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Role in Induction, Regulation, and Treatment
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Cytokines play a pivotal role in the pathogenesis of autoimmune diseases. The precise triggers for the break-
down of self-tolerance and the subsequent events leading to the induction of pathogenic autoimmune responses
remain to be defined for most of the naturally occurring autoimmune diseases. Studies conducted in experi-
mental models of human autoimmune diseases and observations in patients have revealed a general scheme in
which proinflammatory cytokines contribute to the initiation and propagation of autoimmune inflammation,
whereas anti-inflammatory cytokines facilitate the regression of inflammation and recovery from acute phase of
the disease. This idea is embodied in the T helper (Th) 1/Th2 paradigm, which over the past two decades has
had a major influence on our thinking about the role of cytokines in autoimmunity. Interestingly, over the past
decade, the interleukin (IL)-17/IL-23 axis has rapidly emerged as the new paradigm that has compelled us to
critically re-examine the cytokine-driven immune events in the pathogenesis and treatment of autoimmunity. In
this 2-volume special issue of the journal, leading experts have presented their research findings and viewpoints
on the role of cytokines in the context of specific autoimmune diseases.

Introduction

Until recently, the pathogenesis of autoimmune
diseases was examined and analyzed largely in the

context of the T helper 1 (Th1)/Th2 cytokine balance, with
the 2 T cell subsets mutually cross-regulating each other
(Mosmann and others 1986; Abbas and others 1996; Ro-
magnani 1997; Coffman 2006). In this scheme, Th1-driven
responses are mediated by cytokines produced by Th1 cells
[eg, interleukin 2 (IL-2), interferon (IFN)-g, and tumor ne-
crosis factor (TNF)-a] and macrophages (eg, IL-1, IL-6, IL-12,
and TNF-a), whereas Th2-driven responses are mediated by
cytokines such as IL-4, 1L-5, and IL-13 (Fig. 1) (Mosmann
and others 1986; Coffman 2006). Accordingly, autoimmune
diseases could be categorized as predominantly Th1-driven
if the major events were cell-mediated in nature, or predom-
inantly Th2-driven if antibodies and/or immune complexes
served as the main mediators. In view of the cross-regulation
between Th1 and Th2, various immunomodulatory regimens
were developed that were aimed at restoring the cytokine
balance, eg, by employing strategies to skew the cytokine
response (immune deviation) to Th2 in the case of a Th1-
mediated disease (Forsthuber and others 1996; Singh and
others 1996; Romagnani 1997). The Th1/Th2 regulation has
been the cornerstone of the mechanistic and therapeutic
aspects of autoimmune diseases over the past 2 decades.
However, there were some critical gaps and contradictions in

understanding of the mechanisms underlying the pathogen-
esis of autoimmunity that needed additional input for their
resolution.

A major paradigm shift in the Th1/Th2-centric view of
autoimmunity occurred just over a decade back with the
realization that many of the effector responses previously
assigned to IL-12 and IFN-g were indeed mediated in vivo by
IL-23 and IL-17 (the IL-17/IL-23 axis) (Steinman 2007). An
important turning point in this context stemmed from the
observation that heterodimeric cytokines IL-12 and IL-23
shared a common chain (p40), while possessing a distinct
second chain, p35 and p19, respectively. Therefore, previous
studies that were performed in p40-knockout mice and were
interpreted in the context of IL-12 and Th1 response had
inadvertently missed the contribution of IL-23 to the immune
events during autoimmune inflammation (Cua and others
2003). The latter was further clarified through the use of mice
deficient in p35 or p19. Thereafter, the role of IL-23 in driving
IL-17 response was revealed (Langrish and others 2005), and
a new subset of T cells (Th17) that produced IL-17 but was
distinct from Th1 subset was identified (Fig. 1) (Kennedy and
others 1996; Harrington and others 2005; Stockinger and
Veldhoen 2007). Early studies in animal models of multiple
sclerosis (MS) (Cua and others 2003; Komiyama and others
2006) and rheumatoid arthritis (RA) (Lubberts and others
2001; Murphy and others 2003) as well as in patients with
these diseases spearheaded the appreciation for the role of
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IL-17 in these autoimmune diseases. Subsequent studies in
patients and animal models of other autoimmune diseases
have reinforced the vital role of IL-17 in disease pathogenesis
(Amadi-Obi and others 2007; Luger and others 2008; Ouyang
and others 2008; Stromnes and others 2008; Horie and others
2009; Yang and others 2009; Baldeviano and others 2010;
Ankathatti Munegowda and others 2011; Rajaiah and others
2011).

