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Abstract
Treatment options for schizophrenia that address all symptom categories (positive, negative, and
cognitive) are lacking in current therapies for this disorder. Compounds targeting the metabotropic
glutamate (mGlu) receptors hold promise as a more comprehensive therapeutic alternative to
typical and atypical antipsychotics and may avoid the occurrence of extrapyramidal side effects
that accompany these treatments. Activation of the group II mGlu receptors (mGlu2 and mGlu3)
and the group I mGlu5 are hypothesized to normalize the disruption of thalamocortical
glutamatergic circuitry that results in abnormal glutamaterigic signaling in the prefrontal cortex
(PFC). Agonists of mGlu2 and mGlu3 have demonstrated efficacy for the positive symptom group
in both animal models and clinical trials with mGlu2 being the subtype most likely responsible for
the therapeutic effect. Limitations in the chemical space tolerated by the orthosteric site of the
mGlu receptors has led to the pursuit of compounds that potentiate the receptor’s response to
glutamate by acting at less highly conserved allosteric sites. Several series of selective positive
allosteric modulators (PAMs) for mGlu2 and mGlu5 have demonstrated efficacy in animal models
used for the evaluation of antipsychotic agents. In addition, evidence from animal studies indicates
that mGlu5 PAMs hold promise for the treatment of cognitive deficits that occur in schizophrenia.
Hopefully, further optimization of allosteric modulators of mGlu receptors will yield clinical
candidates that will allow full evaluation of the potential efficacy of these compounds in the
treatment of multiple symptom domains in schizophrenia patients in the near future.
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1. Introduction
Schizophrenia is a complex central nervous system (CNS) disorder that affects
approximately 1% of the world’s population and presents itself as a set of symptoms
grouped into three categories: positive, negative, and cognitive (Lewis and Lieberman
2000). The positive symptoms include the perception of nonexistent stimuli such as visual
and auditory hallucinations and feelings of paranoia. A reduced or lack of normal affect is
characteristic of the negative symptoms and includes depression and social withdrawal. The
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cognitive deficits observed in schizophrenia include disorganized thoughts and a decreased
ability to process information. Current therapies, which include typical (e.g. haloperidol and
chlorpromazine) and atypical (e.g. olanzapine and clozapine) antipsychotics, have been
successful at treating the positive symptoms; however, the negative and cognitive symptoms
have been less responsive to these classes of drugs (Buchanan et al. 2005; Kirkpatrick et al.
2006).

An understanding of schizophrenia at both the molecular and circuit levels is necessary to
validate new targets and devise new strategies for treating this disorder in a maximally
effective manner. Longstanding evidence has led to the hypothesis that alterations in
dopaminergic systems, specifically through D2 dopamine (DA) receptors, is a key element
in schizophrenia. Supporting this hypothesis are observations that all currently available
medications for schizophrenia act in some way to antagonize D2 receptors and that post-
mortem analysis of brain tissue from patients with schizophrenia reveal elevated D2 receptor
density (Seeman 1987; Seeman 2006). In addition, imaging studies have revealed a greater
increase in DA levels upon amphetamine challenge in patients with schizophrenia compared
to controls as measured by a decrease in D2/D3 receptor binding by [11C]raclopride (Breier
et al. 1997) and [123I]iodobenzamide (Laruelle and Abi-Dargham 1999) with the latter study
showing this difference specifically in patients with active symptoms of the disease.
Although both typical and atypical antipsychotics exhibit antagonism at D2 receptors, these
two classes differentiate themselves in their degree of specificity for D2 over other
neurochemical targets, occupancy time at D2, and their resulting side effect profile (Seeman
2002). Although each drug offers its own distinct pharmacological profile, in general, the
atypical group drugs are less selective for, bind with lower affinity to, and have a faster off
rate from the D2 receptor compared to the typical antipsychotics. Related to their selectivity,
atypical antipsychotics have been demonstrated to act in varying degrees at serotonergic,
histaminergic, adrenergic, and muscarinic receptors (Bymaster et al. 1996; Roth et al. 1994).
This diversity of profiles across both classes of antipsychotics necessitates an individualized
approach in the clinic to optimize effectiveness and compliance as well as reduce risk
associated with undesirable side effects (Seeman 2002).

As a more thorough understanding of this disorder is developing, additions and
modifications to the dopaminergic hypothesis have been put forth. It is also becoming more
evident that schizophrenia is more than the result of a change in magnitude of
neurotransmitter signaling, but it is also a change in the underlying brain circuitry (Lisman
et al. 2008; Marek et al. 2010). Much of this evidence points to disruptions in glutamatergic
signaling via the ionotropic N-methyl-D-aspartate receptor (NMDAR) in cortical and
midbrain circuits and has led investigators to pursue this avenue for therapeutic
development. As will be discussed, there is evidence that these targets have potential to
address the unmet needs in the treatment of schizophrenia, specifically in the cognitive
deficit symptom cluster.

