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Recent studies have increasingly turned to graph theory to model more realistic contact structures that

characterize disease spread. Because of the computational demands of these methods, many researchers

have sought to use measures of network structure to modify analytically tractable differential equation

models. Several of these studies have focused on the degree distribution of the contact network as the

basis for their modifications. We show that although degree distribution is sufficient to predict disease be-

haviour on very sparse or very dense human contact networks, for intermediate density networks we must

include information on clustering and path length to accurately predict disease behaviour. Using these

three metrics, we were able to explain more than 98 per cent of the variation in endemic disease levels

in our stochastic simulations.

Keywords: contact networks; clustering coefficient; mean path length; exponential degree distribution;

disease modelling
1. INTRODUCTION
Recent global outbreaks of infectious diseases such as SARS,

avian influenza and H1N1 influenza have illustrated the need

for tools that allow public health officials to predict disease

dynamics. Quantitative models offer such tools provided

that they account for those elements of human contact struc-

ture and disease behaviour that most strongly impact disease

dynamics. Traditional disease models, such as the ubiquitous

susceptible–infected–recovered (SIR) model [1,2], assume

that the host population is homogeneously mixed, meaning

that each member of the population is equally likely to

come into contact with every other member. This approach

ignores the heterogeneous nature of human contact since

we know that, in general, individuals only interact with a

subset of the total population. Human social networks tend

to be highly clustered [3,4] in the sense that any two of

your friends are more likely to be friends themselves than

two individuals chosen at random. This structure creates a

non-uniform probability of interacting with an infected indi-

vidual and a violation of the assumption of homogeneous

mixing. Although homogeneous-mixing models have been

surprisingly useful for increasing our understanding of dis-

ease dynamics generally [1], their utility diminishes as the

contact network increases in heterogeneity.

There has been increasing recognition among disease

modellers that the nuances of the contact structure

among hosts in a population can have profound impacts

on the spread of disease, which cannot be predicted by

traditional homogeneous-mixing models [5–11]. This

has led to an explosion in the use of modelling approaches
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based on graph theory that allow contacts between all

individuals in a population to be modelled explicitly

[12,13]. A graph consists of a set of nodes and a set of

edges between those nodes. In this framework, contact

networks are represented by graphs where nodes rep-

resent individuals and an edge between two nodes

represents a contact between the individuals that would

allow for disease transmission.

While graph theoretic approaches allow the incorpor-

ation of realistic contact structure, they are more

complicated to implement because the status of individ-

uals and their interactions must be explicitly modelled,

resulting in complex models with many parameters that

must be estimated [13]. Thus, network-based approaches

typically do not lend themselves to straightforward ana-

lyses as do SIR-type models. Several studies have sought

to address this problem by seeking correlations between

easily measured properties of network structure and dis-

ease dynamics on the network. They ultimately seek to

use these network properties to modify SIR models so

as to incorporate the effects of structure [5,6,10,14,15].

This approach seeks to get the best of both worlds: the

incorporation of important contact structure plus the

analytic tractability of traditional SIR models.

Contact networks are typically characterized by their

associated degree distribution. The degree of an individ-

ual is the number of contacts, and the degree

distribution of the network is the frequency distribution

of the degrees of individuals in the network. Since two

networks with identical degree distributions can differ

structurally [16,17] (figure 1), focusing only on degree

distribution may prove problematic if disease is influenced

by elements of network structure other than degree distri-

bution. In particular, models that fail to account for these

structural elements may provide inaccurate predictions.
This journal is q 2011 The Royal Society
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(a)

(b)

Figure 1. An example of a 100 node (a) Bansal network and

(b) Asano network that have identical exponential degree dis-
tributions, but differ substantially in other elements of
network structure. Notice that the Asano network has most
individuals with a single contact connected to just a few indi-
viduals; however, individuals with a single contact are more

dispersed in the Bansal network.
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Figure 2. The ratios of clustering coefficient and mean path
length (Bansal network/Asano network) as a function of

mean degree. Circles, clustering coefficient; crosses, mean
path length.
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Several studies have suggested that structural charac-

teristics such as the level of clustering, mean degree

and/or path length of the contact network (§2) should

affect disease dynamics in certain classes of theoretical

networks, such as random [8,18–20], small-world

[4,19], scale-free [7,20] and lattice networks [18,20].

