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Abstract

The mechanism of latent tuberculosis (TB) infection remains elusive. Several host factors that are involved in this complex
process were previously identified. Micro RNAs (miRNAs) are endogenous ,22 nt RNAs that play important regulatory roles
in a wide range of biological processes. Several studies demonstrated the clinical usefulness of miRNAs as diagnostic or
prognostic biomarkers in various malignancies and in a few nonmalignant diseases. To study the role of miRNAs in the
transition from latent to active TB and to discover candidate biomarkers of this transition, we used human miRNA
microarrays to probe the transcriptome of peripheral blood mononuclear cells (PBMCs) in patients with active TB, latent TB
infection (LTBI), and healthy controls. Using the software package BRB Array Tools for data analyses, 17 miRNAs were
differentially expressed between the three groups (P,0.01). Hierarchical clustering of the 17 miRNAs expression profiles
showed that individuals with active TB clustered independently of individuals with LTBI or from healthy controls. Using the
predicted target genes and previously published genome-wide transcriptional profiles, we constructed the regulatory
networks of miRNAs that were differentially expressed between active TB and LTBI. The regulatory network revealed that
several miRNAs, with previously established functions in hematopoietic cell differentiation and their target genes may be
involved in the transition from latent to active TB. These results increase the understanding of the molecular basis of LTBI
and confirm that some miRNAs may control gene expression of pathways that are important for the pathogenesis of this
infectious disease.
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Introduction

Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB),

remains a threat to global health. In 2008, TB accounted for

nearly 1.8 million deaths worldwide, second only to the human

immunodeficiency virus (HIV) as an infectious cause of death [1].

Approximately ,5 to 10% of MTB-infected individuals develop

active TB at some stage in their life [2]. The remaining ,90 to

95% infected people remain asymptomatic, carrying so-called

latent TB infection (LTBI), which is defined solely by the evidence

of immunological sensitization to mycobacterial proteins (MTB-

purified protein derivative, PPD) in the absence of clinical signs

and symptoms of active disease [3]. The World Health

Organization estimates that nearly one third of the world

population is PPD+ [4]. This vast reservoir of LTBI-infected

individuals is a constant source of disease caused by reactivation,

especially in developing countries with large numbers of TB cases

and a high TB incidence rate. The risk of TB reactivation among

immunocompetent LTBI persons is estimated as 10% per lifetime.

Impaired immunity such as HIV infection increases the risk to

10% per year and ,50% per lifetime [5,6].

The exact underlying mechanisms of LTBI and its transition to

active TB remain elusive. LTBI rely on an equilibrium in which

the host is able to control the infection but does not completely

eradicate the bacteria [7]. Latency may depend upon the virulence

of the MTB strain [8] and upon the host immune response. Some

bacteria may escape attack from the innate or acquired immune

system by blunting phagosome and lysosome fusion, nitric oxide

production, antigen presentation, or other bactericidal processes

from the host, and therefore survive in a phenotype called

dormancy [9]. Immunosuppressants such as HIV infection or anti-

tumor necrosis factor (TNF) treatment for rheumatoid arthritis

may lead to the reactivation of these bacteria. Owing to the lack of

a widely accepted animal model to study the pathogenesis of M.

tuberculosis, population-based studies have been the best methods to

reveal the complex biology of LTBI. Earlier studies which used

whole-genome transcriptional profiling of peripheral blood

mononuclear cells (PBMCs) [10] or whole blood cells [11] to

characterize signatures of susceptibility or resistance to tubercu-

losis, described FcGR1B (CD64) as the most deregulated gene in

individuals with active TB in Caucasian populations and African

populations in which TB was highly endemic. Another study
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identified a whole-blood 393 transcript dominated by neutrophil-

driven interferon (IFN)-inducible genes correlated with radiolog-

ical extent of active TB and reverted to that of healthy controls

after treatment [12]. By using intracellular flow cytometry staining

of stimulated PBMCs with MTB-derived peptides, a recent report

found a dominant TNF-a+ MTB–specific CD4+ T cell response

that discriminated between latent infection and active disease [13].

Although these studies further our understanding of the funda-

mental biology of TB and offer leads for diagnosis and treatment

options in the future, taken together they do not fully explain how

the pathogen transitions from the latent stage to active TB.

MicroRNAs (miRNAs) are endogenous ,22-nucleotide RNAs

that play important regulatory roles in animals and plants by

targeting mRNAs for cleavage or translational repression [14].

There are currently ,1,000 human miRNAs sequences listed in

the miRNA registry which may target about 60% of all

mammalian genes [http://www.mirbase.org/], indicating that

these small molecules play fundamental and global functions in

human biology, including development [15], differentiation [16],

apoptosis [17], metabolism [18], viral infection [19], and cancer

[20]. MiRNAs also modulate the innate and adaptive immune

responses to pathogens by affecting mammalian immune cell

differentiation and the development of diseases of immunological

origin [21,22].The clinical application of miRNAs as diagnostic or

prognostic biomarkers has already been demonstrated in various

types of cancers [23,24]. However, compared to their well-known

role in cancer, the role of miRNAs in susceptibility and resistance

to infectious disease, especially those of bacterial origin, is still

poorly understood.