2. Glutamatergic circuitry in schizophrenia
A delineation of the brain regions and circuitry involved in schizophrenia has been achieved
(at least partially) through association of the disrupted behaviors to the pathways known to
regulate these behaviors as well as observations of 1) current therapies’ mechanisms of
action, 2) identification of drugs that mimic the symptoms of schizophrenia, 3) patient brain
pathophysiology, and 4) genetic models of schizophrenia. The observation that both typical
and atypical antipsychotics act to antagonize D2 receptors initially implicated DA
hyperfunction in the subcortical regions of the striatum and nucleus accumbens (the primary
locations for D2 receptors on DA terminals) for the positive symptom group that responds to
this type of therapy. This theory was later revised to include a deficit of dopamine
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transmission in the prefrontal cortex (PFC) at D1 receptors; a revision that resulted in a
better correlation with the presence of negative and cognitive symptoms (Goldman-Rakic et
al. 2000). However, additional research and observations have revealed features of
schizophrenia that point to the involvement of glutamatergic pathways and signaling in ways
that are not mutually exclusive to the hypothesized involvement of the dopaminergic system.

It has been known for decades that phencyclidine (PCP), as well as other NMDAR
antagonists such as ketamine and MK-801, are psychotomimetic agents in healthy
individuals and exacerbate all three symptom clusters in individuals with schizophrenia
(Ghoneim et al. 1985; Krystal et al. 1994). These observations suggest a possible role for
decreased NMDAR signaling as an explanation for the diverse symptoms observed in this
disorder. NMDARs are located postsynaptically at excitatory synapses and are widely
distributed in the brain with notable density in cortical and subcortical regions (Monaghan
and Cotman 1985; Monaghan et al. 1988; Ozawa et al. 1998). Activation of NMDARs
requires the agonists glutamate and glycine in addition to membrane depolarization,
resulting in calcium influx through the receptor channel. This process is critically involved
in synaptic plasticity, a mechanism required for learning and memory formation (Sweatt
2008) and is relevant to the positive symptoms and cognitive deficits observed in
schizophrenia. Within regions associated with the symptoms of schizophrenia, NMDARs
are located on GABAergic neurons in subcortical regions such as the nucleus accumbens
and on glutamatergic neurons projecting from the mediodorsal thalamus to pyramidal
neurons in the PFC. NMDARs on the GABAergic neurons receive excitatory input from
glutamatergic afferents and their activation results in an inhibitory regulation of the
thalamocortical pathway. A reduction in NMDAR function on these GABAergic neurons
results in disinhibition of thalamocortical glutamatergic signaling to the PFC and therefore
an increase in excitatory glutamatergic input to pyramidal neurons in the PFC. In support of
this model, the psychotomimetic NMDAR antagonists PCP and ketamine have been shown
to cause an increase in detected extracellular glutamate levels in the PFC which has been
hypothesized to be linked to the effects of these agents on certain aspects of cognitive
function and locomotor activity (Moghaddam et al. 1997; Moghaddam and Adams 1998).
This signaling pathway as well as pertinent players within it is illustrated in Fig 1.

The role of impaired glutamatergic circuitry and its implication for treatment options has
gained momentum in the past several years (Conn et al. 2009b; Marek et al. 2010). While
this does not necessarily imply a primary deficit in NMDAR function in the etiology of
schizophrenia, there are several possible mechanisms by which NMDAR function could be
down regulated in a manner that could contribute to schizophrenia pathology. For example,
it is possible that the expression or functioning of the receptor itself may be compromised.
NMDAR signal transduction could also be affected by changes in the level or activity of any
of a number of proteins as well as any factor influencing glutamate availability at the
postsynaptic site or the occurrence of coincident membrane depolarization. Imaging studies
directed at glutamatergic targets have found reduced NMDAR binding in medication-free
patients with schizophrenia (Pilowsky et al. 2005) as well as evidence of interplay between
glutamatergic and dopaminergic neurotransmission (Urban and Abi-Dargham 2010).
Evidence of genetic links to NMDAR functioning in schizophrenia has been found and
summarized in previous reviews (Harrison and Weinberger 2004) and has served as a basis
for the development of several genetic animal models that may be relevant to schizophrenia
including subunit NR1 knockdown mice (Mohn et al. 1999; Ramsey 2009)and mice carrying
relevant mutations within the NMDAR (Li et al. 2009).

If a change in brain circuitry is induced in a disease state such as schizophrenia, then a
means for compensating for the dysfunctional signaling would be a rational strategy for
treatment. Targeting the NMDAR or other ionotropic glutamate receptors directly is not
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considered to be a viable option due to their widespread role in fast synaptic transmission
throughout the CNS and the potential toxicity of overactivation of NMDA receptors (Hirose
and Chan 1993). Another approach to regulating transmission through these circuits is to
target G protein-coupled metabotropic glutamate receptors which function to modulate
synaptic transmission and neuronal excitability. In particular, recent attention has been
focused on targeting mGlu receptor subtypes 2, 3, and 5 as novel treatment strategies for
treatment of schizophrenia.

3. Metabotropic glutamate receptors
Metabotropic glutamate (mGlu) receptors are family C G-protein coupled receptors that are
grouped into three classes based on sequence homology, effector coupling, and
pharmacology (Niswender and Conn 2010). Group I mGluRs include mGlu1 and mGlu5 and
are located primarily postsynaptically where they couple to Gq/G11. As such, activation of
Group I results in phospholipase C (PLC) stimulation, an increase in phosphotinositides (PI)
hydrolysis, and increases in intracellular Ca+2. Group II mGlu receptors include mGlu2 and
mGlu3 which are localized both pre and postsynaptically and are primarily distributed in
forebrain regions (Gu et al. 2008; Petralia et al. 1996). Group II mGlu receptors couple to
Gi/o and activation of these receptors results in inhibition of adenylyl cyclase and
modulation of voltage-dependent ion channels. Group III mGlu receptors include mGlu4,
mGlu6, mGlu7, and mGlu8. This third group is localized predominantly presynaptically and
is also coupled to Gi/o and associated signaling pathways.