It has recently been demonstrated that the empirical

human contact networks available in the literature are

best described as having exponential degree distributions

[6]. Despite this, very little is specifically known about the

effects of network structure on diseases or exponential

contact networks. Our study therefore focuses only on

networks with exponential degree distributions because

of their relevance to disease dynamics on human contact

networks.

In this paper, we investigate how the structure of an

exponential contact network impacts the spread of

disease. To this end, we ask three pertinent questions.

(i) Is degree distribution sufficient, by itself, to accurately

predict disease behaviour, or are other measures of
Proc. R. Soc. B (2011)
contact network structure required? (ii) Under what con-

ditions do other measures of structure matter? (iii) What

measures of network structure can improve predictions of

disease outcomes? To answer these questions, we com-

pare the outcomes of disease processes on pairs of

networks that have identical exponential degree distri-

butions but, by construction, differ with respect to other

structural attributes. We show that these structural differ-

ences profoundly impact the dynamics of a disease

process on human contact networks for diseases spread

by close contact and endemic dynamics.
2. METHODS
To assess the effect of contact structure on disease dynamics,

while controlling for the effect of degree distribution, we gen-

erated pairs of networks such that each had an identical

degree distribution but differed in other elements of struc-

ture. The first network in each pair was generated using an

algorithm of Bansal et al. [6] and will hereafter be referred

to as a Bansal network. This method involves generating an

uncorrelated random network and then rewiring randomly

selected edges until the network has an exponential degree

distribution (see appendices A and C of [6]). The second

network of the pair is generated using the algorithm of

Asano [21] and will hereafter be referred to as an Asano net-

work. The Asano algorithm takes as input the degree

distribution of the Bansal network and deterministically gen-

erates another network that has the same exact degree

distribution. An artefact of the Asano algorithm, which we

exploit for our purposes, is that the resulting network is struc-

turally different from the associated Bansal network (as noted

below). Thus, the resulting network pairs have the same

degree distribution, but differ substantially in other measures

of structure, which we discuss in more detail below (figures 1

and 2). There are other algorithms (e.g. [22]) that can gener-

ate pairs of graphs with identical degree distributions that differ

structurally, but we chose the Bansal and Asano algorithms

because they were straightforward to implement and worked

for our purposes. For this study, we consider only static, con-

nected networks. In other words, the connections between
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individuals were fixed for the duration of the simulation, and

every individual was connected to every other via at least one

path. For each mean degree (3–16), we used 10 network

pairs, with each network consisting of 10 000 individuals.

This range of mean degrees is representative of empirical

contact networks available in the literature [6].

For any given communicable disease, the absolute

number of infected individuals at equilibrium tends to be

higher on a dense contact network (i.e. a network with a

large mean degree) than for a sparse network. In order to

make reasonable comparisons of the differences in network

attributes and model output between network pairs with

different mean degrees, we looked at the ratio of the Bansal

network value of a particular attribute to the Asano network

value of that attribute. This gives a measure of the relative

difference in magnitude between the networks in a pair that

is comparable across mean degrees. If the value of the network

attribute or measure of disease behaviour is similar for both

networks in the pair, this ratio will be approximately 1.

Systematic deviations of this ratio from 1 are indicative of

structural differences affecting disease spread.

For each network, we measured a series of structural attri-

butes (see the electronic supplementary material for details)

related to clustering and distance across the network because

these attributes have previously been shown to be important

with respect to other classes of contact networks

[3,4,17,18,23,24]. We measured two forms of clustering at

the graph level. The first, transitivity, is the probability that

two contacts of a node are themselves directly connected,

averaged over the whole graph [24,25]. The second, called

the clustering coefficient, removes effects of degree corre-

lations from transitivity [26]. We found that the transitivity

and clustering coefficient of the networks in our study were

virtually identical, and their values were one to two orders

of magnitude smaller for the Bansal networks than for the

Asano networks (figure 2). Thus, individuals in the Asano

contact networks were much more clustered than those in

the corresponding Bansal contact networks.

To determine the size of the network in terms of the ‘dis-

tance’ across the contact network from the perspective of a

spreading pathogen, we measured three related network attri-

butes. We started by calculating the set of minimum path

lengths between each pair of individuals in the network.

The mean path length of the network is the mean of this

set. The maximum of this set is the diameter of the network.

If, for each individual in the network, we find the longest

minimum path length to another individual, the minimum

value across all individuals is the radius of the network.

