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Autoimmune thyroid diseases (AITD) are one of the most common organ-specific autoimmune disorders, of
which Hashimoto’s thyroiditis (HT) and Graves’ disease (GD) are 2 of the most common clinical expressions. HT
is characterized by hypothyroidism that results from the destruction of the thyroid by thyroglobulin-specific
T cell-mediated autoimmune response. In contrast, GD is characterized by hyperthyroidism due to excessive
production of thyroid hormone induced by thyrotropin receptor-specific stimulatory autoantibodies. Cytokines
play a crucial role in modulating immune responses that affect the balance between maintenance of self-
tolerance and initiation of autoimmunity. However, the role of cytokines is often confusing and is neither
independent nor exclusive of other immune mediators. A regulatory cytokine may either favor induction of
tolerance against thyroid autoimmune disease or favor activation and/or exacerbation of autoimmune re-
sponses. These apparently contradictory functions of a given cytokine are primarily influenced by the nature of
co-signaling delivered by other cytokines. Consequently, a thorough understanding of the role of a particular
cytokine in the context of a specific immune response is essential for the development of appropriate strategies to
modulate cytokine responses to maintain or restore health. This review provides a summary of recent research
pertaining to the role of cytokines in the pathogenesis of AITD with a particular emphasis on the therapeutic
applications of cytokine modulation.

Introduction

Autoimmune diseases are a group of heterogeneous
disorders characterized by abnormal lymphocytic acti-

vation directed against self-tissue (Davidson and Diamond
2001; Marrack and others 2001). These diseases occur
essentially due to a breakdown in immunological self-
tolerance. According to the clonal selection theory (Burnet
1959), self-reactive lymphocytes are deleted at the early de-
velopmental stage by negative selection and constitute what
is called ‘‘central tolerance.’’ However, it is believed that
weakly reactive clones sometimes escape clonal deletion and
migrate to the periphery. Physiologically, these potentially
self-reactive clones remain either nonresponsive to antigenic
stimulation (ignorance) or are rendered anergic (Nossal
1996). In some instances, they undergo activation-induced
cell death upon exposure to self-antigen (Green and others
2003). Collectively, these mechanisms of self-tolerance are
referred to as cell-intrinsic mechanisms of ‘‘peripheral toler-
ance’’ (Schwartz 2005). In recent years, another mechanism of
peripheral self-tolerance has been described involving fork-
head box P3 (Foxp3) expressing regulatory T cells (Tregs)
that actively and dominantly suppress self-reactive T-cells

(Sakaguchi and others 2007). This constitutes a cell-extrinsic
mechanism of self-tolerance (Schwartz 2005).

Autoimmune disease can thus occur when both central
and peripheral tolerance mechanisms fail, leading to a
pathogenic immune response against a self-antigen. In gen-
eral, autoimmune diseases can be characterized as T-cell
mediated or autoantibody mediated based on the primary
effector mechanism and cell type involved in the pathogen-
esis of the disease. T cell-mediated diseases are characterized
by infiltration of T cells into and destruction of the target
tissue as seen in Hashimoto’s thyroiditis (HT), type 1 dia-
betes (T1D) and multiple sclerosis (Crane and Forrester
2005). Autoantibody-mediated diseases are characterized
by disruption of function as in Graves’ disease (GD) or de-
struction of the target tissue as seen in myasthenia gravis,
pemphigus vulgaris, systemic lupus erythematosus, rheu-
matoid arthritis (RA), etc. (Yanaba and others 2008).

Autoimmune thyroid diseases (AITD) are the most common
organ-specific autoimmune disorders affecting approximately
5% (Caturegli and others 2007) of the overall population. HT
and GD are 2 of the most common clinical expressions of thy-
roid dysfunction but differ in their clinical presentations as well
as pathophysiology. HT is a T cell-mediated organ-specific
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autoimmune disease that results in clinical hypothyroidism
due to thyroid destruction and is mediated by infiltrating and/
or locally activated thyroglobulin (Tg)-specific T cells. In con-
trast, GD is characterized by hyperthyroidism due to excessive
production of thyroid hormone induced by specific auto-
antibodies to thyrotropin receptor (TSHR). There is consider-
able evidence implicating that the actual destruction of thyroid
cells in AITD may be caused by different and multiple mech-
anisms, including auto reactive T-lymphocytes, natural killer
(NK) cells, and cytokines. Several studies in animal models
have concluded that organ-specific autoimmune thyroiditis
(AIT) should be regarded as a polygenic disease that is strongly
influenced by environmental factors (Prabhakar and others
2003; Tomer and others 2003; Klecha and others 2008). Al-
though individuals may be genetically predisposed to AIT, the
disruption of immune system homeostasis by environmental
factors results in thyroid dysfunction. The most significant
factor that is likely to be involved in the induction of autoim-
munity is a defect or deficiency in the immune regulation,
particularly a perturbation in the balance between the effector
T cells (Teff) and Tregs that prevent the development of
autoimmunity.