Metabotropic glutamate receptors modulate synaptic neurotransmission at least in part
through the binding of glutamate at its large extracellular “Venus flytrap” domain which is
highly conserved across subtypes and groups. However, its signaling response to glutamate
may be modulated (increased or decreased) by compounds that bind to allosteric sites
located in the less highly conserved transmembrane regions. This is of major interest in drug
design because the allosteric modulator approach may be more amenable to the development
of compounds that are selective for a specific target (Conn et al. 2009a). Receptor subtypes
from Group I (mGlu5) and Group II (mGlu2 and mGlu3) are involved in the circuitry
disruptions implicated in schizophrenia and are associated with NMDARs from a co-
localization and functional standpoint. These observations, as well as preclinical evidence
supporting these targets as having potential therapeutic benefits in schizophrenia, have led
researchers to actively pursue the development of compounds that activate and/or modulate
mGlu2/3 and mGlu5 for the treatment of this disorder.

4. Group II mGlu receptors as therapeutic targets for schizophrenia
4.1 Group II agonists

Activation of group II mGlu receptors has been shown to decrease the evoked release of
glutamate and reduce excitatory synaptic transmission in multiple brain regions, including
striatum, PFC, and the hippocampus (Battaglia et al. 1997; East et al. 1995; Lovinger and
McCool 1995; Yoshino et al. 1996). Psychotomimetic agents have been shown to increase
activity of glutamatergic synapses in the PFC (Adams and Moghaddam 1998; Lorrain et al.
2003) and several studies have confirmed that group II agonists reverse this effect (Lorrain
et al. 2003; Marek et al. 2000; Moghaddam and Adams 1998). A class of group II agonists
(that are essentially constrained amino acid analogues yet retain specificity at these
receptors), exemplified by (1S,2S,5R,6S)-2-Aminobicyclo[3.1.0]hexane-2,6-dicarboxylic
acid (LY354740) (Monn et al. 1997; Schoepp et al. 1997), has provided excellent tools for
understanding the roles of group II mGlu receptor subtypes (Table 1). The neurochemical
evidence for the ability of group II activation to reverse the effects of psychotomimetic
agents has been supplemented by their ability to reverse the behavioral effects in several
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animal models that are used to predict efficacy of potential antipsychotic agents (Conn et al.
2008; Schoepp and Marek 2002) although there are exceptions to this effect depending on
which compound is being studied, which behavioral paradigm is being tested, and what
strain of animal is being used (Cartmell et al. 1999; Imre et al. 2006a; Imre et al. 2006b;
Profaci et al. 2011; Takamori et al. 2003). For determining cognitive-enhancing properties,
the effects of these agents depend on the type of learning that is being studied as well as
whether or not the comparison is to a basal or disrupted level (Amitai and Markou 2010;
Aultman and Moghaddam 2001; Greco et al. 2005; Higgins et al. 2004; Krystal et al. 2005;
Schlumberger et al. 2009b; Spinelli et al. 2005). These compounds have also been tested in a
preclinical model of schizophrenia induced by social isolation rearing, a non-
pharmacological neurodevelopmental approach that results in a phenotype demonstrating
hyperlocomotion and deficits in several cognitive models. Specifically, LY404039 was
shown to reverse the hyperactivity induced by social isolation (Fabricius et al. 2010) and, in
a separate study, LY379268 reversed the hyperactivity, deficit in novel object recognition,
and disrupted PPI observed in these animals (Jones et al. 2011). However, in the latter study,
LY379268 has no effect on conditional emotional response impairments. The reader is
directed to Table 3 for a summary of the effects of Group II agonists in common preclinical
models used for the assessment of antipsychotic activity and cognitive-enhancing properties.

The selective group II mGlu receptor agonists in this class have been well-characterized and
optimized and members of this class have entered into clinical trials for treatment of
schizophrenia. The oral prodrug of (-)-(1R,4S,5S,6S)-4-amino-2-
sulfonylbicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY404039), (1R,4S,5S,6S)-2-
thiabicyclo[3.1.0]-hexane-4,6-dicarboxylic acid,4-[(2S)-2-amino-4-(methylthio)-1-
oxobutyl]amino-, 2,2-dioxide monohydrate (LY2140023), showed significant antipsychotic
efficacy for both positive and negative symptoms with no major side effects in a trial
involving patients suffering from schizophrenia and also demonstrated a better metabolic
profile than the comparator olanzapine (Patil et al. 2007). Unfortunately, in the follow-up
study, neither LY2140023 nor the comparator olanzapine separated from the placebo group
(due to higher-than expected placebo response) resulting in an inconclusive result for the
second clinical study (Kinon et al. 2011). In addition, 4 of the study participants taking the
test drug developed convulsions. Follow-up clinical trials with LY2140023 are ongoing
(clinicaltrials.gov) and will hopefully result in a more clear resolution regarding the
effectiveness of group II agonists for schizophrenia treatment. Additional studies will need
to be performed with this or other group II agonist compounds to more fully understand their
efficacy and the side-effect profile for this treatment option.