When comparing the Bansal networks with Asano networks,

we found that the ratios of diameter (Bansal/Asano)

remained relatively constant across mean degrees (mean ¼

0.73, s.d. ¼ 0.06), and the ratio of radii was similar

(mean ¼ 0.79, s.d. ¼ 0.07). The story is slightly more com-

plicated for the mean path length. The ratio increases with

mean degree until saturating near 0.75 for mean degrees

above 10 (figure 2). Together, these measures demonstrate

that the average distance a pathogen must travel from one

member of the population to another arbitrary individual is

much larger for the Asano networks than for the Bansal

networks.

Based on the systematic differences in both the clustering

and distance metrics, it is clear that although each graph in a

pair shares an identical degree distribution, they differ mark-

edly in key elements of structure. Admittedly, the graphs may
Proc. R. Soc. B (2011)
also differ in other, unmeasured aspects of structure. How-

ever, different network statistics often capture similar

aspects of structure and can be highly correlated with one

another. Thus, we have focused on network characteristics

that are common in other studies.

The disease process was simulated using a stochastic ver-

sion of an SIRS model [1]. In this version of the SIR model,

there are susceptible, infected and recovered classes, but

recovered individuals lose immunity, becoming susceptible

again. Also, there are no birth or death processes incorporated

in the model. Because of this, there is a constant population

and contact structure for the duration of the simulation. The

underlying deterministic model is described by:

dS

dt
¼ dR� bSI ;

dI

dt
¼ bSI � gI

and
dR

dt
¼ gI � dR;

whereb is the rate at which susceptible individuals contract the

disease when exposed to infection, g is the rate at which

infected individuals recover from the disease and d is the rate

at which recovered individuals lose immunity and become sus-

ceptible again. Since these parameters describe important

epidemiological properties of diseases, varying these par-

ameters is equivalent to examining a range of different

diseases. We used Gillespie’s direct algorithm [27] to

implement a stochastic version of the SIRS model on each net-

work. We ran 200 realizations of the disease process on each

network using randomly selected sets of 20 initial infected

individuals for each realization. Each realization ran until the

transient behaviour ended. Subsequently, we used the last

200 iterations of the model to evaluate the result of the disease

process at stochastic equilibrium.

To measure the performance of a disease for a particular

contact network, we used the average number of infected

individuals at stochastic equilibrium (�I ). As with the afore-

mentioned network attributes, we consider the ratio of

Bansal network �IB to the Asano network �IA to derive a

metric comparable across network pairs. We refer to this

ratio as �IB=A. As before, systematic deviations of this ratio

from one indicate that differences in network structure

impact disease behaviour.

For each network in the study, we also measured the basic

reproductive number, R0 [1], for a range of parameter sets, in

order to determine whether the differences in structure

between networks had an appreciable impact on the transient

phase of disease spread. These parameter values were chosen

empirically because they resulted in the greatest difference in

disease outcomes between network types and were qualitat-

ively representative of the behaviour across the range of

parameters tested. We started with an entirely susceptible

population, chose a random individual to infect and then

counted the number of secondary cases resulting from con-

tact with the original infected individual. We repeated this

process 1000 times for each contact network in the study,

using a different randomly selected individual for each reali-

zation. We used the average number of secondary cases

across all 1000 realizations as the R0 value for each contact

network. A thousand realizations were empirically deter-

mined to be more than sufficient for the mean to converge

to its average value.
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Figure 3. The ratio (Bansal/Asano) of the average number of infected individuals at equilibrium as a function of the disease
parameters b (rate of infection) and d (the rate of loss of immunity) for a typical graph (mean degree ¼ 8). The rate of
recovery, g, is held constant (g ¼ 1.2).
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3. RESULTS
(a) Network structure and R0

The R0 values measured on our networks ranged from

an average of 0.74 for networks of mean degree 3 to an

average of 12.24 for networks of mean degree 16. R0

increased linearly with mean degree for both Asano

and Bansal networks, with all networks with mean

degree 4 and higher having R0 . 1. We found that there

was no identifiable trend in the ratio of R0 (Bansal/

Asano), but the mean of 0.975 was statistically different

from 1 (two-sided t-test, p , 0.0001). Although this

suggests that R0 for Bansal networks is slightly lower, it

is not clear that this is biologically relevant rather than

an artefact of the stochastic simulation. R0, as we have

measured it, should be largely determined by the degree

distribution, so we would expect the ratio (Bansal/

Asano) to be close to 1. For each network, we averaged

the measured R0 for 1000 different nodes. Because of

this, the resulting R0 measure can be influenced by the

random selection of many highly and/or weakly connected

nodes. This may explain why the ratio was extremely close

to, but not quite, 1.