One of the critical questions posed by the above-mentioned
observations relates to the relative roles of IL-12/IFN-g versus
IL-23/IL-17 in the induction, progression, and regression of
autoimmunity (Luger and others 2008; Stromnes and others
2008; Rajaiah and others 2011). Currently, this is an area of
intense research in autoimmunity. Studies examining the
dynamics of appearance of these cytokines during the course
of disease and their association with clinical features of
the disease (Luger and others 2008; Stromnes and others
2008; Rajaiah and others 2011) have revealed that IFN-g and
IL-17 may either have a sequential proinflammatory activity,
or mediate distinct clinical/histopathological phenotypes of
the disease. Further, the relative contribution of Th1 versus
Th17 to immune pathology may vary in different experimental
models of the same disease (O’Connor and others 2009). The
Th1 lineage is antagonistic for both Th2 and Th17 (Bettelli

and others 2007; Steinman 2007; Basso and others 2009;
Peck and Mellins 2010). Further, both Th1 and Th2 can inhibit
Th17, and Th17 in turn can control the activity of Th1 (Bettelli
and others 2007; Steinman 2007; Basso and others 2009;
Peck and Mellins 2010). However, under certain conditions,
Th17 and Th1 can cooperate and might even be synergistic in
their action.

The activity of Th1 and Th17 can be effectively down-
modulated by a diverse group of regulatory T cells (Fig. 1)
(Homann and von Herrath 2004; Chatenoud and Bach 2005;
Shevach 2009), eg, Th2 (secreting IL-4, IL-5 and IL-13), Tr1
(secreting IL-10), and CD4 + CD25 + forkhead box p 3
(Foxp3) + T regulatory cells (Treg) [secreting transforming
growth factor (TGF)-b and IL-10]. There is a reciprocal de-
velopmental pathway between Th17 and Treg, with TGF-b
facilitating the development of Treg, whereas TGF-b in the
presence of a proinflammatory cytokine (IL-6/IL-1) favoring
Th17 induction (Bettelli and others 2007; Ivanov and others
2007; Zhou and others 2008). IL-21 can provide an alternate
pathway for Th17 induction (Korn and others 2007; Nurieva
and others 2007). The reciprocal differentiation between Treg
versus Th17 can be influenced by various molecular
switches/mediators such as Foxp3, retinoic acid-related-gt
(ROR-gt), interferon-regulatory factor-4, and aryl hydrocar-
bon receptor (Bettelli and others 2007; Ivanov and others
2007; Zhou and others 2008; Peck and Mellins 2010). Re-
cently, it has been shown that IL-23 (in the absence of TGF-b)
in the presence of IL-1/IL-6 can drive the differentiation of
Th17 that express both ROR-gt and T-bet, and that this
subset of Th17 is more pathogenic than the Th17 subset
(expressing ROR-gt) generated in the presence of TGF-b and
IL-6/IL-1 (Ghoreschi and others 2010). Th22, Th9, and TfH
represent additional T cell subsets that display specific cy-
tokine secretion profiles and other unique attributes (Fig. 1).
Studies on the role of these newer T cell subsets in autoim-
munity are actively being pursued.

