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Viruses and sialic acids: rules of engagement
Ursula Neu1, Johannes Bauer1 and Thilo Stehle1,2
Viral infections are initiated by specific attachment of a virus

particle to receptors at the surface of the host cell. For many

viruses, these receptors are glycans that are linked to either a

protein or a lipid. Glycans terminating in sialic acid and its

derivatives serve as receptors for a large number of viruses,

including several human pathogens. In combination with

glycan array analyses, structural analyses of complexes of

viruses with sialylated oligosaccharides have provided insights

into the parameters that underlie each interaction. Here, we

compare the currently available structural data on viral

attachment proteins in complex with sialic acid and its variants.

The objective is to define common parameters of recognition

and to provide a platform for understanding the determinants of

specificity. This information could be of use for the prediction of

the location of sialic acid binding sites in viruses for which

structural information is still lacking. An improved

understanding of the principles that govern the recognition of

sialic acid and sialylated oligosaccharides would also advance

efforts to develop efficient antiviral agents.
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Introduction
The monosaccharide sialic acid decorates all eukaryotic

cell surfaces, capping many different oligosaccharide struc-

tures on N-linked and O-linked glycoproteins as well as on

glycolipids [1]. Glycans terminating in sialic acid have

emerged as a key class of receptors foran impressive number

of viruses, many of which are human pathogens. The highly

pathogenic Influenza A, B and C viruses as well as the

human parainfluenza viruses attach to sialic acids (reviewed

in [2–4]). Coxsackievirus A24 variant and enterovirus 70,

which cause Acute Hemorrhagic Conjunctivitis and have

pandemic potential, also attach to sialylated oligosacchar-

ides [5,6]. Epidemic Keratoconjunctivitis (EKC) has been

linked to several human D-type adenoviruses, and one of
Current Opinion in Structural Biology 2011, 21:610–618 
these has recently been shown to attach to the disialylated

GD1a motif [7��]. The human JC and BK polyomaviruses

(JCV and BKV, respectively) cause a fatal demyelinating

disease and kidney graft loss, respectively, in immunocom-

promised individuals. Both viruses use glycans terminating

in sialic acid as their receptors [8��,9]. Moreover, the

recently identified Merkel cell polyomavirus, a human

oncovirus, likely uses the trisialylated ganglioside GT1b

as a receptor [10�,11], and other mammalian polyomaviruses

such as Simian Virus 40 (SV40) and murine polyomavirus

(Polyoma) also bind glycans terminating in sialic acid

[12,13�,14]. Most human noroviruses, the causative agents

of violent gastrointestinal illnesses, attach to non-sialylated

histo-blood group antigens, in contrast to murine norovirus,

which binds to a sialylated oligosaccharide [15]. However,

some strains of human noroviruses were recently shown to

bind to the sialyl-Lewis X motif as well [16�]. Rotaviruses

cause severe gastroenteritis in children. They have long

been classified into strains that can be inhibited by neur-

aminidase treatment, which cleaves sialic acid from glycan

sequences on host cells, and those that are insensitive to it

[17,18]. Neuraminidase-insensitive strains were presumed

to use non-sialylated receptors. Interestingly, the ‘neurami-

nidase-insensitive’ rotavirus strain Wa was recently shown

to attach to the ganglioside GM1, which carries a branching

sialic acid [19��]. Because of its branched structure, this

particular carbohydrate is difficult to cleave with neurami-

nidases [20,21]. SV40 had likewise been presumed to attach

to a non-sialylated carbohydrate [22–24] before GM1 was

identified as its receptor [12]. Sialic acid, therefore, has to be

considered as a possible receptor component even for

viruses whose infectivity cannot be modulated by treatment

of cells with commonly used neuraminidases.

The structure of the most common sialic acid in humans,

a-5-N-acetyl-neuraminic acid (Neu5Ac), features four

protruding functional groups (carboxylate, hydroxyl, N-

acetyl and glycerol functions). Compared to more simple

monosaccharides, the large number of functional groups

enables sialic acids to participate in an unparalleled

number of hydrogen bonds, salt bridges and non-polar

interactions. Since sialic acid is typically located at the

terminus of a glycan, its functions are easily accessible for

interactions. Perhaps it is not surprising, therefore, that

the sialic acid itself serves as the major point of contact

with the glycan-binding viral attachment protein in all

cases where structural information of sufficient resolution

is available [8��,13�,25–34,35�,36�,37–40,41�].