The range of R0 values we measured on our networks

is consistent with ranges of R0 values measured from

empirical data for other human diseases spread by close

contact, such as measles (4.4–11 [28]), H1N1 influenza

(2.68 [29]), SARS (0.54–2.65 [30]) and smallpox

(1.66–1.42 [30]). A more rigorous comparison with

empirical R0 values may not be appropriate since empiri-

cal studies rarely incorporate information on network

structure, although other results from our study (below)

suggest that network structure can be unimportant in

some contexts.

(b) Is degree distribution sufficient to accurately

predict disease behaviour?

If degree distribution were a sufficient measure of net-

work structure for predicting disease outcomes, then we

would expect that the same disease should behave simi-

larly on two contact networks with identical degree

distribution. For our model, this corresponds to the

case where the ratio �IB=A � 1. To test this, we varied the
Proc. R. Soc. B (2011)
disease parameters b, d and g factorially over a broad

range of values (i.e. many possible diseases) for a network

pair of each mean degree in order to determine the effect

of network density on disease behaviour. Figure 3 shows

an example for fixed g and mean degree. For each net-

work density, there were broad regions of parameter

space where �IB=A at equilibrium is roughly constant and

close to 1 (�0.97), indicating a small and predictable

effect from differences in structure between networks in

a pair for most diseases. There were, however, significant

regions of parameter space where �IB=A was systematically

larger than 1, indicating that the Bansal networks consist-

ently have more infected individuals at equilibrium than

the associated Asano networks for these types of diseases.

In one case, the Bansal value of equilibrium number of

infected individuals was more than five and a half times

larger than the associated Asano network value. The be-

haviour is qualitatively similar for all graph densities,

but the regions of parameter space where structure had

the most impact differed slightly for each mean degree.

This result demonstrates that knowledge of the degree

distribution alone is generally insufficient to explain

disease behaviour on contact networks.

(c) Under what conditions do other measures

of structure matter?

To investigate the conditions under which structure mat-

ters for a particular disease, we present an illustrative set

of parameter values (b ¼ 1.2, g ¼ 1.2, d ¼ 0.2) and

associated simulations of the disease process on many

network pairs of each mean degree. We examined a

range of parameter sets and found the results to be quali-

tatively similar. In general, �IB=A was nearly always greater

than 1 for the representative parameter set, indicating that

the endemic level of infection was universally higher on

Bansal networks than on Asano networks. We found

that for intermediate densities (mean degrees between

about 7 and 10), the Bansal �I was more than 50 per

cent higher than that of the associated Asano network

(figure 4). For low-density network pairs (mean degrees

3–4), the ratio of the values was near 1 with relatively

large variance, while for higher-density networks
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Figure 4. The ratio (Bansal/Asano) of the average number of
infected individuals at equilibrium as a function of the mean

degree of the network. Systematic deviations from a ratio of 1
(grey dashed line) indicate that network structure affects
disease processes.

Table 1. Regression models used to relate the network

attributes mean degree (MD), mean path length (MP) and
clustering coefficient (CC) to disease behaviour (�I) for
networks of intermediate density (mean degrees 5–11 only).
AIC values are provided to rank model performance, with
the lowest AIC values indicating models most supported by

the data.

model R2 AIC

�I ¼ b0 þ b1*ðMDÞ þ b2*ðMPÞ þ b3*ðCCÞ 0.984 2170
�I ¼ b0 þ b1*ðMDÞ þ b2*ðCCÞ 0.932 28
�I ¼ b0 þ b1*ðMDÞ þ b2*ðMPÞ 0.898 84
�I ¼ b0 þ b1*ðMDÞ 0.848 137
�I ¼ b0 þ b1*ðMPÞ þ b2*ðCCÞ 0.633 260
�I ¼ b0 þ b1*ðMPÞ 0.464 311
�I ¼ b0 þ b1*ðCCÞ 0.156 373
�I ¼ b0 0 724
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(mean degrees greater than 12), the ratio of values was also

near 1, but with relatively small variance. To give a sense of

the difference in disease behaviour in absolute terms, the

largest absolute difference in this set of model runs occurred

for a graph pair of mean degree 10, where �IB ¼ 1788 indi-

viduals and �IA ¼ 1039 individuals. The difference (749

individuals) is 7.5 per cent of the population.