Besides the above-mentioned major paradigm shift in the
cytokine field, different cytokines display characteristics that
further compound the analysis and interpretation of their
role in autoimmune diseases. Foremost among these char-
acteristics are pleiotropy (one cytokine having multiple ef-
fects on various cell types), redundancy (the same or
overlapping actions of different cytokines), and duality of
action (revealing both pro- and anti-inflammatory activities
under different set of conditions) (Fig. 1). Also of significance
is the feature of plasticity (the capability of being molded or
being made to assume a desired form) of the T cell subsets
secreting these cytokines (Annunziato and Romagnani 2009;
Basso and others 2009; Zhou and others 2009; Peck and
Mellins 2010; Dong 2011). For example, under an inflamma-
tory cytokine environment, a proportion of Treg may change
their phenotype to Th17-like cells, and under other set of
conditions, Th17 can adopt a Th1-like or a Treg-type pheno-
type, whereas Treg can secrete IFN-g (Osorio and others 2008;
Radhakrishnan and others 2008; Bending and others 2009;
Leveque and others 2009; Martin-Orozco and others 2009;
Voo and others 2009; Afzali and others 2010; Ahern and
others 2010; Peck and Mellins 2010; Feng and others 2011).
Apparently, these observations regarding the late-stage
plasticity of the T cell subsets reflect the biological system’s
economy and optimal use of the available, functionally rele-
vant T cell subsets depending on the need and local milieu.
However, they also complicate significantly the analysis and

FIG. 1. The involvement of different T cell subsets and the
cytokines produced by them in the pathogenesis of autoim-
mune disorders. There are diverse subsets of effector and
regulatory T cells, and the balance in their activity is vital for
an effective immune response that is proportionate to the
inciting stimulus. Excessive, reduced, or aberrant cytokine
responses contribute significantly to autoimmune inflamma-
tion that underlies several autoimmune diseases. T helper 1
(Th1), Th17, Th22, and Th9 subsets (left panel) generally drive
pathogenic effector responses, whereas Th2, CD4 + CD25 +
forkhead box p 3 (Foxp3) + T regulatory cell (Treg), interleu-
kin (IL)-10-secreting regulatory T cell (Tr1), and transforming
growth factor (TGF)-b-secreting T cell (Th3) subsets (right
panel) mediate regulatory responses. T follicular helper cell
(TfH) is a recently described T cell subset that plays a role in B
cell activation in the lymphoid tissue. The primary cytokines
secreted by various T cell subsets are shown in the figure. Also
depicted are the properties displayed by various T cell subsets
and/or cytokines (middle panel) that come into play at dif-
ferent stages of an autoimmune disease.
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interpretation of the frequency of different T cell subsets
based on their cytokine secretion profile. For example, as
mentioned above, under certain conditions, Treg can produce
IL-17, and Th17 cells can produce IFN-g. To this category can
be added Th1 cells secreting IL-10 ( Jankovic and others 2007;
O’Garra and Vieira 2007), and natural killer T (NKT) cells
secreting IFN-g and IL-4. Obviously, such cytokine secretion
patterns can easily confound the interpretation of the data
obtained from in vivo studies examining the frequency of T
cell subsets in an inflamed/diseased tissue, wherein dynamic
changes in the local milieu can significantly influence cyto-
kine production by different cells. Importantly, the above-
mentioned phenotypic changes also have major implications
on cellular therapy of autoimmunity using Treg injection to
patients with autoimmunity.