In this review, we compare binding modes of sialic acids

and sialylated receptors in representative structures of

virus-receptor complexes in order to derive parameters
www.sciencedirect.com
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that guide the recognition of sialic acid and its derivatives.

Such parameters could be useful for the prediction of new

sialic acid binding sites in viral proteins, or of altered

modes of sialic acid (and its derivatives) binding in

different viral serotypes and strains.

Attachment to terminal sialic acid
Several structures of viral attachment proteins in complex

with sialylated compounds have been determined

recently, providing new insights into viral specificity

for glycan receptors [8,13�,35�,36�,37–39,41�]. Taken

together, the known structures now form a large database

that is suitable for the closer examination of contacts in

order to compare the modes of interaction and attempt to

define common principles of sialic acid recognition. We

have investigated here the mode of Neu5Ac binding for

ten different viral attachment proteins (Figure 1): the
Figure 1
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hemagglutinins (HAs) of Influenza A and B viruses

[26,34], the adenovirus serotype 37 (Ad37) fiber knob

[7��], the canine adenovirus serotype 2 (cAd2) fiber knob

[39], the major capsid proteins VP1 of the polyomaviruses

Polyoma [29], SV40 [13�], and JCV [8], the attachment

protein s1 of human type 3 orthoreovirus [41�], the

attachment protein VP8* of Rhesus Rotavirus [30], and

the hemagglutinin-neuraminidase (HN) of Newcastle

Disease Virus (NDV) [31]. As the interactions with term-

inal sialic acid are very similar among different types of

Influenza A HAs, the structure of the H3 type [26] was

chosen to represent this group. In addition, we have also

analyzed contacts in the hemagglutinin-esterase-fusion

(HEF) protein of Influenza C virus [27] and the hemag-

glutinin-esterase (HE) proteins of Bovine Coronavirus

(BCoV) [35], Bovine Torovirus (BToV) [36�] and Porcine

Torovirus (PToV) [36�] (Figure 2). These four proteins
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Figure 2
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Interactions of viral attachment proteins with O-acetylated Neu5Ac. (a) Contacts of viral proteins with terminal O-acetylated Neu5Ac. Complex structures

were superposed on the terminal substituted Neu5Ac. Interacting protein atoms as well as hydrogen bonds and salt bridges are shown as in Figure 1a. Top

view of O-acetylated (b) and unsubstituted (c) Neu5Ac, with contacting protein atoms shown as colored spheres. The views are rotated from those in

Figure 1 and (a) by two 908 rotations, one around a horizontal and one around a vertical axis. (d–g) Binding sites for O-acetylated Neu5Ac in Influenza C

HEF (d) [27], BCoV HE (e, pdb 3CL5 [35]), PToV HE (f, pdb 3I27 [36]) and BToV HE (g, pdb 3I1L [36]). The structures are displayed as in Figure 1b–k.
bind to derivatives of Neu5Ac that are O-acetylated at

position 9 or at positions 4 and 9. In cases where the

attachment protein also has receptor-destroying enzy-

matic activity, such as in the HN and HE(F) proteins,

only the sites that can clearly be attributed to attachment

are considered here, thus excluding the dual function

neuraminidase site of some HN proteins [32,42,43].

The investigated viral attachment proteins are, for the

most part, not homologous to one another and belong to

unrelated viruses that differ in envelope structure and

genome type. Nevertheless, their interactions with sialic

acid display striking similarities (Figures 1 and 2). In all

complexes, the sialic acid adopts essentially the same
Current Opinion in Structural Biology 2011, 21:610–618 
conformation, namely a trans conformation of the 5-N-

acetyl group and an a-conformation at the anomeric

carbon, which is dominant in biological oligosaccharides.

Interestingly, all attachment proteins, including the ones

that bind to O-acetylated compounds, make extensive

contacts with one face of the sialic acid ring, while the

other face is engaged by only few contacts (Figures 1a and

2a–c). A likely reason for this preference is the formation

of two key contacts that are formed in all complexes in a

similar manner. One of these contacts involves the nega-

tively charged carboxylate group, which is most often

recognized by two parallel hydrogen bonds or a salt

bridge. Each of the analyzed proteins donates at least

one hydrogen bond to a carboxylate oxygen atom. The
www.sciencedirect.com
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second contact involves the nitrogen atom in the N-acetyl

group. With only one exception, all proteins receive a

hydrogen bond from this nitrogen atom. The spatial

arrangement of carboxyl group and the N-acetyl nitrogen

thus helps distinguish sialic acids from other monosac-

charides. Both groups project from the same face of the

sialic acid ring, accounting for the preferential binding of

this face of the monosaccharide. Apart from these two key

interactions, the proteins engage in different hydrogen

bonding patterns to various hydroxyl groups of the gly-

cerol chain or the ring, or to additional acetyl substituents.