In the present study, we compared the miRNA expression

profiles of PBMCs from patients with active TB, subjects with

LTBI, and healthy controls in order to test the hypothesis that

candidate miRNAs regulate the transition from LTBI to active

TB. We used a miRNA microarray chip containing ,960 probes

to identify the differently expressed miRNAs, and performed real-

time quantitative polymerase chain reaction (qPCR) for confir-

mation. The putative regulatory network of miRNAs that were

differentially expressed in the samples from active TB and LTBI

individuals was constructed based on predicted target genes and

previously published genome-wide transcriptional profiles. Our

study provides a greater understanding of the role of miRNAs-

mediated regulated networks in the transition from latent to active

TB.

Results

Expression profiles of miRNAs in PBMC from different
groups

We first determined whether the miRNA profile of patients with

active TB was distinct from that of patients with LTBI and healthy

controls. The demographic and clinical characteristics of all

patients with active TB, LTBI, and the healthy controls are

summarized in Table 1.We used a human miRNA microarray to

perform the 955 miRNAs assay in PBMCs from 6 patients with

active TB, 6 donors with LTBI, and 3 healthy persons for a total of

15 random selected biologically independent samples (Table S1).

The microarray contains probes for 866 human and 89 human

viral miRNAs represented in the Sanger miRBase (release 12.0,

Table 1. Characteristics of study participants with active tuberculosis (TB), latent TB infection (LTBI) and healthy controls.

Active TB

Characteristic Pre-treatment Re-treatment Latent TB infection Healthy Controls

Total Number 28 1 29 18

Gender

Female 9 1 17 16

Male 19 0 12 2

Ethnicity

Han Chinese 28 1 29 18

Age, Mean Years 6 SEM 38.263.8 47 40.862.0 35.162.8

Diseases Characteristics

Pulmonary TB 26 1 Na Na

Lymph node TB 1 0 Na Na

Renal TB 1 0 Na Na

TST

Positive Na 29 3

Negative Na 0 15

IGRA

Positive 24 1 29 0

Negative 4 0 0 18

HIV - - - -

HBV - - - -

HCV - - - -

Diabetes - - - -

NA, Not applicable; TST, Tuberculosis Skin Test; IGRA, Interferon-c Release Assay; TB, Tuberculosis; HIV, Human immunodeficiency virus; HBV, hepatitis B virus; HCV,
hepatitis C virus; SEM, standard error of the mean.
doi:10.1371/journal.pone.0025832.t001

miRNA Expression during M. tuberculosis Infection
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Sanger Institute, city, UK). Data analysis first consisted of

unsupervised analyses of miRNA signatures in the dataset without

a priori knowledge of the sample phenotypic classification [25].

After normalization and unsupervised filtering (see Materials and

Methods), the data yielded a list of 415 miRNAs. The expression

profiles of these 415 miRNAs were then subjected to unsupervised

hierarchical clustering using the Pearson correlation with average

linkage to create a condition tree (Fig. 1). The molecular

classification obtained through hierarchical clustering was then

compared with the phenotypic classification of the individuals

from whom the samples were obtained. Two branches were

obtained from the conditional tree that was generated: one branch

was composed of 3 patients with active TB, 2 subjects with LTBI,

and 2 healthy controls, while the other branch was composed of 3

patients with active TB, 4 subjects with LTBI, and 1 healthy

control. This result showed that there was no clear distinction

between the samples in regards to their clinical classification or age

and gender, which indicates a high variability of whole miRNA

profiles between individuals.

Subtle differences in gene expression among closely related

subtypes may escape detection when using unsupervised clustering

analysis. Therefore, we used BRB Arraytools to perform a F-test

comparison by supervised clustering in an attempt to identify

deregulated miRNAs between the different study groups [26]. We

first differentiated the 3 groups by using a supervised learning

algorithm to classify three or more groups (binary tree classifica-

tion). Expression profiles were first classified into group A (Active

TB) and group non-A (non-Active) (LTBI, Healthy) (node 1). The

non-A group was then classified into LTBI and Healthy (node 2).

Then, the same classification was used to generate node 3 (Healthy

and Non Healthy), node 4 (Active TB and LTBI), and node 5

(Latent and Non Latent), and node 6 (Active TB and Healthy). By

performing the 6 univariate tests (P,0.01) we identified a total of

38 miRNAs (Table S2 and Figure S1) that were statistically

different (P,0.01) in at least one comparison. Next, we used

Support vector machines (SMVs) as a prediction method to

capture the differently expressed miRNAs among the 3 groups

(Figure S1) [27]. Out of 10 miRNAs that differentiated node 1

(Active and Non Active) classification, 7 also differentiated node 4

(Active and LTBI) classification. These 7 miRNAs were then

marked as the differentially expressed miRNAs between Active TB

and LTBI. From the 6 univariate test results, a total of 17 miRNAs

(Table S3) were identified using this prediction method (P,0.01).