A murine model of HT called experimental autoimmune
thyroiditis (EAT) exhibits key features of HT, including
mononuclear cell infiltration that destroy thyroid follicles,
presence of autoantibodies, and autoreactive T-cells to thy-
roid autoantigens (Kong and others 2009). Although this
disease is induced by immunization of experimental animals
with mouse thyroglobulin (mTg) emulsified in complete
Freund’s adjuvant (Vasu and others 2003), it can also be
induced with mTg in conjunction with bacterial lipopoly-
sacchharide (LPS) or interleukin (IL)-1b as adjuvant (Esqui-
vel and others 1977; Nabozny and Kong 1992). Antigen
presentation in the thyroid draining lymph nodes lead to
the differentiation of Tg-specific T-cell subsets that migrate
to the thyroid and cause tissue destruction (Fig. 1). This
vigorously explored murine model has given us many

insights into the molecular mechanisms underlying HT and
also enabled us to identify potential therapeutic treatments.
For instance, using this model, it was shown that lympho-
cytic infiltration of the thyroid depends upon the chemokine
CCL21 and its receptor CCR7 (Martin and others 2004;
Lira and others 2005). On the other hand, our laboratory has
used this murine model to show that the cytokine granulo-
cyte-macrophage colony-stimulating factor (GM-CSF) can
suppress EAT by mobilizing Tregs that secrete IL-10, an
immunosuppressive cytokine.

Immunological Events in AITD

In order to understand the role of cytokines in the initia-
tion or suppression of AITD, it is critical to understand the
immunological events that trigger the autoimmune response,
which eventually results in the associated pathology.

In HT, cell-mediated immunity promotes the induction of
auto-antibodies and self-reactive T cells against Tg, and other
auto-antigens, including thyroid peroxidase. HT is charac-
terized by infiltration of lymphocytes and other immune
cells, thyroid enlargement and fibrosis, and progressive
destruction of thyrocytes that eventually results in hypo-
thyroidism (Weetman 2003). Upon initiation of the immune
response to Tg, thyroid-specific T lymphocytes migrate to the
thyroid and through interferon (IFN)-g production induce
thyrocyte expression of major histocompatibility complex
(MHC) class-II molecules. This results in further expansion of
autoreactive T cells and the inflammatory response leading
to the accumulation of activated CD4 + and CD8 + T cells, B
cells, plasma cells, and macrophages in the thyroid.

Induction of autoimmune responses is believed to be
initiated by an environmental trigger (Weetman 2003) such as
LPS and cholera toxin. These microbial products can induce
antigen presenting cells (APCs) such as dendritic cells (DC) to
produce inflammatory cytokines and activate various other
cells of the innate immune system by increasing the levels of

FIG. 1. The role of cytokines
in EAT. EAT in mice is in-
duced by immunization with
mTg emulsified in the pres-
ence of Complete Freund’s
adjuvant. The antigen is taken
up by the antigen presenting
cells such as DCs, which un-
dergo maturation to become
potent antigen presenting
cells. These cells present mTg-
derived peptides to T cells in
the draining lymph nodes.
The activated DCs secrete
pro-inflammatory cytokines
that initiate a T helper re-
sponse. Based on the type of
cytokines secreted by these
DCs, a Th1, Th2, or a Th17
response can be initiated. The
Th1 cells predominantly se-
crete IFN-g and IL-12,
whereas the Th2 cells secrete
IL-4, and Th17 cells secrete IL-
17. The Th1 and Th17 cells have been shown to infiltrate the thyroid resulting in inflammation and ultimately death of the
thyrocytes in EAT. EAT, experimental autoimmune thyroiditis; CFA, complete Freund’s adjuvant; DCs, dendritic cells; mTg,
mouse thyroglobulin; IFN, interferon; IL, interleukin.
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expression of co-stimulatory and/or MHC molecules. These
cytokines can also up-regulate expression of MHC mole-
cules on the target cells. Highly activated APCs present self-
antigens and activate self-reactive naı̈ve T cells and initiate an
autoimmune response that can be sustained by antigen pre-
sentation by the target cells.

In GD, loss of tolerance to TSHR results in the production
of autoantibodies against TSHR and upon affinity matura-
tion some of these antibodies bind to particular regions of the
TSHR with high affinity and act as TSH agonists, and cause
hyperthyroidism. Although patients with GD may show
lymphocytic infiltration and some damage to the thyroid, the
disease is primarily caused by the stimulatory antibodies.
Since immunoglobulin class switching and affinity matura-
tion would require TSHR-specific T cell help, modulating
TSHR-specific T cell function might also be beneficial in GD.