From this result, we can see that for both relatively

sparse contact networks (mean degrees 3–4) and relatively

dense contact networks (mean degrees greater than 12)
�IB=A�1, implying that degree distribution alone is a suffi-

cient predictor of disease behaviour. For intermediate

densities (mean degrees 5–11), �IB=A is systematically

greater than 1, suggesting that differences in network struc-

ture other than degree distribution are impacting disease

behaviour.
(d) What measures of network structure increase

prediction accuracy?

For intermediate density networks (mean degree 5–11),

we must explain the relationship between the differences

in disease behaviour on the Bansal and Asano networks

and the structural properties of those networks. Previous

studies of other network types have hypothesized that

disease dynamics should be affected by the level of clus-

tering and mean path length of the contact network

[3,4,17,18,20,23,24], and we have shown that disease

spread on the networks in each pair systematically differs

with respect to those metrics.

For this portion of the study, we combined data from

both the Bansal and Asano network simulations (for

mean degrees 5–11) rather than using the pair-wise

ratios so that we could determine which structural

properties best explain �I across network types. We con-

structed a series of linear regression models using mean

degree, clustering coefficient and mean path length as

covariates (table 1). Using the R statistical package (R

v. 2.7.0), we fitted the models and used Akaike’s infor-

mation criterion (AIC) [31] to select the best model

from among the candidate set (table 1).

While all four of the top models (as indicated by the

lowest AIC values) contain mean degree as a covariate,

the model containing only mean degree has the poorest

explanatory power of the four, though it still explains
Proc. R. Soc. B (2011)
approximately 85 per cent of the variation. The model

containing mean degree and mean path length and the

model containing mean degree and clustering coefficient

were also quite successful, with R2 � 0.90 and R2 �
0.93, respectively. The full model, containing mean

degree, clustering coefficient and mean path length, was

the top rated model (with the lowest AIC value) and

was far and away the most successful predictor of �I ,

explaining more than 98 per cent of the variation.
4. DISCUSSION
We were interested in understanding how the results of

disease processes are impacted by the structure of

human contact networks. Although much work has

been done on the effects of structure on disease spread

in many classes of networks, very little work has been

done for networks with exponential degree distributions,

which best describe empirical human contact networks

[6]. We found that differences in network structure had

no meaningful influence on the ratio of measured R0

values across mean degrees, and thus no relationship

between the ratio of R0 values to �IB=A.

We did find that, regardless of network density, there

were broad ranges of parameters (i.e. many diseases) for

which the average number of infected individuals at sto-

chastic equilibrium between pairs of networks was

roughly the same, indicating a small and predictable

difference in disease dynamics between these networks

(figure 3).

On the other hand, we found that there were many dis-

eases for which disease behaviour on the Asano and

Bansal networks differed substantially (figures 3 and 4).

Since the networks in each pair had identical degree dis-

tributions, it follows that other structural differences

between networks in each pair must be driving differences

in disease dynamics. The ratio of the average number of

infected individuals at stochastic equilibrium is approxi-

mately 1 for low-density networks (mean degrees 3–4)

and for high-density networks (mean degrees 12þ), but

is substantially larger than 1 for intermediate degrees

(figure 4). We speculate that this humped shape is the

result of multiple competing processes, such as the rela-

tive importance of global or local connectivity.

For the relatively dense networks (mean degree 12þ),

the convergence of �IB=A to 1 is the result of the finite size
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of the contact network. For a fixed number of individuals

(n), as the mean degree increases toward n, a network

approaches a complete graph, which is a network where

every individual is directly connected to every other.

From the perspective of the pathogen, there are more

pathways to spread, and the distance between any two

individuals is shorter. In effect, the pathogen is better

able to take advantage of the global connectivity of the

network. As density increases and the networks approach

a complete graph, the networks become so highly con-

nected that most individuals are connected to a

sufficient number of other individuals for the network

to appear homogeneously mixed to the pathogen. In

these cases, the high level of connectivity overrides the

effects of the other elements of structure.