Among these 17 miRNAs, 7 miRNAs (hsa-miR-130b*, hsa-

miR-21*, hsa-miR-223, hsa-miR-302a, hsa-miR-424, hsa-miR-

451, hsa-miR-486-5p) were differentially expressed between active

TB and latent TB, 6 miRNAs were up-regulated in active TB

patients, and only hsa-miR-130b* showed reduced gene expres-

sion level. 7 miRNAs (hsa-miR-144,hsa-miR-133a,hsa-miR-365,

hsa-miR-424 ,hsa-miR-500, hsa-miR-661,hsa-miR-892b) had

different gene expression levels between active TB and healthy

controls; 4 of them (hsa-miR-144,hsa-miR-365 and hsa-miR-133a,

hsa-miR-424) were up-regulated and 3 of them (hsa-miR-500, hsa-

miR-661,hsa-miR-892b) were down-regulated in active TB

patients. Five miRNAs (hsa-miR-130a*, hsa-miR-296-5p, hsa-

miR-493*, hsa-miR-520d-3p, hsa-miR-661) had different expres-

sion levels between latent TB and healthy controls; all of them

except hsa-miR-296-5p were up-regulated in healthy controls.

Only hsa-miR-424 was up-regulated in comparisons of active TB

with LTBI, as well as active TB with healthy controls. Hsa-miR-

661 was up-regulated in comparisons of healthy controls with

active TB, as well as healthy controls with LTBI.

The multi-dimensional scaling generated by BRB Arraytools to

visualize the relationships between the 15 samples based on the

expression patterns of 17 miRNAs showed the active TB group

were located in a different quadrant from the major group of non-

active TB, which were composed by 4 latent TB and 3 healthy

controls (Figure 2A). Only minor differences existed between

latent and healthy controls. This revealed a discriminative pattern

between active TB versus latent TB or healthy controls.

Hierarchical clustering of the expression profiles of 17 miRNAs

also showed that individuals with active TB clustered indepen-

dently of individuals with LTBI or healthy controls (Figure 2B).

This difference between active and non-active TB groups was

mainly due to the induced expression of hsa-miR-365, hsa-miR-

223 and hsa-miR-302a, hsa-miR-486-5p, hsa-miR-144 and hsa-

miR-451, hsa-miR-21* and hsa-miR-424 in active TB patients.

Interestingly, 5 of the miRNAs (hsa-miR-365, hsa-miR-223 and

hsa-miR-144, hsa-miR-451, hsa-miR-424) were highly expressed

in PBMCs and their expression in 3 groups was confirmed by

qPCR. Meanwhile, the LTBI group was divided into 2 sub-

clusters; 2/6 had an expression profile similar to the expression

profile of the active TB group, and 4/6 clustered with healthy

controls. This finding indicates there may be different stages of

latency as it progresses to active disease Thus, by using 17

miRNAs, we identified a gene expression pattern or profile that

discriminates between active TB versus healthy controls with or

without M. tuberculosis infection.

To validate the microarray data, we used a SYBR-Green

miRNA real-time qPCR analysis of miRNAs from PBMCs from

23 patients with active TB, 23 subjects with LTBI, and 15 healthy

controls (Fig. 3). It should be noted that the expression intensities

of some miRNAs (e.g. hsa-miR-500) in our microarray chip were

just passed the threshold of detection; the low expressions of these

miRNAs in PBMCs may lead to a poor reproducibility of RT

PCR. Thus, in order to confirm our microarray data, we first

classified all the 17 miRNAs into 2 groups based on expression

values in PBMCs (reflected by mean of intensities in microarray).

Those miRNA with mean of intensities in microarray .10 were

classed to group 1, the rest miRNA Mean of intensities in

microarray ,10 were set as group 2 (Table S3).We picked 5

miRNAs from group 1; 3 miRNAs from group 2 representatively

to perform the RT PCR confirmation. The expression profiles of

the active TB and LTBI groups were statistically different for

miRNAs from group 1: hsa-miR-144 (P,0.05), hsa-miR-424

(P,0.01), hsa-miR-451(P,0.05), hsa-miR-223 (P,0.05), and hsa-

miR-365 (P,0.05). We observed that hsa-miR-424 and hsa-miR-

365 also exhibited increased expression levels in samples from

active TB versus healthy control groups (P,0.05). Our results

were similar to those obtained in the microarray assay. Although

most of the highly-expressed miRNAs in PBMCs showed

significantly different expression levels between active TB and

LTBI or healthy controls, not all microarray results could be

confirmed by RT PCR. Microarray analysis and real-time PCR

are two methods with different sensitivities and specificities, which

might explain why target miRNAs at low levels could not always

be detected by both methods [28].

Construction of MiRNA-Gene-Network
The ultimate goal of our project is to test the hypothesis that the

unique miRNA profiles and their target genes are associated with

the progression of infection with M. tuberculosis from latent TB to

active disease. Thus, we focused on miRNAs that are differentially

expressed between active and latent TB. A previous study

illustrated that there are alternated gene expression profiles in

PBMCs between these 2 groups [10]. Based on our microarray

data, several transcripts were negatively correlated with their

predicted or validated miRNA targets, this revealed the existence

miRNA Expression during M. tuberculosis Infection
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Figure 1. Unsupervised hierarchical clustering of the expression of 451 miRNAs. The tree was generated by unsupervised hierarchical
clustering of PBMC miRNA profiles for patients with active TB, subjects with LTBI, and healthy controls. MiRNAs with 2-fold up- or down-expression
compared with the median intensity across all samples and differential expression values greater than 10% of all samples were selected for
unsupervised analysis (n = 415 miRNAs). Sample clusters can be compared with the clinical parameters displayed in blocks underneath each profile. A
key is provided at the bottom of the figure. Subjects’ clinical status is indicated as follows: patients with active TB are indicated by red rectangles;
subjects with LTBI by blue rectangles; and healthy controls by black rectangles. Age is indicated as: subjects between 15–24 years old are indicated by
olive green rectangles; subjects 25–34 years old by brown rectangles; subjects 35–44 years old by purple rectangles; and subjects 45–54 years old by
khaki rectangles. Females are indicated by hoar rectangles and males by darkish rectangles.
doi:10.1371/journal.pone.0025832.g001
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of a miRNA-Gene regulatory network in the transition from latent

