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Progenitor Cell Therapy in a Porcine Acute Myocardial 
Infarction Model Induces Cardiac Hypertrophy, Mediated 

by Paracrine Secretion of Cardiotrophic 
Factors Including TGFβ1

Brendan Doyle,1,2,* Paul Sorajja,1,2,* Brian Hynes,5 Arun H.S. Kumar,5 Phillip A. Araoz,3 
Paul G. Stalboerger,3 Dylan Miller,4 Cynthia Reed,2 Jeffrey Schmeckpeper,2 

Shaohua Wang,2 Chunsheng Liu,2 Andre Terzic,1 David Kruger,3 
Stephen Riederer,3 and Noel M. Caplice1,2,3

Administration of endothelial progenitor cells (EPC) is a promising therapy for post-infarction cardiac repair. 
However, the mechanisms that underlie apparent benefi cial effects on myocardial remodeling are unclear. In a 
porcine model of acute myocardial infarction, we investigated the therapeutic effects of a mixed population of 
culture modifi ed peripheral blood mononuclear cells (termed hereafter porcine EPC). Porcine EPC were isolated 
using methods identical to those previously adopted for harvest of EPC in human cell therapy studies. In addition 
the therapeutic effects of paracrine factors secreted by these cells was evaluated in vitro and in vivo. Intracoronary 
injection of autologous porcine EPC was associated with increased infarct territory mass and improved regional 
ventricular systolic function at 2 months compared to control. Treatment with conditioned media derived from 
autologous EPC was associated with similar improved effects on infarct territory mass and function. Histologic 
analysis of the infarct territory revealed signifi cantly increased cardiomyocyte size in EPC and conditioned 
media treated groups, when compared to controls. A paracrine EPC effect was also verifi ed in a pure myocardial 
preparation in which cardiomyocytes devoid of fi broblast, neuronal and vascular elements directly responded 
by increasing cell mass when exposed to the same conditioned media. Analysis of conditioned media revealed 
elevated levels of TGFβ1 (human 267.3±11.8 pg/ml, porcine 57.1±6.1 pg/ml), a recognized mediator of hypertro-
phic signaling in the heart. Neutralizing antibodies to TGFβ1 attenuated the pro-hypertrophic effect of condi-
tioned media, and use of recombinant TGFβ1 added to fresh media replicated the pro-hypertrophic effects of 
conditioned media in vitro. These data demonstrate the potential of paracrine factors secreted from endothelial 
progenitor cells to induce cardiomyocyte hypertrophy contributing to increased infarct territory LV mass, with 
favorable medium term effects on regional function following myocardial infarction.
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Introduction

In recent years, a number of human clinical trials have 
demonstrated improvement in indices of cardiac function 

following endothelial progenitor cell therapy in the setting 
of acute myocardial infarction [1–4]. The mechanism(s) of 
benefi t of such therapy are likely to be complex. It is pro-
posed that progenitor cells may regenerate myocardial mass 
by differentiating into cardiomyocytes [5,6], may enhance 

regional function by improving myocardial perfusion 
through vasculogenesis in the infarct territory [7–9], pro-
mote myocardial salvage by reducing apoptosis of injured 
cardiomyocytes [7,10] or recruit endogenous cardiac progen-
itor cells [11]. Recent studies have also highlighted a poten-
tial role for paracrine factors released by progenitor cells in 
mediating these benefi cial effects [8,10,12]. To date however, 
no large animal study has examined the paracrine action of 
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myocardial infarction that was continued throughout the 
study. Each animal also received lidocaine (60 mg IV bolus 
and infusion at 1.5 to 3.0 mg/min), unfractionated heparin 
(10,000 units IV) and benzathine penicillin (300,000 IM) at 
procedure initiation. Following anesthesia, mechanical 
ventilation with a Harvard apparatus was maintained on a 
FiO2 of 40%. Under sterile conditions, a carotid arterial cut 
down was performed for placement of a 9 Fr arterial sheath. 
Fifty ml of blood was drawn into EDTA tubes for progeni-
tor cell isolation and culture, as already described. Through 
an 8 Fr coronary artery guide catheter, a slightly oversized 
angioplasty balloon catheter (1.1:1 balloon to lumen ratio) 
was positioned in the middle portion of the left circumfl ex 
coronary artery and infl ated to produce arterial occlusion 
for 90 min. Complete arterial occlusion was verifi ed with 
angiographic contrast every 15 to 30 min. After the proce-
dure the arterial sheath was removed, followed by animal 
recovery and habitation.

In vivo EPC infusion

Forty-eight hours after induction of myocardial infarc-
tion autologous progenitor cells were harvested from cul-
ture. Cells were detached using 0.5 mM EDTA. All cells were 
washed twice in PBS and resuspended in X vivo-10 basal 
medium (BioWhittaker) at a fi nal concentration of 3 × 106 via-
ble cells per ml. Animals were anesthetized, and a marginally 
oversized over-the-wire angioplasty balloon (1.1:1 balloon to 
lumen ratio) was placed at the same angiographic position 
used for induction of infarction and infl ated. Following con-
fi rmation of complete arterial occlusion with angiographic 
contrast, a 3 to 4 ml aliquot of the autologous EPC cell sus-
pension was infused via the balloon catheter (n = 9 animals). 
Control animals received same sized aliquots of 0.9% nor-
mal saline (n = 9 animals). The balloon was left infl ated for 
4 min to prevent backfl ow of cells and to produce stop-fl ow 
beyond the site of infl ation, and then defl ated. This sequence 
of events was repeated two more times in the same manner 
with a 4-minute period between occlusions for a total infu-
sion of 10–12 ml of cell suspension or control solution. For 
animals receiving cell therapy infusions, a total of 3 × 107 
EPC were given to each animal.