In regard to the duality of action, cytokines such as IL-12,
IFN-g, and TNF-a, which are considered to be the prototypic
proinflammatory biomarkers of autoimmune inflammation,
may in fact display anti-inflammatory and immunomodu-
latory activity under different set of conditions (Tarrant and
others 1999; Christen and others 2001; O’Shea and others
2002; Fairweather and others 2004; Qin and others 2004; Kim
and others 2008a, 2008b). For example, in animal models of
RA, depending on the timing of cytokine administration,
IFN-g or TNF-a can either aggravate or ameliorate the dis-
ease (Kim and others 2008a, 2008b). Similarly, a dual role of
TNF-a has been reported in type I diabetes (Christen and
others 2001). Information about the dual role of TGF-b and
IL-10 adds further to the already complex interplays among
cytokines during the course of an autoimmune disease
(Cooper and others 1992; Veldhoen and Stockinger 2006;
Sun and others 2011). On the one hand, IL-10 and TGF-b
mediate the suppressive action of Treg, but on the other
hand, TGF-b injection can accelerate the progression of ar-
thritis (Cooper and others 1992) and IL-10 has been shown
to mediate pathogenic effects (Llorente and others 1995; Lee
and others 1996). Recently, IL-17 has been shown to mediate
protection against uveitis (Ke and others 2009) as well as
inflammatory bowel disease (IBD) (O’Connor and others
2009). In the latter situation, an environment-specific pro-
tective function of IL-17 was attributed in part to its inhib-
itory effect on the differentiation of Th1 cells.

The placement of IL-17 at the center stage of autoimmune
inflammation has initiated a major surge of studies aimed at
identifying the cytokines that might counteract the effector
functions of this proinflammatory cytokine. IFN-g turned out
to be one of the cytokines that can inhibit IL-17 response
(Ivanov and others 2007; Bettelli and others 2008; Feng and
others 2008; Peck and Mellins 2010). This is counterintuitive
given the above-mentioned proinflammatory and sometimes
IL-17-supportive role of IFN-g. Th17 response can be nega-
tively regulated by Th2 cytokines as well (Bettelli and others
2008; Gu and others 2008; van Hamburg and others 2009;
Peck and Mellins 2010). Further, IL-25, which belongs to the
IL-17 family, also has been shown to inhibit Th17 response,
and IL-25 achieves this effect in part via IL-13 (Peck and
Mellins 2010). This further reinforces Th2-induced regulation
of Th17. In addition, IL-2 and retinoic acid can constrain the
Th17 response, but facilitate the generation of Treg (Mucida
and others 2007; Xiao and others 2008; Basso and others 2009;
Peck and Mellins 2010). Depending on the concentration
used, retinoic acid may display a dual effect (inhibition ver-
sus enhancement) on Th17. A major development in under-

standing the regulation of IL-17 response relates to IL-27. In a
few studies, IL-27 was suggested to be a proinflammatory
cytokine (Goldberg and others 2004; Cao and others 2008;
Kalliolias and Ivashkiv 2008; Wang and others 2008),
whereas in other studies a dual pro- and anti-inflammatory
role (Villarino and Hunter 2004) or a predominantly regula-
tory role (Fitzgerald and others 2007; Niedbala and others
2008; Rajaiah and others 2011) (by inhibiting IL-17 response)
was assigned to this cytokine. Another twist to the complex
interplay among these cytokines has emerged from recent
results showing that IFN-g can enhance the production of IL-
27 (Fitzgerald and others 2007; Murugaiyan and others 2010;
Rajaiah and others 2011).

Importantly, the dynamics of different cytokines following
disease-inducing trigger can significantly influence suscepti-
bility to autoimmunity (Fairweather and Rose 2005; Horie
and others 2011; Rajaiah and others 2011). This is exemplified
by the observations in animal models showing that despite
raising a vigorous cytokine response that is potentially
pathogenic in nature, certain rodent strains might be resis-
tant to disease development. In this situation, the action of
the pathogenic cytokine may remain unopposed in the
susceptible rodent strain, whereas it could be effectively
counteracted or neutralized physiologically by the anti-
inflammatory/immunomodulatory cytokines in the resistant
strain. For example, in the AA model, the arthritis-resistant
Wistar Kyoto (WKY) rats raised an early and potent IL-17
response to the arthritogenic challenge as did the arthritis-
susceptible Lewis rat (Rajaiah and others 2011). However,
while this response was unopposed in the Lewis rat, it was
effectively counteracted in WKY rats by IL-27 and IFN-g, both
of which appeared concurrently with IL-17. The significance
of this finding was further evident from the results showing
that the treatment of Lewis rats either with IL-27 or with IFN-g
caused significant suppression of AA (Rajaiah and others
2011). Thus, the cytokine profiles also can provide vital
clues to strategies for experimental immunomodulation of
autoimmunity.