For relatively sparsely connected networks (mean

degree 3–4), there are so few connections between indi-

viduals that there are few opportunities for the disease

to spread. The two graphs in each pair structurally

differ in terms of clustering and path length (figure 2),

but these are global properties of the whole network. It

is important to recognize that individuals in these sparse

networks have so few connections that the two networks

are very similar at the local level, making it hard for the

disease to ‘see’ the global properties of the network. In

other words, from the perspective of the disease, the

two networks appear locally identical, resulting in similar

behaviour. This is confirmed by the fact that the R0

values, a measure of local spread, for networks with the

same degree distribution were roughly the same, regard-

less of other differences in structure. The larger

variance in �IB=A associated with sparse networks com-

pared with denser networks (figure 4) is probably the

result of disease behaviour being dependent on highly

connected individuals being initially infected.

In the cases of both very low- or relatively high-density

networks, other local and global processes, respectively,

overshadow the effects of structure, such as clustering or

path length. This trade-off between local and global net-

work properties has been shown in a number of different

types of networks [32]. This is good news for those wishing

to use models that assume a homogeneously mixed popu-

lation. Relatively high-density and low-density networks

represent cases where modifications to SIR models based

on measures of degree distribution alone (such as mean

degree) probably will be successful at representing patho-

gen dynamics in these populations. In a spatial context,

there have been several cases where disease dynamics for

an empirical contact network have been successfully mod-

elled without needing to incorporate fine-scale network

structure (e.g. fast-spreading farm animal disease such as

foot-and-mouth [33]; or plague [34]), probably because

of the mean degree of these empirical networks.

In the case of intermediate density networks, where

structure impacts disease behaviour, we showed that the

variation in disease performance is almost entirely

explained by mean degree, mean path length and cluster-

ing coefficient (table 1). This strongly suggests that some

combination of these terms can be used to correct an SIR

model to account for the structure of the network. Studies

on other network types have shown that degree variance is

important for predicting disease behaviour on those

networks [23]. With an exponential distribution the var-

iance is the square of the mean, so they are functionally
Proc. R. Soc. B (2011)
related, and this may explain why we did not need to

include it for these networks. Given that mean degree

can explain 85 per cent of the variance in �I for intermedi-

ate density networks, and can explain nearly all the

variation for very sparse and very dense networks, it is

fair to ask why one might go to the trouble of

incorporating other contact network structure.

We have shown that, for certain diseases, we can explain

an additional 14 per cent of the variation in disease behav-

iour by using the mean path length and clustering

coefficient of the network. It is also worth noting that the

second best model contains mean degree and clustering

coefficient (table 1). These two properties should be rela-

tively straightforward to estimate empirically by sampling

members of the network (with interviews) since they

depend only on local information. Underestimating the

impact of a disease can lead to an inadequate public

health response, while overestimations can lead to misallo-

cation of limited public health resources. By incorporating

additional structure, we can significantly improve our pre-

dictions of endemic levels of the disease and thereby

improve our public health response.

Our results are consistent with a number of studies on

different classes of networks that have found that network

structural properties such as clustering and path length

impact the spread of disease [4,7,8,18–20]. They are also

consistent with the more recent work of Boily et al. [35]

on scale-free networks, which demonstrated that macro-

scale measures of structure (e.g. degree distribution)

are insufficient, by themselves, for understanding disease

outcomes on those networks. For exponential networks

we have gone further and quantitatively analysed the

conditions under which degree distribution is or is not suf-

ficient to describe the outcome of disease processes, and

linked this with an intuitive explanation based on global

and local connectivity. We expect that the specific effects

of structure such as clustering would be different for

other types of network degree distributions. We have

focused on exponential degree distributions exclusively

since they have been shown to best describe empirical

human contact networks available in the literature [6].

Depending on the nature of the disease in question,

the outcome of disease processes may be very different

for two human contact networks that have identical expo-

nential degree distributions but that differ with respect to

other structural properties. Our results show that, for very

sparse or very dense networks, knowledge of the degree

distribution of a contact network is generally sufficient

to predict disease behaviour on the network. For networks

of intermediate density, different structural attributes

have a profound impact on disease behaviour. By includ-

ing the clustering coefficient and mean path length along

with the mean degree of the contact network, we can

reduce the uncertainty of our model predictions of disease

performance (by nearly 14%).
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