g006
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changes in protein conformation in the NTD/AF1 domain. The

most likely cause of this effect is by the highly structured JDP2

passing a signal through GR’s DBD to induce a folding event in

the ID of the AF1/NTD. These conditional structural changes in

the N-terminal region of the GR following JDP2 binding via the

DBD may play an important role in triggering gene regulation.

Assuming that these changes are taking place in AF1, it can be

imagined that binding to JDP2 is required to bring the receptor’s

major transactivation domain into a conformation suited for its

interaction with specific coactivators and/or proteins of the

transcriptional machinery. Of course, this model in no way rules

out the possibility of further structural changes in AF1, or the

entire GR, as a result of those protein-protein interactions.

Our structural data from CD and proteolytic digestion

experiments clearly show that binding with JDP2 leads to

imposition of greater structure in the NTD/AF1 domain. Thus,

the binding of JDP2 to GR’s DBD/CTE is not a simple tethering

of the two molecules, but is an important step towards giving a

folded functional structure to the AF1 domain through inherent

inter-domain influences. Beyond this inherent structural effect, we

have also shown that binding of the GR DBD to its cognate DNA

response element causes structure to form in the GR NTD/AF1

[35]. Others have shown DNA binding effects on NTD/AF1

structure of the PR [53]. It has been proposed that DNA sequence

of the various response elements found in specific genes may

influence the fold and therefore the specific actions of AF1 [54]. If

DBD:JDP2 interaction causes AF1 to assume a native, functional

structure, then interaction of the AF1 domain with specific binding

partner proteins should be enhanced. It has been shown that AF1

can bind to several proteins important for transcription [55], [56],

[57]. Indeed, JDP2 binding-induced structural changes in NTD/

AF1 appeared to be specific, since JDP2 enhanced AF1’s

interaction with TBP and CBP, but failed to do so as efficiently

for SRC-1. Further, JDP2 folding/binding events correlate well

with AF1 activity. This is consistent with our hypothesis that

JDP2-induced folding of the GR AF1 domain facilitates its

interaction with specific coregulators.

We have earlier shown that in the presence of a naturally

occurring osmolyte, trehalose, which can fold AF1 into function-

ally active conformation, facilitates AF1’s interaction with SRC-1

[58]. Therefore, it is logical to speculate that under physiological

conditions not all events that are capable of folding AF1 open the

same surfaces for its interactions with other binding partner

proteins. It is possible that, JDP2-induced conformational changes

may exclude certain proteins from the complex. Our earlier

studies have shown that direct binding of TBP to AF1 and site-

specific phosphorylation of AF1 result in induced structure

formation in AF1 [25], [59]. It will be interesting to determine

whether structural changes observed in AF1 under different

physiological conditions are similar or unique. We hypothesize

that a combination of various events, which may be cell- and

promoter- specific, are needed to induce fully folded conformation

in the AF1.

In sum, our data suggest that the assembly of GR:binding

partner complex is an essential step in promoting AF1’s properly

folded, functioning structure. Further, proteins that affect AF1

structure are not confined to those that bind directly to AF1 rather

they can influence AF1 conformation through binding other

domains of GR. The effect of JDP2 appears to be dependent on a

specific inter-domain communication between the DBD and

NTD. These data suggest that the transcriptional activity of the N-

terminal domain involves protein folding that can be integrated

allosterically through cofactor binding to the DBD. Also, whether

specific GRE sequences are required for these effects remains to be

seen. Overall, it appears that in the context of full length receptor

under physiological conditions, AF1 adopts a set of conformations

due to inter- and intra- molecular communications including but

not limited to cofactor binding. These structurally modified AF1

conformations, and by large the entire NTD under specific

conditions, may dictate the final outcome of the receptor:cofactor

assembly leading to regulation of target genes (Figure 6). Physical

interactions between the AF1 and AF2 may also influence these

results.
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