to active TB. To identify the putative functional modules, we

constructed the MiRNA-Gene-Network (Fig. 4) based on the data

sets consisting of miRNA–target gene binding information and

expression profiles of miRNAs and mRNAs [29]. We used the

previously published mRNAs expression profiles from another

study of samples from active TB and LTBI participants in the

Gene Expression Omnibus (GEO) public database (www.ncbi.

nlm.nih.gov/geo/query/acc.cgi?acc = GSE6112) [10]. We used

this published report because their study, like the present study,

used PBMCs in their RNA microarray assay.

We first performed an F-test between the Active TB and LTBI

groups using a P-value,0.05 in order to select all the potential

miRNAs expressed differentially. This test yielded a list of 17

miRNAs (Table 2) differentially expressed between these two

groups. A total of 3010 target genes (Table S4) for these 17

miRNAs (taken from the TargetScan Database www.targetscan.

org/) and their expression profiles were then imputed into the

Figure 2. Multi-dimensional scaling of the relationships and unsupervised hierarchical clustering based on the 17 miRNAs
expression pattern. A. Multi-dimensional scaling generated by BRB Arraytools of the relationships between the 15 samples based on the 17
miRNAs expression pattern. Red dot, active TB; Blue dot, latent TB; Black dot, healthy controls. B. The tree generated by unsupervised hierarchical
clustering (Pearson’s correlation, average linkage) of 15 samples (columns) and 17 miRNAs differentially expressed among the 3 groups predicted by
using the SVM method. Sample clusters can be compared with the clinical parameters displayed in blocks underneath each profile. A key is provided
at the bottom of the figure. Subjects’ clinical status is indicated as follows: patients with active TB are indicated by red rectangles; subjects with LTBI
by blue rectangles; and healthy controls by black rectangles. Age is indicated as: subjects between 15–24 years old are indicated by olive green
rectangles; subjects 25–34 years old by brown rectangles; subjects 35–44 years old by purple rectangles; and subjects 45–54 years old by khaki
rectangles. Females are indicated by hoar rectangles and males by darkish rectangles.
doi:10.1371/journal.pone.0025832.g002

miRNA Expression during M. tuberculosis Infection

PLoS ONE | www.plosone.org 5 October 2011 | Volume 6 | Issue 10 | e25832



miRNA–mRNA modules designed before [30] (Materials &

Methods). This method yielded a list of 12 miRNAs and 111

target genes with negatively correlated expression profiles (Table

S5). There were no detectable correlations between hsa-miR-451,

hsa-miR-342-5p and their target genes, which may be due to the

small quantity of target genes for these 2 miRNAs in database

(Table 2). Also we failed to retrieve the predicted or validated

target genes for 3 miRNAs (hsa-miR-21*, hsa-miR-130b* and hsa-

miR-550*) from the database. These 5 miRNAs were therefore

absent in the network. Of the 12 miRNAs in the network, 3 were

down-regulated in active TB, namely hsa-miR-155, hsa-miR-181b

and hsa-548b-3p. The other 9 miRNAs exhibited increased

expression in active TB. Hsa-miR-424 had the highest degree of

regulation in the MiRNA-Gene-Network; 37 target genes were

down-regulated in the mRNA expression profiles, followed by hsa-

miR-144 with 23 target genes and hsa-miR-302a, hsa-miR-181b

and hsa-520d-3p, both had 20 target genes in the network. Hsa-

miR-548b-3p and hsa-miR-640 showed the minimum degree of

regulation, with only 3 and 4 target genes included in the network.

Regarding the 111 genes, most of them (78 in 111) were

targeted by only one miRNA in the network (e.g. BCL2 was only

targeted by hsa-miR-424). The rest 33 genes were regulated by

multi-miRNAs: 14 genes were regulated by 2 miRNAs (e.g.