CD4 + T cells are the major type of infiltrating cells in
AITD. However, CD4 + T cells comprise of a functionally
heterogeneous population of Teff responsible for both de-
velopment of thyroiditis and a smaller population (*10%) of
Tregs expressing CD25 (IL-2Ra) that are critical for main-
taining peripheral tolerance (Sakaguchi and others 2008).
Tregs are identified by their expression of Foxp3, a tran-
scription factor that is necessary and sufficient for Treg de-
velopment (Zheng and Rudensky 2007). Besides, natural
Tregs (nTregs), there is another component of CD4 + Tregs
that do not express Foxp3 but secrete the cytokines IL-10 and
transforming growth factor-b (TGF-b) to induce tolerance.
Cytokines secreted by various components of the immune
system, primarily the DCs, Teff, and Tregs have profound
effects on the function of each other and play a crucial role in
determining the ultimate outcome of an immune response.

Cytokines and T-Cell Subsets

Cytokines are small molecules secreted by cells of the
immune system that serve to regulate various other com-
ponents of the immune system, and they play a crucial role
in health and disease (Brown and others 1989; Kim 2004).
Each cytokine signals by binding either to a unique or a
shared receptor, triggering an intracellular signaling cascade
that can cause up-regulation or down-regulation of tran-
scription factors that regulate the expression of various other
genes. This can result in the production of other biologically
active molecules, including other cytokines, alteration in the
number of surface receptors, or a feedback inhibition loop
that leads to self-regulation.

A model proposed by Mosmann and others (1986, 1989)
suggested that CD4 + T-cells can be phenotypically and
functionally characterized into 2 distinct subsets, Th1 and
Th2, with distinct cytokine secretion profiles. Th1 cells se-
crete IL-2, IFN-g, and tumor necrosis factor-a (TNF-a), and
support the activation of APCs, delayed type hypersensi-
tivity response, and immunoglobulin isotype switching to
immunoglobulin G (IgG)2a in mice (Kroemer and others
1996). Th1 cells play an important role in mounting host
defense against intracellular pathogens as well as in inducing
delayed type hypersensitivity responses. Th2 cells, in con-
trast, are characterized by the secretion of IL-4, IL-5, IL-6, IL-
10, and IL-13, and provide efficient help for B cell activation,
antibody production, and immunoglobulin class switching
to IgG1 and IgE isotypes (Kroemer and others 1996). While
Th1 cells are associated with host defense against intracel-

lular pathogens and T cell-mediated autoimmune diseases,
Th2 cells are essential for clearing extracellular parasites and
helminths. In addition, Th2 cells play a crucial role in
bringing about eosinophilic inflammation and IgE produc-
tion in allergic reactions and asthma (Murphy and Reiner
2002). If a perturbation in the balance between Th1-Th2 im-
mune responses leads to the activation of Th1-cell-mediated
autoimmune response against Tg, it can cause thyrocyte
destruction and result in hypothyroidism as seen in patients
with HT. Conversely, if the perturbation leads to a Th2-
mediated stimulatory antibody response against TSHR, it
can cause hyperthyroidism associated with GD.

In a physiological setting, professional APCs (eg, DCs,
macrophages, and B-cells) recognize microbial components
through certain receptors such as Toll-like receptors. Acti-
vation of these receptors results in the secretion of a specific
set of cytokines that lead to the induction of a particular
T-cell subset. For instance, secretion of IL-12 and IL-18 by
APCs can lead to the induction of a Th1 response. In contrast,
Th2 differentiation is mediated by T-cell-derived cytokines
like IL-4 after interaction with APCs (Yoshimoto and others
1998; Chang and others 2000). Thus, inflammatory APCs can
contribute to autoimmunity by influencing the activation of a
particular subset of T cells. Conversely, suppressor cytokine-
mediated modulation of APCs can be potentially used to
treat autoimmunity.

More recently, cytokines have been grouped further into
Th17 as well as regulatory cytokines released by T cell sub-
sets like type-1 Tregs (Tr1) cells, Th3 cells, and Tregs. The
Th17 Teff population produces pro-inflammatory cytokines
IL-17A and IL-17F (Langrish and others 2005) and play an
important role in mediating host defenses against bacteria
like Citrobacter and Klebsiella pneumoniae, and fungi such as
Candida albicans, and their inflammatory properties can ini-
tiate autoimmunity. Th17 cells share a reciprocal develop-
mental pathway with Foxp3 + Treg cells. The regulatory
cytokine TGF-b plays a critical role in the differentiation of
both pathogenic Th17 cells and induced Tregs upon T cell
receptor (TCR) activation. TGF-b along with the cytokine IL-
6 activates Smad3 and STAT3, which induce activation of
ROR-gt required for Th17 cell differentiation. In contrast,
TGF-b alone induces Smad3, a transcription factor, which
induces Foxp3 expression in the presence of retinoic acid
(Ziegler and Buckner 2009).