4.2 Group II interactions with other receptor types
Interestingly, the group II mGlu receptor agonists have also been shown to reverse
stereotypies induced by PCP and head shakes induced by serotonin 2A (5-HT2A) receptor
agonists (Gewirtz and Marek 2000). In addition, there is evidence from a molecular
standpoint that the two receptor types are colocalized in the cortex and are jointly implicated
in the neuropathology of schizophrenia (Gonzalez-Maeso et al. 2008). Activation of 5-
HT2A receptors results in an increase in glutamate release in the PFC, reminiscent of the
increase in excitatory drive to the PFC that is seen as a result of disinhibition of
thalamocortical neurons induced by NMDAR antagonists. These effects produced by
hallucinogenic 5-HT2A agonists can be blocked by 5-HT2A receptor antagonists and also
by group II mGluR agonists (Marek et al. 2000) and positive allosteric modulators of mGlu2
(see section 4.4)(Benneyworth et al. 2007). Recently, it was shown that combined, sub-
effective doses of the mGlu2/3 agonist (1S,2R,5R,6R)-2-amino-4-
oxabicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY379268) and the 5HT2A receptor
antagonist, (R)-(+)-α-(2,3-Dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-
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piperidinemethanol (M100907), are efficacious in an animal model predictive of
antipsychotic activity (Uslaner et al. 2009a). Other intriguing associations with group II
mGluRs have been discovered that are relevant to current models of schizophrenia including
the upregulation of high-affinity D2 dopamine receptors in the striatum of mGlu2 and mGlu3
knockout mice (Seeman et al. 2009). Observations such as these warrant further
investigation and should be kept in mind when considering a possible multi-target approach
for treatment of psychosis (Wong et al. 2010).

4.3 mGlu2 is the major contributor of group II agonist effects
As mentioned above, mGlu2 and mGlu3 knockout mice have been developed and studied to
better understand the receptor subtype most important for the observed antipsychotic-like
effects of the group II mGlu agonists. The antipsychotic actions of group II agonists
LY404039 and LY314582 were absent in mGlu2 knockout mice but present in mGlu3
knockout mice, strongly implicating mGlu2 as the predominant player in this effect of the
group II agonists (Fell et al. 2008; Spooren et al. 2000). Similar results were observed for
the group II agonist LY379268 in that it reversed PCP- and amphetamineevoked
hyperactivity in wild type and mGlu3 but not mGlu2 knockout mice (Woolley et al. 2008).
These findings highlighted mGlu2 as the target for the development of more specific
compounds within this receptor group. However, targeting the orthosteric site for specificity
is difficult due to the high degree of conservation across the mGlu receptor subtypes as well
as the constraints that this site imposes upon the chemical space tolerated for engagement. In
addition, these compounds may be limited in other ways as indicated by tolerance observed
for the reversal of PCP- and amphetamine-induced hyperactivity in mice (Galici et al. 2005).
As an alternative approach, advances in the development of positive modulators of mGlu2
that exert their actions through interaction with allosteric site(s) within the transmembrane
region of the receptor hold promise of overcoming these limitations (Conn et al. 2009a).

4.4 Development of mGlu2 positive allosteric modulators
Multiple positive allosteric modulators (PAMs) that are highly selective for mGlu2 have
been developed in recent years. Two of the most well studied chemical classes of mGlu2
PAMs are exemplified by N-(4-(2-methoxyphenoxy)phenyl)-N-(2,2,2-
trifluoroethylsulfonyl)pyrid-3-ylmethylamine (LY487379) (Galici et al. 2005; Johnson et al.
2003; Schaffhauser et al. 2003) and 3′-(((2-cyclopentyl-6,7-dimethyl-1-oxo-2,3- dihydro-
1H-inden-5-yl)oxy)methyl)biphenyl-4-carboxylic acid (BINA) (Bonnefous et al. 2005;
Galici et al. 2006; Pinkerton et al. 2005). Both are selective for mGlu2 and their activity is
detected as an enhancement in the response induced by an orthosteric agonist or by a shift to
the left (increased potency) of a concentration response curve of the orthosteric agonist.
These PAMs engage with the receptor within the 7th transmembrane region with 3 amino
acids being identified as required for their activity (Rowe et al. 2008; Schaffhauser et al.
2003). The mGlu2 PAMs potentiate the glutamatergic response to group II mGlu agonists
(Benneyworth et al. 2007; Galici et al. 2006; Johnson et al. 2003; Poisik et al. 2005;
Schaffhauser et al. 2003) including excitatory synaptic responses in the PFC (Benneyworth
et al. 2007). Several mGlu2 PAMs from distinct chemical scaffolds have shown efficacy in
animal models used for the evaluation of potential antipsychotic agents (Benneyworth et al.
2007; Duplantier et al. 2009; Galici et al. 2005; Galici et al. 2006; Govek et al. 2005;
Johnson et al. 2003; Pinkerton et al. 2005) as well as in models demonstrating anxiolytic
effects (Johnson et al. 2003) and enhanced cognitive flexibility (Nikiforuk et al. 2010) (see
Table 3 for summary). Fell et al. recently reported a novel mGlu2 PAM, N-(4-((2-
(trifluoromethyl)-3-hydroxy-4-(isobutyryl)phenoxy)methyl)benzyl)-1-methyl-1H-
imidazole-4-carboxamide (THIIC), that produces anxiolytic and antidepressant effects in
rodent models of stress and depression, respectively, and found evidence of a low potential
for tolerance by this mechanism (Fell et al. 2011). Imaging studies have revealed that the
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mGlu2 PAM BINA, at doses that reverse PCP-induced hyperlocomotion, suppresses the
imaging response observed in the PFC, caudate-putamen, nucleus accumbens, and
mediodorsal thalamus indicating that these are likely key regions involved in BINA’s
pharmacological effect (Hackler et al. 2010). Because of allosteric modulators’ dependence
on the presence of a threshold level of agonist to exert their action, it has been postulated
that PAMs may provide a safer, better tolerated, therapeutic profile compared to compounds
that act to directly stimulate the receptor resulting in a less regulated action and greater
potential receptor desensitization (Johnson et al. 2005; Urwyler 2011). While this potential
advantage has not been fully established experimentally, these results are promising and
support the further optimization of mGlu2 PAMs as a potential therapeutic approach for
schizophrenia and possibly other psychiatric disorders (Conn et al. 2009b; Conn et al. 2008;
Fraley 2009).