Several lines of evidence strongly suggest that sustained
production of type I IFN-a contributes to systemic auto-
immune diseases in patients and certain mouse models.
These diseases include systemic lupus erythematosus, myo-
sitis, systemic sclerosis, Sjögren’s syndrome, and RA. Ac-
cordingly, studies have also identified polymorphisms
within genes of the IFN pathway (and IFN-stimulated genes)
that confer an increased risk for the development of auto-
immune diseases (Theofilopoulos and others 2005; Hall and
Rosen 2010). Notably, the type I IFNs profoundly affect all
aspects of the innate and adaptive immune responses
through the regulation of multiple proinflammatory cyto-
kines directly or indirectly. One important feature of the type
I IFN pathway is the ability to sustain a feed-forward loop of
IFN production. Therefore, IFN-a and components of the
feed-forward loop (eg, the Toll-like receptors) are potential
therapeutic targets in patients with autoimmune diseases. In
addition, efforts are underway to target Type I IFN’s and
IFN-inducible genes for potential therapy of certain auto-
immune diseases (Hall and Rosen 2010). The details of the
role of IFNs in autoimmune pathogenesis and the interac-
tions of IFNs with other cytokines will be covered in the
introductory chapter of volume II of this series.

A variety of approaches based on the knowledge about
the predominant cytokine(s) involved in the disease process
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are being explored for the treatment of autoimmune diseases
in animal models (Broderick and others 2005; Williams and
others 2007; Kunz and Ibrahim 2009; Palmer and others 2009;
Leishman and others 2011; Rajaiah and others 2011).
Broadly, the approaches include anticytokine antibody [eg,
anti-TNF-a, anti-IL-15, anti-IL-12/23, anti-IL-17, and anti-B-
cell activating factor (BAFF)] to neutralize the cytokine of
interest in vivo; a soluble cytokine receptor (eg, TNF-a re-
ceptor and IL-18 receptor) as a capture or neutralizing agent;
a blocker or antagonist of cytokine receptors (eg, IL-1 re-
ceptor, IL-6 receptor, and IL-17 receptor); direct injection of a
specific cytokine or vectors expressing them (eg, IL-10 and
IL-27); and interference with cytokine-induced intracellular
signaling (eg, IL-33). Some of these approaches also are being
explored in early clinical trials in patients (Llorente and
others 2000; Williams and others 2007; Kunz and Ibrahim
2009; Leishman and others 2011).

Finally, ascending at the horizon are the next series of
cytokines (eg, IL-32, IL-33, and IL-35) whose biological
functions in autoimmune pathogenesis are gradually begin-
ning to be unraveled: (1) IL-32: IL-32 can be produced by
many different cell types, including T cells, NK cells, epi-
thelial cells, and fibroblasts (Kim and others 2005; Joosten
and others 2006). This cytokine has proinflammatory activi-
ties in part via the production of other proinflammatory
cytokines such as TNF-a, IFN-g, IL-1, and IL-18. Moreover,
IFN-g and TNF-a can induce IL-32 expression. Increased IL-
32 production in RA synovial tissue has been reported. (2)
IL-33: IL-33 belongs to the IL-1 family of cytokines (Xu and
others 2008; Palmer and others 2009). As in the case of IL-32,
IL-33 also can induce the production of TNF-a and IL-1.
Further, IL-33 can stimulate mast cells, which in turn can
produce proinflammatory cytokines, including IL-17 (Xu and
others 2008). (3) IL-35: IL-35 is a member of the IL-12 family.
IL-35 shares its alpha (p35) subunit with IL-12, but its beta
subunit (Epstein-Barr virus-induced gene 3) with IL-27
(Niedbala and others 2007). It has been reported that IL-35
can be produced by a subset of Treg, and that the treatment
of naı̈ve T cells with IL-35 can induce the generation of a
unique subset of Foxp3 - induced Treg (‘‘iTR35’’) (Collison
and others 2007, 2010). IL-35 has been shown to suppress
collagen-induced arthritis (CIA) in part via inhibition of
Th17 response (Niedbala and others 2007).