CEP68 was targeted by hsa-miR-424 and hsa-miR-223), and 13

genes were regulated by 3 miRNAs.. MYBL1 (v-myb myeloblas-

tosis viral oncogene homolog (avian)-like 1) and PDCD4

(programmed cell death 4) were regulated by 5 miRNAs (the

highest degree of regulation in the network), followed by BCL7A

(B-cell CLL/lymphoma 7A), CUL3 (cullin 3), FOXO1 (forkhead

box O1), and KIF3B (kinesin family member 3B) which were

regulated by 4 miRNAs in the network. Analysis of the Gene

Ontology (GO), a database based on molecular functions (Fig

S2A), and the Kyoto Encyclopedia of Genes and Genomes

(KEGG), a regulatory pathway database (Fig. S2B) for these 111

genes showed that most encoded proteins with transcription

regulator activity and protein binding functions were involved in

cellular growth, movement, and proliferation, such as focal

adhesion, MAPK signaling, Wnt signaling, insulin signaling,

Figure 3. Quantitative PCR (qPCR) validation of miRNA expression levels in samples from the active tuberculosis (TB) group versus
the latent tuberculosis infection (LTBI) groups. We confirmed the gene expression levels of miRNAs using real-time qPCR. We analyzed the
expression of 7 miRNAs (hsa-miR-223, hsa-miR-365 hsa-miR-424, and hsa-miR-451, hsa-miR-144, hsa-miR-500 and hsa-miR-21*) selected from the
microarray data by qPCR. The 22DDCT method was used to normalize the relative gene expression data in the qPCR assay. U6 snRNA was set as the
reference gene. The miRNA expression value in one subject with LTBI was normalized to 1. Statistical analysis was performed using the unpaired t-
test. ** P,0.01, * P,0.05, NS: not significant.
doi:10.1371/journal.pone.0025832.g003
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TGF-beta signaling, and chronic myeloid leukemia. Our results

suggest that the miRNAs may regulate MTB infection by affecting

the development of immune cells.

Discussion

Our understanding the mechanisms of the transition from latent

infection to active TB remains incomplete [3]. Multiple host

factors are involved in this complex process. Herein, we focused on

miRNAs, a class of ,22-nucleotide short non-coding RNAs that

play key roles in fundamental cellular processes. The miRNA

registry currently contains ,1,000 human miRNAs sequences,

which target about 60% of mammalian genes. Our microarray

chip contains nearly 90% of these miRNAs. The expression profile

of these miRNAs showed high variability between individuals, and

was independent of their age, gender, or clinical phenotype.

However, we were able to distinguish the expression profile of the

active TB group from the expression profile of the latent TB group

using a 17-miRNA signature that was predicted by the SVM

method. The molecular classification obtained through hierarchi-

cal clustering of these 17 miRNAs showed a discriminative pattern

between active TB versus healthy controls with or without M. TB

infection. Two LTBI subjects outlying the non active TB cluster

and clustering together with active TB patients. A previous study

identified a 393-transcript signature in whole blood cells that

would discriminate between the different groups, and also

reported that 10–25% of the patients with LTBI clustered with

patients with active TB [12]. This may indicate there are different

stages of LTBI, and LTBI is in fact a spectrum of responses to TB

infection, ranging from individuals who have completely cleared

the infection to individuals who are incubating actively

replicating bacteria in the absence of clinical symptoms [3].

Because this complex process is associated with changes in the

host’s immune response, one would expect differential expression

of some genes or miRNAs. Unfortunately, we currently lack a

‘‘gold standard’’ for discriminating the different stages of latent

TB infection, which has made it very difficult to determine

whether the expression of a genes or miRNAs could reflect the

spectrum of responses to TB infection in different stages of latent

infection.

We focused on the miRNAs that were differently expressed in

active versus latent TB, in order to identify miRNAs that might be

Figure 4. MiRNA-Gene-Network for the transition from latent to active tuberculosis. The MiRNA-Gene-Network was built using the gene
expression data and the predicted interactions in the TargetScan miRNA database. The mRNA profile was obtained from previously published studies
[10]. miRNA–mRNA modules obtained via population-based probabilistic learning was used to determine the interactions in the network (Materials
and Methods). Circles represent genes and squares represent miRNAs; their relationship is represented by one edge. The center of the network
represents the degree (i.e., the interaction of one miRNA with the genes around and the interaction of one gene with the miRNAs around. The key
miRNAs and genes in the network always have the highest degrees.
doi:10.1371/journal.pone.0025832.g004
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correlated with resistance and susceptibility of TB. We identified

17 miRNAs that were differentially expressed. The majority (12

out of 17 miRNAs) were up-regulated in patients with active TB.

Among these miRNAs, hsa-miR-223, hsa-miR-424, and hsa-miR-

451 and hsa-miR-144 were highly expressed in PBMCs compared

to other miRNAs. Interestingly, these 4 miRNAs are also involved

in the hematopoietic differentiation process. Previous studies using

a miR-223-knockout mouse showed an increased proration of

granulocytes, which are morphologically hypermature and

hypersensitive to activating stimuli, and have more fungicidal

activity [31]. Expression of miR-424 is induced during monocyte-

macrophage differentiation, and miR-424 subsequently down-

regulates expression of the transcription factor NFI-A78 [32].

Another study showed that miR-424 promotes monocytic

differentiation through combinatorial regulation with miR-155,

miR-222, and miR-503 [33]. MiR-451, with its cluster miR144, is

required for erythroid differentiation and homeostasis [34]. The

increased expression of these miRNAs in active TB may lead to

the changes in immune cell profile and the alterations of the host

immune response during MTB infection. Although we did not

perform a comparative phenotypic assay of cellular composition in

our samples, several studies found a related phenotype in active

TB patients. For example, a previous study that used whole-

genome transcriptional profiling revealed altered gene expression

profiles in different cell types, such as macrophages and NK cells,

in samples from active and latent TB [11]. Studies have also

shown an increase in the proportion of CD14+CD16+ inflamma-

tory monocytes and a decrease in the proportion of CD4+ T cells,

CD8+ T cells, and B cells in blood cells of patients with active TB

[12]. However, it is still unknown whether this alteration of cellular

composition and related gene expression in active TB patients is

regulated by miRNAs.