Examination of van der Waals interactions between the

viral attachment proteins and Neu5Ac reveals that only

about 50% of the contact surface of Neu5Ac participates

in such contacts (Figures 1a and 2c). The resulting shape

resembles a rimmed imprint of the binding face of

Neu5Ac on the protein surface (Figures 1a and 2c). In

all complexes, van der Waals interactions are formed with

the methyl group of the N-acetyl chain. However, the

different proteins interacting with Neu5Ac sample differ-

ent epitopes on the Neu5Ac contact surface. For

example, JCV and SV40 VP1, Rhesus Rotavirus VP8*,

and Influenza A HA all center their van der Waals contacts

on the glycerol and N-acetyl chains (Figure 1e,f,i,j). The

surfaces of all four viruses feature subtle protrusions that

separate the recessed areas in which the glycerol and

N-acetyl chains are bound. Polyoma VP1, on the other

hand, mainly contacts Neu5Ac from the other side, and

does not interact with the glycerol chain at all (Figure 1b).

Examination of the binding surfaces demonstrates that

shape complementarity is an important factor in the

engagement of sialic acid. As the contact areas are quite

small and the sialic acids are partially exposed to solvent,

adding or removing a single contact can thus have sig-

nificant effects on the affinity of a given virus for sialic

acid or its variants.

Recognition of sialic acid variants
The parent compound of Neu5Ac, neuraminic acid, can

feature numerous modifications that give rise to over 40

different known sialic acid variants [44,45]. Several of

these modifications are predominantly found on specific

cell types and tissues, or in selected species. It is perhaps

not surprising, therefore, that some viruses exploit this

divergence and preferentially recognize sialic acids other

than Neu5Ac. The database of viral protein structures

contains few examples of viruses attaching to O-acetyl-

ated Neu5Ac [27,35,36�], but their analysis is neverthe-

less informative (Figure 2). While the key hydrogen

bonds to one face of the sialic acid are the same as

described for Neu5Ac, the distribution of van der Waals

contacts is somewhat altered. In the four complexes, the

majority of van der Waals contacts are centered around

the unique 9-O-acetyl groups as well as the adjacent side

of the N-acetyl group, while the opposite side of the ring

does not engage in as many interactions (Figure 2b). The
www.sciencedirect.com 
9-O-acetyl group inserts deeply into tight-fitting protein

cavities, providing selectivity for sialic acids modified in

this manner. Recognition of different sialic acids is also a

likely cause of changes in tropism and host range. The

interactions of SV40 with GM1 ganglioside containing

a-N-5-glycolyl neuraminic acid (Neu5Gc), a sialic acid

present in simians but not humans, illustrate this point

[46]. SV40 VP1 features a large pocket near the Neu5Ac

N-acetyl group (Figures 1f and 3b), and it is tempting to

speculate that this pocket serves to accommodate the

additional hydroxyl group of Neu5Gc [13�]. VP1 of the

human JCV (Figures 1e and 3a), whose sialic acid binding

site is largely similar to that of SV40 VP1, features a much

smaller pocket that likely prefers the smaller human

Neu5Ac over the simian Neu5Gc.

Conservation of sialic acid binding sites
Sialic acid binding sites are often highly conserved in

homologous viruses. This is evident when comparing

different HA types of Influenza A, the capsid proteins

of JCV and SV40 (Figure 3a,b), or the HE proteins of

PToV and BToV (Figure 2f,g). In all three cases, the sialic

acid engages the two homologous proteins using similar

contacts and is therefore bound in the same orientation

and position. However, at least one example exists where

homologous proteins, the Ad37 and cAd2 fiber knobs,

bind sialic acid at different locations (Figure 1c,d). Inter-

estingly, there are several examples of highly homologous

proteins that bind sialic acid at the same site but in

different orientations. The VP1 proteins of Polyoma

and SV40, for example, feature a very high level of

sequence identity, and they bind sialic acid in generally

similar areas on the protein surface. However, the orien-

tations of the bound sialic acids differ markedly (Figure

1b,f) [13�]. Similarly, Influenza C HEF and BCoV HE

bind sialic acid at the same position, but again in different

orientations with respect to the proteins and with contacts

provided by different structural elements (Figure 2d,e)

[35]. These two examples demonstrate the need for

caution when modeling interactions with sialic acid based

on a homologous structure.