The above issues highlight the changing landscape of the
field of cytokine biology as well as challenge the simplistic
viewpoint of the role of cytokines in autoimmune diseases.
Intensive, creative, and proactive research is the key to un-
ravel the complexities of the cytokine action, interaction, and
crossregulation during the course of autoimmunity. Ac-
cordingly, this 2-volume special issue of Journal of Interferon
& Cytokine Research is focused on the role of cytokines in
autoimmunity. These articles offer a fine mix of basic back-
ground information about various cytokines and an incisive
and thorough exploration into the role of cytokines in auto-
immune pathogenesis. This balanced coverage should cater
to the needs of a broad readership at different levels of in-
terest in and exposure to cytokine biology. The contributors
to this series are leaders in the field of autoimmunity, who
have over the years broken new ground and made seminal
contributions to their chosen area of study. Volume I opens
with the lead article on myocarditis by Noel Rose, who with
Witebsky, provided the first experimental evidence for the
association of thyroid autoantibodies with experimental

thyroiditis (Rose and Witebsky 1956). This is followed by
articles contributed by the teams led by Singh (type I dia-
betes), Prabhakar (thyroiditis), Caspi (uveitis), Koch (arthri-
tis), Forsthuber (encephalomyelitis), Tsokos (lupus), and
Mohan (lupus). The order of the articles would ensure con-
nectivity with those in the next volume. Volume II will fea-
ture articles contributed by the groups of Theofilopoulos
(lupus), Niewold (lupus), Choubey (lupus), Lehmann (en-
cephalomyelitis), Matthys (arthritis), and Moudgil (arthritis).
A synopsis of each of the articles in Volume I of the special
issue is presented below.

Myocarditis

Rose (2011; p. 705) has critically addressed a mechanism
that is central to the pathogenesis of autoimmunity, namely,
the role of infection in the induction of an autoimmune dis-
ease. Convincing evidence for the cause-and-effect relation-
ship between infection and autoimmunity is still lacking.
Through elegant series of studies performed in a murine
model of myocarditis inducible by infection with Coxsack-
ievirus B3 (CB3), Rose’s group has dissected the sequence of
events triggered by infection that lead to autoimmune
myocarditis and subsequent cardiomyopathy. These events,
particularly the role of cytokines at different phases of the
disease process, are described in this article. Infection with
CB3 triggers the production of innate cytokines, which drive
cardiac inflammation. Subsequent wave of Th2/Th1 cyto-
kines orchestrates the autoimmune reactivity against cardiac
myosin, and later in the disease course, Th17 response me-
diates dilated cardiomyopathy. Also discussed are the fac-
tors that influence the resolution of infection-induced
inflammation versus the progression of inflammation to
autoimmunity; the relative contribution of Th1 versus Th17;
the opposite effects of IL-12 versus IFN-g, and of IL-4 versus
IL-13; and the duality of action of certain cytokines in the
disease process. Toward the end, comparative findings in the
experimental model and patients with myocarditis, and the
challenges in the use of cytokine-based strategies for thera-
peutic purposes are outlined.

Type I Diabetes

Singh and colleagues (2011; p. 711) have discussed the role
of cytokines in the pathogenesis of autoimmune diabetes
(type I diabetes) in the nonobese diabetic (NOD) mouse
model of the human disease. In the process, the authors have
presented examples that validate several of the above-
mentioned attributes of different cytokines and the cells se-
creting them, eg, the dual role of cytokines, the plasticity of T
cell subsets, the pathogenic role of IL-27, and the protective
role of IL-35. The major thrust of the article is on the mech-
anisms underlying the protective effect of adjuvant immu-
notherapy (protection against diabetes after immunization of
NOD mice with complete Freund’s adjuvant), a critical
finding reported by Singh and colleagues several years back
(Sadelain and others 1990). The authors also describe the
influence of cytokines on rendering the effector T cells re-
fractory to suppression by Treg; the dual role of effector T
cells; the balance between IL-2 and IL-21 (both Idd3 locus-
linked cytokines) in disease susceptibility; and the role of IL-
22 and regenerating (Reg2) genes in the regeneration and
maintenance of pancreatic b-islet cells.
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Thyroiditis