A previous study that used PBMCs to elucidate whole genome

expression profile differences between latent and active TB found

that 407 genes were upregulated and 364 genes were down

regulated in active TB (RVM-T test with a P,0.05) [11]. Among

these 771 genes, 111 were targeted by the 12 miRNAs

differentially expressed in our microarray assay. It should be

noted that 6/7 of affected genes during active TB are not targeted

by our identified miRNAs, including some genes with highest

degree of differential expression between active TB and latent TB

such as CD64, LTF and RAB33A, these genes may be targeted by

some miRNAs yet to be identified, also there may be other post-

transcriptional regulation such as RNA binding proteins .The

miRNA-Gene –Network for these 12 miRNAs and 111 genes

reveals the high regulatory role of miR-424, which targets 37 genes

in the network. Most of miR-424 target genes, such as BACH2,

BCL2, BCL7A, and FOXO1, are involved in cellular differenti-

ation and development. For example, the transcription factor

BACH2, together with other factors such as BLIMP1 appears to

constitute a transcriptional regulatory network for the differenti-

ation of B cells to plasma cell [35]. The specific function of BCL7A

has not yet been determined, however, it may play a role in T -cell

lymphoma [36]. Both BACH2 and BCL7A have been targeted by

multiple miRNAs in the network. Therefore, we hypothesize the

depressed expression level of these 2 genes by multiple miRNAs

such as hsa-miR-223 and hsa-miR-424 may lead to a disorder in

the proportions of T cells and B cells in active TB patients, which

may disturb the delicate balance of immune control in MTB

infection. Bcl-2 is the founding member of the Bcl-2 family of

apoptosis regulator proteins encoded by the BCL2 gene, which has

been supported a role for decreased apoptosis in the pathogenesis

of cancer [37]. Previous studies showed that apoptosis is an innate

defense function of macrophages against MTB infection. One

Table 2. Differently expressed miRNAs in the samples from study participants with active tuberculosis (TB) versus latent
tuberculosis infection (LTBI).

Geom mean of intensities in

miRNA
active
TB (n = 6)

latent TB
(n = 6)

Fold-
change

Parametric
p-value

Chromosomal
location

No. Target Genes in
TargetScan Database

No. Target Genes
in the Network

hsa-miR-130b* 1.05 3.15 0.33 0.0004416 22q11.21 NA NA

hsa-miR-223 9225.58 5243.09 1.76 0.0005922 Xq12 207 10

hsa-miR-424 49.49 15.18 3.26 0.0009967 Xq26.3 984 37

hsa-miR-302a 2.73 1.14 2.41 0.0042495 4q25 616 20

hsa-miR-21* 4.05 1.35 2.99 0.0046189 17q23.1 NA NA

hsa-miR-520d-3p 3.25 1.47 2.21 0.0066037 19q13.42 616 20

hsa-miR-486-5p 105.78 31.62 3.35 0.0083258 8p11.21 111 6

hsa-miR-451 2514.81 596.91 4.21 0.0093827 17q11.2 14 0

hsa-miR-342-5p 37.32 87.84 0.42 0.0183201 14q32.2 65 0

hsa-miR-550* 2.36 1.18 2 0.0275742 7p14.3 NA NA

hsa-miR-421 1.94 1.09 1.78 0.0281778 Xq13.2 276 8

hsa-miR-640 1.84 1.07 1.72 0.0289444 19p13.11 110 4

hsa-miR-144 27.22 3.39 8.04 0.0355072 17q11.2 661 23

hsa-miR-155 48.24 95.07 0.51 0.0438122 21q21.3 284 11

hsa-miR-181b 18.25 32.93 0.55 0.044274 1q32.1 904 20

hsa-miR-329 2.69 1.33 2.02 0.0446126 14q32.31 225 9

hsa-miR-548b-3p 1.05 2.1 0.5 0.045977 6q22.31 163 3

NA None of the target genes for these miRNAs were previously registered in the TargetScan database.
doi:10.1371/journal.pone.0025832.t002
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study showed that avirulent strains of mycobacteria could

stimulate the macrophage to undergo apoptosis, which results in

a ‘cellular corpse’ with an impermeable envelope that prevents

bacteria from escaping. In contrast, virulent mycobacteria caused

macrophage death by a process that proceeds to necrosis, which

produces a permeable cell membrane that enables bacteria to

escape and spread [38,39]. Another study also assumed that

virulent mycobacteria are able to inhibit apoptosis by altering the

BCL2 pathway [40]. It is necessary to clarify whether the inhibited

expression of BCL2 by miRNAs results in the alternative forms of

cell death and induces the spreading of MTB in active TB patients.

Previous studies used whole-genome transcriptional profiling to

understand the host response to MTB infection and found some

potential signatures in the development of the disease [10, 11, and

12]. However, limitations of the microarray methods used in these

studies led to the dismissal of some unknown transcripts such as

miRNA. We report herein the changes in miRNAs expression

profiles associated with the transition from latent to active TB. We

identified specific miRNAs that were differentially expressed

among active TB, latent TB and healthy controls. Our miRNAs

microarray results show that these small non–coding RNAs may

potentially be used to discriminate between active TB disease and

latent TB infection. Our results increase the understanding of the

molecular basis of LTBI, and suggest that miRNAs expression

may play an important role in the pathogenesis of this infectious

disease by controlling related gene expression. In addition, the

putative miRNA targets provide new tools to better characterize

LTBI. Further testing and validation are needed to determine

whether miRNAs are useful markers, and whether they identify

progression from LTBI to active disease and response to therapy.