Th17 responses can contribute to immunopathogenesis of
AITD, whereas regulatory cytokines such as IL-10 and TGF-b
have been shown to prevent AITD. Although several factors,
including genetic, hormonal, environmental, and nutritional
factors, have been implicated in the initiation and/or de-
velopment of AIT, the changes associated with the patho-
physiology of AITD are brought about by inflammatory
cytokines. In contrast, regulatory cytokines can prevent the
development of autoimmune diseases. Interestingly, recent
studies in humans with AITD, as well as in established
murine models of AITD, have shown that the role and
function of various cytokines are neither independent nor
exclusive. Furthermore, cytokines in many cases are pleio-
tropic, and can often have both immunostimulatory and
immunosuppressive functions depending upon the specific
context in which the immune response is taking place. For
example, cytokines such as IL-2, IFN-g, and TNF-a have been
shown to both enhance and suppress autoimmune diseases
(O’Shea and others 2002).
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Th1 Cytokines in AITD

Th1 cells are generated from naive T helper cells by TCR
engagement and STAT1 signaling initiated upon IFN-g
binding to its cognate receptor (IFN-gR). Phosphorylated
STAT1 induces the expression of the transcription factor T-
bet, which drives the differentiation of Th cells into Th1 cells
by transactivating IFN-g and the specific subunit of IL-
12Rb2, the receptor for IL-12. Upon expression of IL-12Rb2,
the cell becomes responsive to IL-12, which may be produced
by activated DCs, macrophages, or other immune cells.
Subsequent IL-12 signaling through STAT4 further stabilizes
the Th1 phenotype (Yang and others 1999).

Analysis of cytokine expression has shown that Th1 cy-
tokines are commonly prevalent in HT as well as in EAT
(Drugarin and others 2000) and that the proportion of pe-
ripheral Th1 cells was higher in patients with severe HD than
in patients with mild HD (Nanba and others 2009). APCs
such as macrophages and DCs form the link between innate
and acquired immune responses and produce considerable
amounts of pro-inflammatory cytokines; TNF-a and IL-1b
play important roles in initiating an adaptive immune re-
sponse. DCs produce large amounts of IL-12, an important
cytokine involved in inducing Th1 type of adaptive immune
response (Moser and Murphy 2000). Increased expression of
IL-12 by APCs, in vitro as well as in vivo, has been linked to
EAT and T1D susceptibility and other autoimmune condi-
tions (Trembleau and others 1995; Zipris and others 1996;
Braley-Mullen and others 1998; Mannon and others 2004;
Gangi and others 2005; Cheatem and others 2009; Ganesh
and others 2009). More recent studies have implicated IL-12
in overcoming immune tolerance by suppressing Foxp3 +
Tregs. In a recent study, Brahmachari and Pahan (2009) have
shown that the p40 subunit of IL-12 can down-regulate
Foxp3 expression via the production of nitric oxide. Our
observation that IL-12 abrogates Foxp3 expression in T cells
during activation further confirms the pro-inflammatory and
the potential pathogenic effects of this cytokine in autoim-
munity (Ganesh and others 2009).

IL-1b, on the other hand, has pleiotropic effects and can alter
cell signaling, migration, and cytokine production, and influ-
ence T cell differentiation differently under different conditions
( Johnson and others 2005; Dinarello 2009; Sutton and others
2009). Like IL-12, IL-1b has been shown to break peripheral
tolerance by facilitating the expansion of Teff, and is impli-
cated in autoimmune diseases such as RA (O’Sullivan and
others 2006). Lately, IL-1b has been shown to be critical for the
generation of IL-17-secreting T helper cells in humans. IL-23
when combined with IL-1b can induce and maintain patho-
genic Th17 cells (Chung and others 2009; Lee and others 2010).

It is, however, interesting to note that the role of pro-
inflammatory cytokines is not limited to the induction of
AITD. In our recent studies we have observed that while
IL-1b in the presence of IL-12 drives a pro-inflammatory
response, IL-1b alone in the absence of IL-12 is capable of
inducing Foxp3 + Tregs in vitro. These Tregs when adop-
tively transferred into mice immunized with mTg can pre-
vent the development of EAT with greater efficiency than
Tregs that were not treated with IL-1b (in press at PLOS1).
These contradictory effects of IL-1b both in the induction of
Tregs and in the activation of autoreactive T cells have been
observed with other pro-inflammatory cytokines as well.
Although pro-inflammatory cytokines like IL-6 and TNF-a

have been generally associated with the induction of in-
flammation and autoimmunity, they may provide positive
signals for the induction of Tregs (Verginis and others 2005;
Nakagawa and others 2010). IL-2 is required for the devel-
opment and maintenance of Tregs (Fontenot and others 2005;
Burchill and others 2007) and provides long-term protection
against autoimmune disease. We have seen that induction of
IL-2 in the CD25 - population and TGF-b in the Foxp3 +
Tregs by IL-1b is required for the expansion/maintenance of
Foxp3-expressing Tregs in vitro. However, this view is in
contrast to an earlier finding which showed that IL-2 is re-
quired for the development of autoimmune response, al-
though some aspects of autoimmune response are not
regulated by IL-2 (Sharma and others 2009).