Ganesh and colleagues (2011; p. 721) describe in their ar-
ticle the role of cytokines in autoimmune thyroiditis, which is
the most common organ-specific autoimmune disease. The
disease manifests as Hashimoto’s thyroiditis (HT), which is a
condition associated with hypothyroidism, or Graves’ dis-
ease (GD), which is characterized by hyperthyroidism. The
authors have discussed the relative contribution of Th1, Th2,
and Th17 responses to the disease process in HT and GD,
both in experimental models and in patients. The most in-
triguing aspect of the work presented here relates to the role
of granulocyte macrophage colony-stimulating factor (GM-
CSF) in expanding CD8a-dendritic cells (DCs) (which express
high levels of TGF-b and very low levels of proinflammatory
cytokines) and in maintaining DCs in a semi-mature pheno-
type, leading in turn to the differentiation and expansion of
IL-10-producing Treg. These Treg are effective in preventing
and suppressing experimental autoimmune thyroiditis
(EAT). Further, IL-10 can suppress EAT by inhibiting costi-
mulatory pathways, by facilitating activation-induced cell
death of thyroid-infiltrating cells, and by preventing the ap-
optosis of thyrocytes. Contrary to the effect of GM-CSF, the
treatment of antigen-challenged mice with fms-like tyrosine
kinase receptor-3 ligand leads to disease aggravation in part
owing to the enhanced Th1 response. Also discussed in their
article are the contradictory effects (eg, regulatory versus
proinflammatory response) of various cytokines, including
IL-1b, IL-2, IL-7, and TNF-a; the therapeutic role of anti-TNF-
a in EAT; and the initiation of a clinical trial based on GM-
CSF.

Uveitis

Horai and Caspi (2011; p. 733) offer a critical evaluation of
the role of cytokines in uveitis, which is among the leading
causes of blindness in the developed nations. Uveitis in-
cludes retinopathy, retinitis (retinal vasculitis), and uveor-
etinitis. Autoimmune inflammation is believed to be a vital
component of the disease process in uveitis. A new model of
uveitis based on disease induction by antigen-pulsed den-
dritic cells was developed by Caspi and colleagues a few
years back. The authors have elaborated several of the
above-mentioned general features of cytokine action and
effector T cell subsets in the context of autoimmune uve-
itis. The important question regarding Th1- versus Th17-
dependence of the disease process has been addressed using
different models of uveitis. Similarly, the involvement of
other proinflammatory cytokines (eg, IL-1, TNF-a, IL-6, and
IL-18) in the induction of uveitis has been analyzed critically.
The protective role of early IFN-g/IL-12 response in EAU
has been emphasized, along with the dual role of Th2 re-
sponse and other cytokines (eg, IFN-g, IL-17, IL-22, IL-27,
and TGF-b) in this disease. Also discussed is the protective
effect of IL-35 in uveitis. Finally, the authors have outlined
various cytokine-based and other modes of immunotherapy
for uveitis.