5. mGlu5 as a therapeutic target for schizophrenia
The group I mGlu receptor, mGlu5, has also emerged as a potential target for treatment of
schizophrenia. Promising evidence suggests that selective activators of mGlu5 have potential
for efficacy in treatment of positive and negative symptoms of schizophrenia and may also
have cognitive-enhancing effects (Conn et al. 2009b). In contrast to mGlu2, the preclinical
success for mGlu5 has been primarily in the area of allosteric modulators of this receptor as
opposed to direct agonists.

5.1 mGlu5 is a close signaling partner with NMDA receptors
As discussed above, the activation of mGlu2 reduces glutamatergic excitatory synaptic
transmission in the PFC which may be abnormally increased in disease states such as
schizophrenia due to reduced tone at GABAergic projection neurons that help to regulate
this signaling pathway. This is likely achieved through a presynaptic mechanism.
Theoretically, a similar reduction of excessive activation of projections to the PFC could be
achieved further upstream. For instance, potentiation of NMDAR function or other
manipulations that increase synaptic excitation of midbrain GABAergic projection neurons
could enhance the inhibitory regulation of thalamocortical projections. As stated earlier,
inhibition of synaptic excitation of midbrain GABAergic neurons has been postulated to
contribute to the psychotomimetic effects of NMDAR antagonists and enhancing
transmission at these synapses could provide a beneficial effect. The mGlu5 subtype is a
close signaling partner with NMDARs and it has been postulated that activation of this
receptor could enhance NMDAR function without inducing the adverse effects that occur
with direct activation of NMDARs. mGlu5 interacts physically with NMDARs through
binding and scaffolding proteins suggesting that these receptors may be jointly involved in
post-synaptic organization and signaling (Ehlers 1999). The activation of group I mGlu
receptors through exogenous application of agonist (such as DHPG) potentiates NMDAR
responses in forebrain regions. This potentiation has been attributed predominantly to
mGlu5-, rather than mGlu1-mediated effects through the use of pharmacological approaches
(Attucci et al. 2001; Awad et al. 2000; Doherty et al. 2000; Mannaioni et al. 2001; Pisani et
al. 2001; Ugolini et al. 1999) and knockout mice (Pisani et al. 2001). In addition, selective
PAMs of mGlu5 enhance the mGlu5-mediated potentiation of NMDAR currents in
hippocampal pyramidal cells (O’Brien et al. 2004) and DHPG-induced depolarization of
STN neurons (Chen et al. 2007).

5.2 mGlu5 is involved in mechanisms of learning and memory
Long-term potentiation (LTP) and long-term depression (LTD) are two forms of synaptic
plasticity that are thought to play important roles in multiple forms of cognitive function.
There is evidence that a balance exists between LTP and LTD and that a disruption of this
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balance may be characteristic of cognition-impairing pathologies such as observed in models
of Fragile X (Bear et al. 2004; Godfraind et al. 1996; Huber et al. 2002; Lauterborn et al.
2007; Li et al. 2002; Nosyreva and Huber 2006; Paradee et al. 1999). Therefore, the
differential effects on LTP and LTD resulting from the up- or down-regulation (either
through a change in expression level, functional activity, or pharmacological manipulation)
should be considered when characterizing a potential target for CNS disorders.