Materials and Methods

Ethics statement
The study was reviewed and approved by the local ethics

committee (Shanghai Public Health Clinical Centre). Written

informed consent was obtained from participants prior to their

enrollment in the study.

Patient selection and PBMC isolation
Patients were recruited and enrolled at the Shanghai Public

Health Clinical Centre (Shanghai, China) from December 2008

through May 2009. The demographic and clinical characteristics

of the 29 patients with active TB, the 29 subjects with LTBI, and

the 18 healthy controls are summarized in Table 1. The diagnosis

of active TB was based on clinical presentation, chest radiography,

and acid-fast stain of sputum smear. Lymph node TB was

diagnosed by microscopy of lymph fragments from fine needle

aspiration. Renal TB was diagnosed by microscopy of urinary

analysis, type B ultrasonography, and computerized tomography.

All of the patients were HIV negative, as diagnosed by the Livzon

Anti-HIV1/2 EIA Kit (Livzon Pharmaceutical Group Inc.,

Guangdong, China). Additional tests were also performed to

detect hepatitis B virus (HBV) and hepatitis C virus (HCV) using

the Abbott AxSYM anti-HBsAg and HCV 3.0 antibody assay kit

(Abbott Laboratories, Illinois) to exclude HBV- and HCV-positive

patients (these two diseases are highly prevalent in China). Patients

with a history of diabetes were also excluded because diabetes

could increase the risk of active TB. Peripheral venous blood was

drawn from study participants, prior to the initiation of any anti-

TB treatment. Study participants with LTBI and healthy controls

were recruited from the staff at the Shanghai Public Health

Clinical Centre. Potential study participants were excluded if they

had a prior history of TB or another infectious disease. Tuberculin

skin testing (TST) and interferon-gamma release assay (IGRA) (T-

SPOTH.TB, Oxford Immunuotec, Oxfordshire, U.K.) results were

used to distinguish between the two groups. The LTBI group was

TST-positive (TST.10 mm) and IGRA-positive while the healthy

controls were TST-negative (TST,5 mm) and IGRA-negative.

Three donors with TST-positive results IGRA-negative results

were also included as healthy controls. The active TB group

included patients with pulmonary TB (n = 27), renal TB (n = 1),

and TB of the lymph node (N = 1); 28 of these patients were

receiving TB treatment for the first time, and 1 was a case of

retreatment TB. Patients with a positive sputum smear test result

were diagnosed with pulmonary TB, and TST was not performed

on them. There was no significant difference in age between the

different groups (P-value = 0.412, one-way ANOVA test). How-

ever, there was a high proportion of males among patients with

active TB and a high proportion of females among healthy

controls., and the overall test for differences in gender was

statistically significant (P-value = 0.0012, chi-square test).Periph-

eral venous blood (10 ml) was drawn from each subject and

PBMCs were isolated on Ficoll gradients (GE Health Care, Little

Chalfont, U.K.). PBMCs were immediately mixed with the miR

VanaTM miRNA isolation kit Lysis Buffer (Ambion, Inc., Austin,

Texas, USA) and frozen at 280uC until RNA was extracted. The

separate RNA samples from a randomly chosen subgroup of 6

patients with active TB, 6 donors with LTBI, and 3 healthy

controls (total of 15 biologically independent samples) were used in

the microarray assay (see Table S1). The rest of the samples were

used for real-time qPCR confirmation.

RNA extraction and quantitation
Total RNA was extracted using the miR VanaTM miRNA

isolation kit (Ambion Inc .Austin, Tx,USA) according to the

manufacturer’s instructions. RNA quantity and quality was

assessed using the Nanodrop 2000 (Thermo Fisher Scientific,

MA,USA) and Agilent 2100 bioanalyzer systems (Agilent Tech-

nologies). Samples with a RNA Integrity Number above 7 were

used in the study.

MiRNA microarray hybridization
MiRNA microarray assays were performed using the Agilent

Human miRNA microarray platform (version 3, Agilent Tech-

nologies) at Shanghai Biochip Co., Ltd. (Shanghai, China). The

microarray contains probes for 866 human and 89 human viral

miRNAs from the Sanger miRBase (release 12.0, Sanger Institute,

city, UK). Total RNA (100 ng) obtained from samples was labeled

via Cy3 incorporation. Microarray slides were scanned by using

the XDR Scan (PMT100, PMT5). Labeling and hybridization

were performed according to the protocol in the Agilent miRNA

microarray system.

Microarray Data Submission
Microarray data submission for human arrays is MIAME-

compliant. The raw data was submitted to the Gene Expression

Omnibus (GEO) database, and is available under the following

accession numbers: GSE29190; GPL10850; GSM72294–

GSM722308.