Other studies have implicated hepatitis C virus (HCV)
infection and IFN-a therapy in the development of AITD.
Chronic HCV infection has been shown to be associated with
increased incidence of clinical and subclinical AIT (ie, the
presence of thyroid antibodies in euthyroid subjects). More-
over, IFN-a therapy of chronic HCV infection is associated
with subclinical or clinical thyroiditis in up to 40% of cases—
in some cases, necessitating discontinuation of therapy.
However, the mechanisms causing these conditions are still
poorly understood (Tomer 2010).

IFN-g is the archetype Th1 cytokine produced by CD4 +
Th1 cells, CD8 + T cells, and NK cells. IFN-g alone or in
combination with other inflammatory cytokines induces
MHC class I and II on APCs and other cells, and up-regulates
the expression of adhesion molecules as well as certain
chemokines and chemokine receptors to recruit T cells to the
site of inflammation. It also activates macrophages and
promotes IgG2A antibody production (Boehm and others
1997). A combination of IFN-a, produced by the thyroid, and
increased levels of IFN-g produced by the thyroid infiltrating
lymphocytes have been shown to facilitate apoptosis of
thyroid follicular cells through caspase activation (Wang and
others 2002). Neutralizing antibodies to IFN-g could prevent
the disease and decrease Tg-specific T cell responses, sug-
gesting that this cytokine plays a significant role (Tang and
others 1993). However, the role of IFN-g is controversial and
studies from other groups show that IFN-g may not be es-
sential for the induction of AITD. Systemic administration of
IFN-g has been shown to suppress EAT (Vladutiu and
Sulkowski 1980), and mice deficient in IFN-g (IFN-g - / - )
(Tang and others 1998) or the receptor for IFN-g (IFNgR - / - )
(Alimi and others 1998) are susceptible to EAT.

Although GD is considered a Th2-type disease, a role for
both IFN-g and IL-4 in some murine models of experimental
autoimmune Graves’ disease (EAGD) has been proposed.
Knockout of IFN-g generally does not prevent development
of EAGD (Nagayama and others 2003, 2004), whereas
knockout of IL-4 inhibits disease development (Nagayama
and others 2004). In another study, IFN-g was shown to play
an important role in EAGD induced by immunization with
TSHR antigen (Pichurin and others 2001). Differences in
animal models, modes of immunization, and interaction
with other cytokines may thus alter the final outcome of
cytokines in both HT and GD.

Th2 Cytokines in AITD

Naive T cells differentiate into Th2 cells by activation of
the STAT-6 signaling pathway. Engagement of T cells via
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TCR and IL-4 receptor leads to the phosphorylation of
STAT6, which is critical for the induction of the Th2 tran-
scription factor GATA3. GATA3 transactivates Th2-specific
cytokines such as IL-4, IL-5, and IL-13, and down-regulates
STAT4 and IL-12Rb2, which are essential to generate a Th1
response (Zheng and Flavell 1997). Another transcription
factor, c-maf, also contributes to Th2 differentiation by
transactivating IL-4 transcription (Ho and others 1996).

GD in humans has long been thought to be a Th2-
dominant autoimmune disease where TSHR autoantibodies
play a crucial role in the pathogenesis of disease. Most of the
information available on the effects of cytokines in GD is
from animal models of EAGD. Our extensive studies on
EAGD revealed that adjuvant composition as well as the
glycosylation of the antigen could influence the titer, sub-
class, and fine specificity of antibodies to TSHR (Patibandla
and others 1996, 1999; Seetharamaiah and others 1996). In
our studies we determined whether skewing the immune
response in favor of a Th1 or a Th2 type of response could
influence the pathogenesis of EAGD. This was accomplished
by treating mice with either Flt3L or GM-CSF, respectively.
Although we were able to skew the response to TSHR to-
ward Th1 or Th2 type, we were unable to alter the disease
outcome. This was most likely due to the inability of Flt3L
and GM-CSF to sustain Th1 and Th2 responses, respectively,
for a longer duration required for the disease induction.
Therefore, we tested to see if total absence of either IL-4 or
IFN-g could affect the development of EAGD. We immu-
nized wild-type, IFN-g( - / - ) and IL-4( - / - ) BALB/c mice
with TSHR. Nearly 100% of the wild-type and IFN-g( - / - )
mice developed EAGD with optimal TSHR-specific immune
responses, whereas IL-4( - / - ) mice completely resisted
disease development and showed delayed and suboptimal
pathogenic antibody response. These data demonstrated that
skewing immune responses to TSHR, using either Flt3-L or
GM-CSF in favor of Th1 or Th2, respectively, may not be
sufficient to alter the course of the disease, whereas the total
absence of IL-4, but not IFN-g, can prevent the development
of EAGD (Dogan and others 2003). Thus, the induction of
hyperthyroidism can be modified by manipulating immune
responses toward Th1 or Th2 using different adjuvants, cy-
tokines, or appropriate knockout mice (McLachlan and
others 2005).