Genetic or pharmacological disruption of signaling through mGlu5 can lead to impaired LTP
in hippocampus and other brain regions. For instance, mGlu5 knockout mice exhibit reduced
NMDARmediated LTP in the hippocampus that can be recovered by stimulating PKC (Jia et
al. 1998). These mice also show a reduction in the ability to perform NMDAR-dependent
memory tasks (Lu et al. 1997). Thetaburst stimulation-induced LTP in hippocampal slices is
blocked by the mGlu5 noncompetitive antagonist 2-Methyl-6-(phenylethynyl)pyridine
(MPEP), a compound that interacts with an allosteric site on the receptor (Francesconi et al.
2004; Shalin et al. 2006). This effect is also produced in vivo where a correlation was drawn
between spatial learning and both synaptic plasticity and mGlu5 expression levels in two
strains of rat (Manahan-Vaughan and Braunewell 2005). In addition to the impairment of
LTP by disruption of mGlu5 signaling, the stimulation of mGlu5 either through agonist
application or synaptic glutamate has been observed to facilitate, or “prime”, induced LTP in
area CA1 of hippocampus (Cohen et al. 1998; Raymond et al. 2000). Interestingly, DHPG, a
group I agonist, induces an NMDA-independent LTD on its own which is blocked by mGlu5
antagonists (Faas et al. 2002; Gasparini et al. 1999; Huang and Hsu 2006; Huang et al. 2004;
Huber et al. 2001) and is absent in mGlu5 knockout mice (Huber et al. 2001). These
observations provide evidence that suggests that mGlu5 plays a role in learning and memory
and may therefore be a target for the development of compounds to treat cognitive
disturbances that occur in disorders such as schizophrenia. However, the pursuit of
traditional agonists for this purpose has not been encouraged due to their tendency to induce
LTD as well as seizure activity in hippocampal slices and in animals (Wong et al. 2005).
Thus, an approach that serves to modulate the response to glutamate at mGlu5, rather than
evoke it, may be more effective for achieving restoration of cognitive deficits without
inducing seizure activity.

5.3 Development of mGlu5 PAMs for use in animal models of schizophrenia
Efforts to discover and optimize highly selective mGlu5 PAMs have progressed over recent
years to a point where there now exists a rich set of tools with which to study and validate
this mechanism. The first reported mGlu5 PAM was [(3-
Fluorophenyl)methylene]hydrazone-3-fluorobenzaldehyde (DFB) (O’Brien et al. 2003)
which was successful in demonstrating the feasibility of producing a compound with
specificity for mGlu5 that increased the receptor’s response to orthosteric agonists without
causing a response on its own. This compound was shown to interact with the MPEP site on
mGlu5. However, its utility was limited to in vitro proof-of-concept due to its relatively low
potency (2- 5 μM) in in vitro assays and its limited solubility. A point to note is that, within
the family of compounds exemplified by DFB, there exist compounds with not only PAM
activity but also compounds that act as negative allosteric modulators (NAMs) as well as
neutral, or “silent” allosteric modulators. The latter class of compounds has no effect on
their own but blocks the ability of PAMs and NAMs to exert their effects. This range of
effects of allosteric modulators of mGlu5 within closely related compounds is observed in
other series of allosteric modulators and may be exploited to more fully understand the
structure-function relationship of the effect of these modulators at the allosteric site.

An improvement in potency compared to DFB was achieved with the discovery of N-{4-
chloro-2-[(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)methyl]phenyl}-2-hydroxybenzamide
(CPPHA), a compound which enabled further studies including the demonstration of an
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enhancement of NMDAR currents in hippocampal slices (O’Brien et al. 2004), a critical
finding with respect to the desired effect of the compounds in relation to the hypothesized
disease model. Interestingly, this compound was found to act at a site distinct from the
MPEP site but within the same transmembrane domain (Chen et al. 2008). Unfortunately,
with the exception of a couple of studies using icv introduction of compound (Balschun et
al. 2006; Chan et al. 2008), in vivo studies could not be performed with these early
compounds due to limited solubility, pharmacokinetic properties, and limited central
penetration.

The ability to test the in vivo efficacy of mGlu5 PAMs came with the development of 3-
Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) which not only provided
better potency than the previous two series, but, was more soluble and centrally penetrant
(Chen et al. 2007; Kinney et al. 2005; Lindsley et al. 2004). CDPPB was found to be
selective for mGlu5 across mGluR subtypes as well as in a panel of 175 proteins that
commonly interact with drugs. An analog of CDPPB, 4-Nitro-N-(1,3-diphenyl-1Hpyrazol-
5-yl)benzamide (VU29), was shown to selectively potentiate mGlu5-mediated responses in
midbrain neurons (Chen et al. 2007) and in hippocampus (Ayala et al. 2009). This series of
compounds was found to interact with the MPEP site on mGlu5 (Chen et al. 2007) and,
interestingly, also demonstrate agonist-like activity at higher concentrations (Kinney et al.
2005). An exciting finding was that CDPPB demonstrated efficacy in reducing both
amphetamine-induced hyperlocomotion and amphetamine-induced disruption of pre-pulse
inhibition (PPI) in rats, two different animal models predictive of antipsychotic efficacy
(Kinney et al. 2005). In addition, studies suggest that mGlu5 may have effects in animal
models that are relevant to the negative symptoms in schizophrenia. Specifically, CDPPB
attenuated the MK-801-induced deficit in sucrose preference in rats (Vardigan et al. 2010).
However, although CDPPB can be used to demonstrate in vivo efficacy, it was still not
optimal for formulations that are typically used for animal dosing.

Several improved mGlu5 PAMs have since been developed that have enabled the use of
these compounds in animal models for the study of their effectiveness. The first of such
compounds, S-(4-fluoro-phenyl)-{3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-
yl}-methanone (ADX47273), is active in several different models predictive of
antipsychotic efficacy as well as in cognition enhancement (Epping-Jordan et al. 2005; Liu
et al. 2008) and lacks the sedative effect sometimes seen with traditional antipyschotics
(Schlumberger et al. 2009a). ADX47273 has also been compared vis-à-vis the group II
agonist LY354740 and the former, but not the latter, shows efficacy in reducing deficits in
PPI (Schlumberger et al. 2009a).