Specificity for sialic acid in different contexts
As sialic acid is ubiquitous at the cell surface, interactions

with subsequent carbohydrates are typically employed to

define specificity and tropism. Glycan microarrays have

been highly useful in revealing the determinants of such

interactions [47]. The critical role of the context of the

sialic acid — linkage type, as well as length, sequence and

conformational preferences of the remaining oligosac-

charide chain — is perhaps best illustrated by its influ-

ence on the host range of influenza viruses. Briefly,

human Influenza A viruses engage long glycans terminat-

ing in a2,6-linked sialic acid that preferentially adopt a

bent conformation and that are expressed extensively in

the upper airway epithelia of humans. Avian strains pre-

dominantly recognize shorter glycans that adopt a linear
Current Opinion in Structural Biology 2011, 21:610–618
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Figure 3
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Monosaccharides that approach the protein closer than 4.0 Å are colored in bright orange, while those not contacting the protein are colored gray.
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conformation and that often contain a2,3-linked linked

sialic acid [48�]. The vast database on Influenza A HA

structures in complex with sialylated ligands, and con-

current glycan array analyses, has been the subject of

several excellent recent reviews [2,3], and will therefore

not be discussed in detail here. However, glycan array

screening has recently helped to unravel the identities of

sialylated glycan receptors for two pathogenic human

viruses, and structural biology has defined the nature of

interaction in both cases [8]. We review below each of

these two examples, which illuminate the importance

of the context in which the terminal sialic acid is placed.

Achieving specificity through a limited set of
additional interactions
Several members of the polyomavirus family use sialy-

lated receptors for cell attachment. Crystal structures of

two members of the family in complex with their cognate

receptors have been determined recently: SV40 VP1 has

been crystallized in complex with the oligosaccharide

portion of its ganglioside receptor GM1 [13�], whereas

the structure of the VP1 protein of human JCV has been

solved with the pentasaccharide receptor fragment LSTc

(Lacto-series tetrasaccharide c) [8]. Both receptors fea-

ture terminal Neu5Ac, which is a2,3-linked in the

branched GM1 molecule and a2,6-linked in the linear

LSTc structure (Figure 3). In each case, glycan array

screening has unequivocally identified the type of the

receptor [8,13�]. Moreover, although both GM1 and

LSTc were present on the arrays, JCV VP1 failed to

interact with GM1, and SV40 VP1 also did not recognize

the LSTc compound. Thus, both proteins are highly

specific for their cognate receptors. A comparison of
Current Opinion in Structural Biology 2011, 21:610–618 
the two structures shows that the sialic acid portions of

the two receptors form largely equivalent interactions

with their respective proteins (Figures 1e,f and 3). The

remarkable specificity for each receptor can be attributed

to contacts that involve the remaining parts of the oligo-

saccharides. The LSTc compound assumes a bent con-

formation, forming additional contacts via the N-acetyl

group of its third sugar, GlcNAc, to N123 of JCV

(Figure 3a). An a2,3-linked Neu5Ac would not adopt a

similarly bent conformation, explaining why sialylpara-

globoside, which is identical to LSTc except for its a2,3-

linked Neu5Ac, does not bind JCV. Modeling LSTc into

the SV40 VP1 binding site by superimposing the two

sialic acid structures suggests that LSTc could be toler-

ated by SV40. However, as the residue equivalent to

N123 in JCV is a glycine (G131) in SV40, no favorable

contacts to the GlcNAc residue can be generated

(Figure 3b). The inability to form such an interaction

most likely explains why SV40 cannot bind LSTc. It,

therefore, appears that the formation of a very small

number of contacts is largely responsible for defining

the specificity of VP1 for LSTc. The reverse combi-

nation, a GM1 ligand bound to JCV, would likely be

disfavored due to steric clashes with JCV VP1 residue

S62, which is an alanine in SV40.