Th17 Cytokines in AITD

Th17 cells are differentiated by a combination of the
cytokines TGF-b and IL-6 (Bettelli and others 2006; Mangan
and others 2006; Veldhoen and others 2006). IL-6 signals
via the STAT3 pathway (Yang and others 2007), but Th17
cells can also be induced by TGF-b in the presence of IL-21
(Korn and others 2007). TGF-b and IL-6 induce transcrip-
tion factor RORgt, which may transactivate many compo-
nents essential for differentiation of Th17 cells, including
IL-17A, IL-17F, and IL-23R (Zhou and Littman 2009). Besides
RORgt, the transcription factor ROR a is also involved in Th17
differentiation.

Several new studies have implicated Th17 cells both in HT
and in GD in humans and in animal models. Iodine-induced
AIT in nonobese diabetic-H2(h4) mice, a spontaneous mouse
model of HT, revealed increased numbers of Th1 and Th17
cells in the spleens and thyroid glands of iodine-fed wild-type
mice. Furthermore, the incidence and severity of in-

trathyroidal lymphocyte infiltration was markedly reduced in
iodine-treated IL-17( - / - ) mice, indicating that both Th1 and
Th17 cells are critical for the pathogenesis of spontaneous AIT
(Horie and others 2009). Enhanced levels of T cells synthe-
sizing IL-17 and IL-22 in the peripheral blood of AITD pa-
tients, expression of IL-17 and IL-22, and an enhanced number
of IL-23R + cells were detected in thyroid glands from HT
patients compared with GD patients or controls (Figueroa-
Vega and others 2010). These studies demonstrated an in-
creased differentiation of Th17 lymphocytes and enhanced
synthesis of Th17 cytokines in AITD, mainly in HT. The dis-
covery of Th17 cells and the recent findings have challenged
the notion that HT is solely a Th1-mediated disease. In fact,
the expression levels of Th1 cell-related T-bet and IFN-g
mRNA in peripheral blood mononuclear cells (PBMC) from
HT were significantly decreased, whereas RORgt and IL-17
were increased, in patients with HT. In addition, the expres-
sion of transcription factors T-bet and RORgt mRNA corre-
lated negatively, suggesting that Th17 cells rather than Th1
might be involved in the pathogenesis of HT (Shi and others
2010). In a very recent finding, the Th17 cells were also shown
to induce GD in NOD-H2(h4), but not in BALB/c mice, thus
showing that the effect of IL-17 may also differ with the ge-
netic background (Horie and others 2011).

Regulatory Cytokines in AITD

TGF-b and IL-10 are the most important cytokines that
have been implicated in the induction/maintenance of tol-
erance and prevention of autoimmunity. Tregs play critical
roles in the induction of peripheral tolerance to self- and
foreign antigens. Naturally occurring CD4 + CD25 + Tregs
express Foxp3 and generally mediate suppression by
contact-dependent mechanisms (Bhattacharya and others
2011). TGF-b facilitates induction of Foxp3-expressing
CD4 + CD25 + Tregs and can therefore indirectly influence
T cell activation. TGF-b is also a potent regulator of Teff
differentiation, and it generally inhibits the acquisition of Th
cell functions (Gorelik and others 2002). TGF-b blocks Th1
cell differentiation by reducing IL-12 receptor b2 (IL-12Rb2)
and T-bet expression (Gorham and others 1998; Gorelik and
others 2002), and Th2 cells by inhibiting the expression of
GATA-3 (Gorelik and others 2000; Heath and others 2000). In
AITD, reduced TGF-b levels have been associated with HT
(Akinci and others 2008; Vural and others 2009), whereas
increased levels of TGF-b secretion by Tregs have been found
to suppress EAT (Wang and others 2009). In a recent study,
Transgenic NOD.H-2h4 mice expressing TGF-b under the
control of the Tg promoter were generated and found to
have higher frequencies of Foxp3 + Tregs compared with
nontransgenic WT mice (Yu and others 2010) and the
development of spontaneous AITD was inhibited.