Arthritis

Volin and Koch (2011; p. 745) have provided an in-depth
view into the role of IL-18 in the pathogenesis of autoim-
mune arthritis. IL-18 is a member of the IL-1 superfamily. It

plays an important role in the pathogenesis of arthritis by
influencing multiple effector pathways, including joint in-
flammation, leukocyte recruitment, angiogenesis, and carti-
lage damage. In mediating these pathogenic processes, IL-18
shows synergistic interaction with IL-12 and IL-15. The
authors provide a comprehensive description of the above-
mentioned activities of IL-18 in RA and in animal models of
this disease along with that of various factors (eg, enzymatic
cleavage, soluble IL-18 receptor, and IL-18 binding protein)
that regulate IL-18 activity. Also discussed are the positive
feedback loop between IL-18 and TNF-a, the negative reg-
ulation of IL-18 via IFN-g and IL-18 binding protein, and the
influence of IL-18 on innate immune responses. In addition,
some of the conflicting observations regarding IL-18 that are
not yet fully resolved have also been brought to attention.
Further, various therapeutic approaches based on IL-18 are
described.

Encephalomyelitis

Sosa and Forsthuber (2011; p. 753) have shared their
viewpoint about the role of antigen presentation and anti-
gen-induced cytokines in the pathogenesis of autoimmunity
involving the central nervous system (CNS). The authors
have outlined some provocative proposals regarding the
pathogenesis of experimental autoimmune encephalomyeli-
tis (EAE), the animal model of human MS. Contrary to the
generally perceived notion that autoimmune response in
EAE/MS is initiated in the periphery and then the activated
T cells migrate into the CNS, the authors argue that it is
critical to seek additional evidence for the initiation of au-
toimmunity in the CNS itself. Further, there are several un-
resolved critical issues pertaining to the pathogenesis of
EAE/MS that need definitive answers. Included among
these are (1) potential antigen-presenting cells (APCs) within
the CNS that acquire neuroantigens and present them to the
T cells; (2) potential sites of T cell-APC encounters, neu-
roantigen presentation, and release of cytokines and other
mediators of inflammation; (3) the contribution of CNS-
resident cells to immune-mediated demyelination; and (4)
potential conditions of neuroantigen release and their pre-
sentation to the T cells. Also discussed is the role of Th1
versus Th17 cells in the disease process, and the pathogenic
versus protective attributes of neuroantigen-reactive T cells
and related immune events.

Lupus

Defects in expression of certain cytokines, including IL-2,
IL-17, type I IFN-a, IL-2 family cytokines (IL-15 and IL-21),
IL-12, and others, and activation of the signaling pathways
by these cytokines are thought to contribute to SLE path-
ogenesis. Therefore, an improved understanding of the
pathways that contribute to defects in expression of these
cytokines is likely to pave the way to identify approaches to
treat SLE. In this regard, Apostolidis and others (2011;
p. 769) discuss the abnormalities that are associated with
the production of cytokines in SLE patients. Additionally,
the authors discuss the molecular mechanisms that con-
tribute to the aberrant production of cytokines and activa-
tion of the pathogenic signaling pathways. Importantly, the
authors suggest that our understanding of the defects in
the regulation of cytokines is likely to provide windows of
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opportunity to modify cytokine networks to modulate the
disease progression in lupus patients. An understanding of
the underlying molecular mechanisms and the defective
cytokine signaling in lupus disease will allow us to identify
novel biomarkers to categorize SLE patients according to
their prognosis and their differences in response to certain
treatments.

Increased serum levels of a number of cytokines are as-
sociated with the development and progression of systemic
autoimmune diseases in patients. Of particular interest in
SLE are the cytokines that are associated with the innate and
adaptive immune responses. Cytokines, which are associated
with innate immune responses include IFN-a, TNF, IL-1, IL-
6, IL-10, and BAFF and a proliferation-inducing ligand. Cy-
tokines that are associated with adaptive responses include
IFN-g, IL-17, IL-21, and Th2 cytokines. Davis and others
(2011; p. 781) elegantly review roles of these innate and
adaptive response-associated cytokines in SLE disease and
propose that an improved understanding of the regulation of
expression of these cytokines and their receptors could serve
as the basis to identify better approaches to treat SLE. These
authors also note an urgent need for better measurements of
SLE disease activity and higher-quality biomarkers. The
identification of novel biomarkers along with new genetic
information that is being employed to group SLE patients for
treatment regimens could improve the outcomes of clinical
trials for the treatment of this disease.
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