Computational analysis of miRNA microarray data
The microarray image information was converted into spot

intensity values using the Scanner Control Software Rev. 7.0

(Agilent Technologies). The signal (after background subtraction)

was exported directly into the GeneSpring GX9.0 software

(Agilent Technologies) for normalization. The mean normalized
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signal from different groups was used for comparative expression

analysis by using the software package BRB-ArrayTools developed

by Dr. Richard Simon and the BRB-ArrayTools Development

Team (http://linus.nci.nih.gov/BRB-ArrayTools.html). Data

were filtered to exclude those miRNAs with expression values

less than 10% in all samples. The remaining miRNAs were then

filtered to select those having at least a 2-fold change in either

direction from the miRNA’s median intensity across all samples.-

After filtering, the data were then partitioned into 3 classes: Active

TB, LTBI, and Healthy Control. Using the ‘class comparison’

multivariate permutation test and after averaging dye-swapped

experiments, we identified genes that were differentially expressed

between the different groups. Statistical analysis for differential

expression was performed using random variance t-statistics for

each miRNA. Hierarchical clustering was performed with the

Pearson’s correlation for differentially expressed miRNAs. The

fold changes in the expression signals between different groups

were calculated from the normalized values.

Real-time qPCR analysis
miRNA real-time qPCR analysis was performed at CWBio.Co.,

Ltd. (Beijing, China). Briefly, the NEB E. coli poly (A) polymerase

was first used to add poly (A) tail to total RNA. Complementary

DNA was then synthesized by using the HiFi-MMLV reverse

transcriptase (CWbio.Co., Ltd) and miRNA specific reverse

transcription primers. SYBR Green (UltraSYBR Mixture,

CWbio.Co Ltd) uptake in double-stranded DNA was measured

using the Roche LightCyclerH 480 Real-Time PCR System. We

calculated 22DDCT and used this statistic to determine relative

gene expression. The reference gene was U6 snRNA.

MiRNA-Gene network construction
To build the MiRNA-Gene-Network, we determined the

relationship between miRNAs and genes by using their differential

expression values, and the interactions between miRNA and genes

in the TargetScan mRNA database. Briefly, published mRNAs

expression profiles of active TB and latent TB were downloaded

from the GEO public database (www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc = GSE6112).We used the RVM-T test

(P,0.05) to identify the differently expressed genes and miRNAs

from the gene expression profiles. The overlap between the genes

whose expression was induced and the target genes whose

expression was reduced by miRNA were then chosen to construct

the network based on the two respective expression values by using

the miRNA–mRNA modules via population-based probabilistic

learning methods [26,27]. The adjacency matrix of miRNA and

genes A = [ai, j] was created by using the attribute relationships

between genes and miRNAs, where ai,j represents the relationship

weight between gene i and miRNA j. In the MiRNA-Gene-

Network, circles represent genes and squares representing

miRNAs; their relationship is represented by one edge. The

center of the network represents the degree (i.e., the interaction of

one miRNA with the genes around, or the interaction of one gene

with the miRNAs around. The key miRNAs and genes in the

network always have the highest degrees.

Supporting Information

Figure S1 Prediction of 17 miRNAs differentially ex-
pressed among different groups by using support vector
machines (SMVs) method. The gene expression profiles of

three different groups of study participants (Active TB, Latent TB

and Healthy group) were first differentiated using a supervised

learning algorithm (binary tree classification). In Round 1, F-tests

were first performed between node 1 (Active TB VS Non Active

TB), node 3 (Healthy VS Non healthy), node 5 (Latent TB VS

Non latent TB). The Round 2, F-tests were then performed

between node 2 (Healthy VS Latent TB), node 4 (Active TB VS

Latent TB), node 6 (Active TB VS Healthy). Finally, the miRNAs

from both the Round 1 F test and the Round 2 F test were selected

and marked as the miRNAs that were differentially expressed

among different groups. miRNAs in red regarded those expressed

differentially between Active TB and Latent TB; miRNAs in green

regarded those expressed differentially between Active TB and

Healthy; miRNAs in blue regarded those expressed differentially

between Latent TB and Healthy; miRNAs in yellow regarded

those expressed differentially among the 3 groups. Parametric p-

value from all the F-test was ,0.01.

(TIF)

Figure S2 GO and KEGG annotations of 111 target
genes in the network. Enriched molecular functions of

differentially expressed genes based on GO classifications (A)

and KEGG pathways annotations (B) for genes targeted by

miRNAs that were differently expressed between the active and

latent TB groups. Functional annotation analysis was performed

with the help of the Database for Annotation, Visualization and

Integrated Discovery Bioinformatics Resources 2008 (http://

david.abcc.ncifcrf.gov). Individual genes can be found under

multiple GO/KEGG annotations. The percentages indicate the

number of genes sharing a certain GO/KEGG term relative to the

complete list of differentially expressed genes in both comparisons.

(TIF)

Table S1 Characteristics of tuberculosis patients, la-
tent TB infection and healthy control donors used for
miRNA microarray.

(DOC)

Table S2 38 miRNAs differently expressed among
active TB, latent TB, and healthy donors in at least
one comparison by univariate tests (P,0.01).

(XLS)

Table S3 17 miRNAs differently expressed in micro-
array profiles among active TB, latent TB, and healthy
donors by SVM prediction.

(DOC)

Table S4 3010 target genes (from TargetScan Database
www.targetscan.org/) of 17 miRNAs differently ex-
pressed between active tuberculosis (TB) and latent
tuberculosis infection (LTBI).

(XLS)

Table S5 12 miRNAs and their 111 target genes in the
network.

(XLS)
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