Additional important mechanisms enforce immunological
self-tolerance in the periphery. IL-10 is a regulatory cytokine
that plays a central role in controlling inflammatory pro-
cesses, and IL-10-secreting T cells may constitute additional
mechanisms that are responsible for peripheral tolerance. Tr1
are induced upon antigen exposure and exhibit significant
regulatory activities. Similarly, Th3 cells secrete both IL-10
and TGF-b and play a role in the induction of peripheral
tolerance. IL-10 downregulates the expression of MHC class
II and co-stimulatory molecules such as CD54, CD80, and
CD86 (de Waal Malefyt and others 1991; Ding and others
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1993; Moore and others 2001). Reduced expression of these
molecules would therefore significantly affect the T cell-
stimulating capacity of APCs (de Waal Malefyt and others
1991; Fiorentino and others 1991; Ding and Shevach 1992).
Several studies have shown that IL-10 can protect against the
development of HT and GD. In preliminary studies, injection
of mTg-activated spleen cells cultured in the presence of
recombinant IL-10, and not in its absence, into irradiated
CBA/J mice induced a significant decrease in lymphocytic
infiltrations in the recipient thyroid glands, but failed to re-
duce anti-mTg autoantibody production in vivo (Mignon-
Godefroy and others 1995a). However, another study has
shown that the effect of IL-10 is more likely on B-cell pro-
liferation and antibody production and not on the pro-
inflammatory cytokines (de la Vega and others 1998).

In our studies, treatment of mTg-primed mice with GM-
CSF suppressed EAT and resulted in considerable expansion
of Tregs and significantly higher levels of IL-10 compared
with mTg-primed, untreated control mice. Administration
of anti-IL-10R Ab into GM-CSF-treated mice abrogated
GM-CSF-induced suppression of EAT without affecting the
GM-CSF-induced expansion of CD4 + CD25 + T cells. More-
over, our study showed that the IL-10-induced immuno-
suppression was due to its direct effects on mTg-specific Teff
(Gangi and others 2005).

IL-10 is a key regulator of inflammation, and it can inhibit
both Th1- and Th2-type immune responses through the
suppression of pro-inflammatory cytokines and T cell pro-
liferative responses (Groux and Cottrez 2003). One of the
major mechanisms of IL-10-mediated suppression of T cells
is through selective inhibition of the CD28 co-stimulatory
pathway (Zhang and Kong 1998). However, in thyroiditis,
alternative mechanisms of action of IL-10 have been pro-
posed (Mignon-Godefroy and others 1995b; Batteux and
others 1999; Tourneur and others 2002; Zhang and others

2003). Injection of cDNA expression vectors encoding IL-10
into the thyroid can significantly inhibit lymphocyte infil-
tration and development of EAT, and prevent progression of
the disease (Batteux and others 1999). This suppressive effect
of IL-10 is mediated either through enhancement of FasL
expression on thyrocytes and induction of activation-induced
cell death of thyroid-infiltrating T lymphocytes (Tourneur
and others 2002) or through a potent up-regulation of anti-
apoptotic molecules, such as cellular FLIP and Bcl-xL, which
can prevent CD95-induced apoptosis of thyrocytes (Stassi
and others 2000; Stassi and De Maria 2002). Conversely,
direct injection of IL-1 and TNF-a into the thyroids of
mTg-primed mice can induce thyrocyte apoptosis, indi-
cating that pro-inflammatory cytokines may play a critical
role in thyroid destruction (Wang and others 2002). These
observations suggest that IL-10 could be mediating its
effects through suppression of pro-inflammatory cytokine
production.

Cytokine Modulation As Potential Therapeutic
Approach in AITD

Pathogenesis of autoimmune diseases is frequently char-
acterized by pro-inflammatory cytokine production such as
TNF-a and IFNs. Consequently, there are 2 major ap-
proaches for treatment of autoimmune diseases. One is to
either block the action of the pro-inflammatory cytokine or
interfere with its production, whereas the other is to use
immunomodulatory cytokines that can restore the Teff/Treg
balance. One of the major breakthroughs that contributed to
the first approach was the development agents that can in-
hibit TNF-a function including monoclonal antibodies and
soluble receptors. This approach has been successfully used in
treating RA and Crohn’s disease (O’Shea and others 2002) and
3 licensed agents, adalimumab, etarnecept, and infliximab, are