Achieving specificity through multivalent
binding
Because of their small contact surfaces and solvent-

exposed binding sites, interactions between individual

viral attachment proteins and sialylated oligosaccharides

are typically of low affinity, with dissociation constants

in the millimolar range [13�,28,49,50]. In many cases,
www.sciencedirect.com
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Figure 4
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high-affinity adherence to the target cell is achieved

through the utilization of several low-affinity binding

sites. However, receptor clustering is not always necess-

ary to achieve higher-affinity binding.  The interaction of

Ad37 with its recently identified glycan receptor GD1a

illustrates another strategy. It has long been established

that Ad37 fiber knobs bind receptors terminating in

sialic acid [28,51], but the nature of the glycan has

remained elusive. Glycan array screening has recently

revealed that Ad37 fiber knobs specifically recognize the

oligosaccharide GD1a, a disialylated compound that

features two branches, each terminating in sialic

acid [7��]. A structural analysis of the trimeric Ad37

fiber knob in complex with GD1a established that the

two terminal sialic acid residues bind to two different

Ad37 fiber knob protomers in an identical manner,

thus engaging two of the three possible binding sites

[7��] (Figure 4). This bivalent interaction results in a

250-fold higher affinity (Kd = 19 mM) [7��] compared to

the monovalent sialyllactose–Ad37 knob interaction

(Kd = 5 mM) [28]. Thus, although each protomer in an

Ad37 fiber knob would be able to bind sialic acid

attached to different oligosaccharide structures, speci-

ficity for GD1a is generated by a multivalent interaction

in which two protomers interact with the same receptor

in an identical manner. It is conceivable that trivalent

compounds that engage all three binding sites of the
www.sciencedirect.com 
Ad37 fiber knobs would have even higher affinity, thus

providing a platform for the development of antiviral

inhibitors. Using such a strategy, a multivalent inhibitor

has been developed that is able to neutralize pentameric

shiga-like toxins with very high efficiency [52]. A similar

strategy could be useful to develop molecules that

inhibit viral attachment proteins, which usually occur

as multimers at the viral surface.

Conclusions
A large number of viruses, including many serious human

pathogens, use sialylated oligosaccharides for cell attach-

ment. Common principles of interaction can be estab-

lished by comparing the sialic acid binding modes of

different viruses. In most cases, interactions between a

viral attachment protein and its glycan receptor involve

primarily the sialic acid itself, which is bound with a

relatively small contact area in a solvent-exposed region

of the protein. Consistent with this, the affinities of such

interactions are, at least in cases where they have been

measured, very low. Nevertheless, many of the viruses

discussed here achieve remarkable specificity for a single

type of sialylated oligosaccharide by establishing a small

number of auxiliary interactions with functional groups

that lie beyond the sialic acid, and by excluding some

possible ligands through steric clashes. The auxiliary

interactions generally involve fewer hydrogen bonds
Current Opinion in Structural Biology 2011, 21:610–618
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and bury a smaller amount of surface compared to the

interactions that involve the sialic acid itself. It thus

appears that many viruses use the unique properties of

sialic acid as a ‘hook’ that allows them to adhere to the

cell, and modulate binding in different strains or families

by subtly altering structural elements in the vicinity of

this hook. In a (so far) unique variation of this strategy, the

Ad37 knob establishes selectivity for its GD1a glycan

receptor by multivalent binding to a single receptor

carrying two terminal sialic acid moieties, thus adhering

to two identical ‘hooks’ separated by a defined spacer.

The prominence of sialic acid in viral attachment may

form a basis for new approaches to combat viruses.

Compounds that mimic sialic acid have already proved

useful as inhibitors of the influenza virus neuraminidase

[53] and can also efficiently inhibit the receptor-binding

site of the Influenza A virus hemagglutinin [54]. The

structural analysis of the Ad37–GD1a interaction has also

led to the design and synthesis of a trivalent compound

designed to block attachment of adenoviruses that cause

EKC [55]. Glycan microarrays have been extraordinarily

useful in identifying the correct receptors for many viral

proteins [8,13�,47,56��], which is a prerequisite for struc-

tural studies. However, proper interpretation of the infor-

mation provided by glycan array screening and structural

analyses requires affinity data. Such data are often diffi-

cult to obtain and compare, and they are currently lacking

for many complexes. Being able to correlate affinity

measurements with structural data would significantly

advance the design of antiviral agents, and, together with

oligosaccharide expression data, help to explain viral

tropism.
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