Other structurally diverse mGlu5 PAMs have become available in recent months indicating
the wide chemical space tolerated within the available allosteric site(s) within mGlu5.
Optimization of an HTS hit on mGlu5 resulted in N-cyclobutyl-6-((3-
fluorophenyl)ethynyl)nicotinamide (VU0360172), an orally active mGlu5 PAM, and several
other biphenyl acetylenes that produce a dose-dependent effect in reducing amphetamine-
induced hyperlocomotion in rats (Rodriguez et al. 2010; Williams et al. 2011). It should be
noted that a NAM from the same series showed efficacy in an anxiolytic rodent model. The
same HTS campaign revealed a NAM that is structurally distinct from the MPEP scaffold
and subsequent attempts at optimization of this N-Aryl Piperazine resulted in the
identification of a PAM, 2-{4-[2-(benzyloxy)acetyl]piperazin-1-yl}benzonitrile
(VU0364289), that also exhibits antipsychotic activity in preclinical models (Zhou et al.
2010). A series of 4-aryl piperazine and piperidine amides analogs has also been disclosed
as mGlu5 PAM compounds (Xiong et al. 2010) with 1-(4-(2-chloro-4-fluorophenyl) 29
piperazin-1-yl)-2-(pyridin-4-ylmethoxy)ethanone (CPPZ) shown to have activity in two
models predictive of antipsychotic activity (Spear et al. 2011). Interestingly, the newly
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disclosed mGlu5 PAM 4-butoxy-N-(2,4-difluorophenyl)benzamide (VU0357121) has been
shown to interact at a structurally distinct site from MPEP and CPPHA but still functionally
interacts with the MPEP site(Hammond et al. 2010), further illustrating the complexity of
interactions that occur within the allosteric binding domain(s).

5.4 Effectiveness of mGlu5 PAMs for cognition enhancement
As discussed earlier, there is evidence that mGlu5 is involved in mechanisms of learning and
memory. It is therefore important to establish what effect is exerted by mGlu5 PAMs at the
circuit level and confirm that they do not disproportionately affect LTP or LTD, which
would have a potential to impair rather than improve cognitive function. To directly address
the effect of mGlu5 activation on the balance between LTD and LTP, a series of studies was
performed to determine the effects of the CDPPD analog, VU29, on afferent stimulation-
induced (as opposed to exogenously applied agonists) hippocampal LTP and LTD at the
Schaffer collateral (SC)-CA1 synapse (Ayala et al. 2009). These studies found that the tested
PAMs of mGlu5 enhanced both LTP and LTD but did not alter the normal presynaptic
activity required to induce each of these forms of synaptic plasticity. The same study also
revealed enhanced performance in the Morris water maze task by mice treated with the two
structurally distinct mGlu5 PAMs, CDPPB and ADX47273. This study reinforced other
findings of the enhancement of cognitive function in animal models by mGlu5 PAMs (Chan
et al. 2008; Darrah et al. 2008; Liu et al. 2008; Uslaner et al. 2009b; Vales et al. 2010) (see
Table 3 for summary).

The preclinical evidence observed with mGlu5 PAMs thus far presents exciting potential for
these compounds to be developed as an alternative treatment for disorders such as
schizophrenia where there is currently an unmet need in the cognitive dysfunction symptom
cluster. Additionally, these compounds may improve the extrapyramidal side effect profile
observed with current therapies. A recent study showing possible desensitization to repeated
administration of CDPPB warrants more investigation to determine whether this mechanism
will provide a robust profile for the reversal of the different symptom clusters in
schizophrenia (Parmentier-Batteur et al. 2010). The next few years will be key in
determining if mGlu5 PAMs will move forward for clinical evaluation.

6. Newly available tools and future directions
The possibility of addressing unmet needs in the treatment of schizophrenia and other
psychiatric disorders is exciting and provides a clear motive for furthering our understanding
of the metabotropic glutamate receptors in this context. Several genetic models have
recently been developed that may serve as informative tools in the study of targeting
mGluRs (van den Buuse 2010). The neuron-specific protein Norbin (also known as
Neurochondrin) interacts with mGlu5 and serves to increase the cell surface localization of
the receptor and positively regulate mGlu5 signaling (Wang et al. 2009). Norbin knockout
mice show deficits in sensori-motor gating (as measured with PPI) as well as increased
locomotor activity similar to those of mGlu5 knockout mice and psychotomimetic-induced
models of psychosis (Wang et al. 2009). In addition, genetic models directly targeting the
NMDA receptor have resulted in mice showing similar phenotypes. Mice in which the NR1
subunit of the NMDA receptor has been reduced to 5% of wild type levels show both
increased motor activity and social deficits and respond to treatment with haloperidol and
clozapine (Mohn et al. 1999; Ramsey 2009). Furthermore, knock-in mice bearing NMDARs
in which a specific phosphorylation site known to be reduced in patients with schizophrenia
(serine 897) (Li et al. 2009) is substituted with an alanine (thereby preventing
phosphorylation) exhibit deficits in social interaction and sensorimotor gating. Interestingly,
the group I agonist, DHPG, has been shown to induce phosphorylation at both S896 and
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S897 in vivo. In future studies, it will be important to determine the effects of mGlu5 PAMs
in these genetic models that selectively alter specific aspects of glutamate signaling.