FIG. 2. GM-CSF induces tolerogenic DCs and suppresses EAT. Pro-inflammatory cytokines play a crucial role in the
generation of an inflammatory response and the subsequent induction of EAT. Treatment of mice with GM-CSF induces
semi-matured tolerogenic DCs that are characterized by the reduced levels of pro-inflammatory cytokines such as IL-1b and
IL-12. These tolerogenic DCs, instead of activating pathogenic Teff, induce or expand Tregs that produce IL-10 and TGF-b.
These regulatory cytokines counteract the role of the pro-inflammatory cytokines resulting in the suppression/prevention of
EAT. GM-CSF, granulocyte-macrophage colony-stimulating factor; Teff, effector T cells; Tregs, regulatory T cells; TGF-b,
transforming growth factor-b.
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currently in the market for the treatment of immune-mediated
inflammatory diseases (Silva and others 2010). In this context,
the efficacy of an anti-TNF-a monoclonal antibody has been
tested in a mouse model of granulomatous experimental
thyroiditis. Although the disease severity in antibody treated
mice was comparable to that of untreated control mice,
antibody-treated mice showed less fibrosis and were able to
clear thyroid lesions earlier (Chen and others 2007).

Our laboratory has been actively investigating the patho-
genesis of AITD and exploring means to suppress them by
using cytokine modulators of DCs. Studies from our labo-
ratory showed that administration of GM-CSF could pre-
vent, as well as suppress ongoing, EAT (Vasu and others
2003; Gangi and others 2005; Ganesh and others 2009). On
the other hand, treatment with Flt3-L, which enhanced Th1
type of response, exacerbated the disease (Vasu and others
2003). GM-CSF-induced suppression of EAT was associated
with a selective expansion of CD4 + CD25 + Foxp3 + T cells
(Tregs) that suppress mTg-specific responses through in-
creased production of IL-10 (Gangi and others 2005; Ganesh
and others 2009). These observations have been substanti-
ated by others (Morris and others 2003). Similarly, treatment
with GM-CSF reversed experimental autoimmune myasthe-
nia gravis (EAMG) in C57BL/6 mice (Sheng and others 2006,
2008, 2009; Meriggioli and others 2008) and prevented the
development of T1D in NOD mice (Gaudreau and others
2007; Cheatem and others 2009). Subsequent studies
showed that GM-CSF acted primarily on DC precursors
and caused an expansion of CD8a-DCs (Ganesh and others
2009). These DCs expressed very low to negligible levels
of pro-inflammatory cytokines such as TNF-a, IL-1b, and
IL-6, but expressed higher levels of TGF-b. Other studies
using G-CSF saw a similar induction of Tregs that sup-
pressed the development of T1D through the induction of
TGF-b1 (Kared and others 2005). Although the mechanism
by which GM-CSF imparts these tolerogenic phenotype
to CD8a- DCs is not fully understood, we believe that
GM-CSF-treatment of mice maintains DCs in a semi-matured
phenotype, as indicated by high levels of expression of MHC
class II and B7 molecules, but lower levels of expression
of pro-inflammatory cytokines compared with untreated
control mice (Lutz and Schuler 2002). Antigen presentation
by these semi-mature DCs possibly led to the differentia-
tion/expansion of IL-10 producing Treg cells (Gangi and
others 2005) (Fig. 2). In contrast, Flt3L treatment led to an
enhanced production of IL-12 and IFN-g, indicating a pre-
dominantly Th1 response against mTg and thus did not
suppress EAT (Vasu and others 2003). We speculate that
antigen-specific Tregs possibly migrate to the thyroid and
actively and dominantly suppress autoimmune Teff func-
tion, thus leading to disease amelioration.

In our very recent studies, we have found that bone
marrow DCs (BMDCs) derived ex vivo through GM-CSF
treatment could selectively expand nTregs through a contact-
dependent mechanism mediated by OX40L/OX40 interac-
tions (Bhattacharya and others 2011). This mechanism was
independent of TCR involvement but required IL-2.
Additionally, these BMDCs secreted high levels of TGF-b
that were sufficient to convert Foxp3- T cells to Foxp3 + Tregs
(i.e. induced Tregs) upon TCR stimulation. In summary, the
above information collectively suggests that GM-CSF may be
used as a therapeutic agent in AITD. Currently, our labora-
tory is conducting a clinical trial to test the efficacy of

GM-CSF treatment in patients with autoimmune myasthenia
gravis.

Summary

Studies from humans and animal models have revealed
significant new insights into the complex role of cytokines in
the pathogenesis of AITD. Modulating cytokine responses
have yielded highly encouraging results and they hold con-
siderable promise in the treatment of autoimmune diseases.
Pro-inflammatory cytokines such as GM-CSF and IL1b can
contribute to Foxp3 + Treg expansion, whereas a regulatory
suppressor cytokine such as TGF-b can initiate a pathogenic
Th17 T cell response. These observations highlight the par-
adoxical effects of cytokines and their critical roles in main-
taining a delicate balance between health and disease.
Therefore, additional studies to understand the complex in-
terplay between different cytokines and their effects on the
different components of the immune system in the context of
a particular disease are essential.
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