In conclusion, the development of novel treatments for schizophrenia based on normalizing
dysfunctional glutamatergic circuitry through activation of mGlu2 and mGlu5 has shown
promise both in preclinical models and initial clinical trials. Approaching these targets using
allosteric modulators, as opposed to orthosteric agonists, opens up the chemical space for
active compounds and may result in an improved therapeutic profile compared to direct
agonism of these receptors. Further refinement and investigation will be required to
determine the full potential of these agents especially in the realm of the unmet need of
treating the cognitive deficits and negative symptoms that occur in schizophrenia.
Specifically, results from follow-up trials of mGlu2 agonist LY2140023 that will more
definitively reveal its efficacy are highly anticipated and the progression of mGlu2 and
mGlu5 PAMs into clinical safety and efficacy evaluations will provide a guide for the next
steps for these classes of compounds.
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Abbreviations

CNS central nervous system

DA dopamine

mGlu metabotropic glutamate receptor

PAM positive allosteric modulator

NAM negative allosteric modulator

MPEP 2-Methyl-6-(phenylethynyl)pyridine

NMDA N-methyl-D-aspartate

PCP phencyclidine

MK-801 (5S,10R)-(+)-5-Methyl-10,11-dihydro-5H-dibenzo[a, d]cyclohepten-5,10-
imine maleate

PFC prefrontal cortex

DHPG dihydroxyphenylglycine

CDPPB 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide

CPPHA N-{4-chloro-2-[(1,3-dioxo-1,3-dihydro-2H-isoindol-2-
yl)methyl]phenyl}-2-hydroxybenzamide

GPCR Gprotein- coupled receptor

VU0360172 N-cyclobutyl-6-((3-fluorophenyl)ethynyl)nicotinamide

LY354740 (1S,2S,5R,6S)-2-Aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid

LY404039 (-)-(1R,4S,5S,6S)-4-amino-2- sulfonylbicyclo[3.1.0]hexane-4,6-
dicarboxylic acid

LY2140023 (1R,4S,5S,6S)-2-thiabicyclo[3.1.0]-hexane-4,6-dicarboxylic acid,4-[(2S)-2-
amino-4-(methylthio)-1-oxobutyl]amino-, 2,2-dioxide monohydrate
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LY379268 (1S,2R,5R,6R)-2-amino-4-oxabicyclo[3.1.0]hexane-2,6-dicarboxylic acid

LY487379 N-(4-(2-methoxyphenoxy)phenyl)-N-(2,2,2-trifluoroethylsulfonyl)pyrid-3-
ylmethylamine

BINA 3′-(((2-cyclopentyl-6,7-dimethyl-1-oxo-2,3-dihydro-1H-inden-5-
yl)oxy)methyl)biphenyl-4- carboxylic acid

THIIC N-(4-((2-(trifluoromethyl)-3-hydroxy-4-
(isobutyryl)phenoxy)methyl)benzyl)-1- methyl-1H-imidazole-4-
carboxamide

DFB [(3-Fluorophenyl)methylene]hydrazone-3- fluorobenzaldehyde

CDPPB 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide

VU29 4-Nitro-N-(1,3- diphenyl-1H-pyrazol-5-yl)benzamide

ADX47273 S-(4-fluoro-phenyl)-{3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-
piperidin-1-yl}-methanone

VU0357121 4-butoxy-N-(2,4- difluorophenyl)benzamide

LTP Long-term potentiation

LTD long-term depression

M100907 (R)-(+)-α-(2,3-Dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-
piperidinemethanol

icv intracerebroventricular

VU0364289 2-{4-[2-(benzyloxy)acetyl]piperazin-1-yl}benzonitrile

NOR novel object recognition
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Figure 1.
A simplified schematic illustration of glutamatergic-GABAergic microcircuitry between
subcortical and cortical regions. A disruption of this circuit is thought to contribute to the
pathophysiology of schizophrenia. For example, a decreased glutamatergic response of
inhibitory GABAergic neurons in the nucleus accumbens will result in a decreased
inhibition of glutamatergic signaling to the PFC. This decreased inhibition subsequently
results in hyper-glutamatergic signaling in this terminal region. The metabotropic glutamate
receptors, mGlu2, mGlu3, and mGlu5, are localized in regions where their modulation of
glutamatergic signaling may serve to normalize such disruptions.

Vinson and Conn Page 23

Neuropharmacology. Author manuscript; available in PMC 2013 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Vinson and Conn Page 24

Table 1

Structures of Group II agonists and PAMs discussed. Note the narrow chemical space exhibited by the agonist
compounds

NAME DESCRIPTION STRUCTURE

LY354740 Agonist

LY404039 Agonist

LY379268 Agonist

LY487379 PAM

BINA PAM

Neuropharmacology. Author manuscript; available in PMC 2013 March 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Vinson and Conn Page 25

Table 2

mGlu5 PAMs discussed in text

NAME STRUCTURE

DFB

CPPHA

CDPPB

ADX47273

VU0360172

CPPZ

VU0364289
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