In vivo conditioned media infusion

Conditioned media was prepared and isolated from 
porcine EPC cultures. Pigs were anesthetized 48 hours 
after myocardial infarction. A marginally oversized over-
the-wire angioplasty balloon was infl ated at the same 
angiographic location utilized for induction of infarction. 
Following confi rmation of complete arterial occlusion with 
angiographic contrast, a 4ml aliquot of EPC-derived condi-
tioned media was infused via the balloon catheter (n = 9 
animals). Control animals received same sized aliquots of 
0.9% saline instead of the conditioned media. The balloon 
remained infl ated for 4 minutes after which it was defl ated. 
This sequence of balloon infl ation and infusion of therapy 
was repeated two more times for a total infusion of approx-
imately 12ml in each case. Subsequent experiments com-
pared the effect of therapy with CM (n = 4) versus basal 

progenitor cells with a specifi c focus on in vivo remodeling 
following myocardial infarction.

We report here using a porcine model of acute myocar-
dial infarction that therapy with a cell population we have 
termed porcine endothelial progenitor cells (EPC) resulted 
in signi fi cant infarct territory cardiomyocyte hypertrophy, 
an effect mediated by factors secreted by injected progeni-
tor cells. Limited porcine CD antibodies and gene sequences 
(for RNA probes) are available for the analysis of the iden-
tity and degree of heterogeneity of cell populations cultured 
from the pig, but methods for isolating porcine EPC in this 
study were identical to those employed in previous human 
cell therapy trials [2].

Materials and Methods

This study was approved by and performed in accordance 
with guidelines of the Mayo Clinic Institutional Review 
Board and the Mayo Clinic Institutional Animal Care and 
Use Committee.

Derivation of endothelial progenitor cells (EPC)

Yorkshire pigs (25 to 35 kg; total of 35 pigs) were used 
for harvest of EPC, and for the in vivo model of myocardial 
infarction. EPC were also obtained from normal human 
volunteers. From both sources, mononuclear cells were 
harvested from peripheral buffy coat preparations in Ficoll-
Paque Plus (15cc). Cells were then washed three times in 
MCDB 131 supplemented with hydrocortisone, antibiotics, 
and 10 ng/ml VEGF. Cells were subsequently re-suspended 
in X vivo-15 medium (BioWhittaker) supplemented with 
VEGF (1 ng/ml), and seeded on fi bronectin-coated plates at a 
density of 4.9 × 103 cells per mm2 in keeping with pre viously 
described methodology [2].

To identify progenitor cells a series of fl uorescence stains 
and antibody detection approaches were used. Briefl y, adher-
ent cells were incubated at 37°C with DiI-labeled acetylated 
low-density lipoprotein (AcLDL) for 1 hour and Alexa-Fluor 
488 conjugated isolectin IB4 for 30 min (Molecular Probes). 
Fluorescent antibody cell sorting (FACS) was also performed 
to identify cell-surface and intracellular antigens in human 
and porcine endothelial progenitor cells. Primary antibod-
ies to CD31, CD105, von Willebrand Factor, eNOS, Flk-1, and 
VE-cadherin (R&D Systems) were used with secondary anti-
body detection with FITC in each case. Isotype-matched IgG 
antibodies were used as controls, and the fl uorescent inten-
sity of stained cells was gated according to established meth-
ods[13]. Conditioned media from both human and pig EPC 
cultures were obtained after 48 hours of culture of cells in 
basal serum free media, centrifuged at 1000 rpm for 6 min, 
followed by passage through a 0.45 μm fi lter to remove cells 
and debris.

Induction of myocardial infarction

A closed-chest unconscious porcine model of acute myo-
cardial infarction was utilized [14]. All animal received 
prophylactic amiodarone (100 mg daily) and aspirin (325 
mg daily) beginning two weeks prior to induction of 
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territory in each animal, and at least 5000 cardiomyocytes 
were studied per animal in each treatment group. Cell size 
was quantifi ed by measuring cell surface area with laser 
confocal microscopy (LSM 410 Carl Zeiss) and a 60× (1.3 NA) 
objective. Cell number per high power fi eld was assessed by 
counting DAPI stained nuclei per fi eld (at least 100 fi elds per 
animal). Two-dimensional confocal images were acquired 
by scanning 512 × 512 pixels per image and processed with 
Zeiss KS400 3.0 software [17,18].

Analysis of factors contained within 
conditioned medium

Conditioned medium from both pig and human EPC 
cultures was harvested as described above for in vivo CM 
therapy. Three candidate factors with known cardiotrophic 
activity were chosen for further analysis by ELIZA: insulin-
like growth factor 1 [19] (Quantikine, DG100), TGFβ1 [20,21] 
(Quantikine, DB100B), and basic fi broblast growth factor 
[22,23] (Quantikine, DFB50).

In vitro cardiomyocyte size assay

Hearts were removed from 1 to 2-day old rats (Harlan 
Sprague-Dawley, Indianapolis, IN), and cardiomyocytes 
were isolated and cultured as previously described [17]. 
In line with a pure cardiomyocyte preparation these cells 
showed no evidence of neural or vascular cell contamina-
tion. Cardiomyocytes were incubated for 48 hours at 37 °C, 
5% CO2 with the following solutions; conditioned media 
obtained from porcine and human EPC cultures, fresh media 
(X vivo-15 with 1 ng/ml VEGF) containing TGFβ1 added 
to achieve the same concentration as that found in condi-
tioned media (Sigma T5050), and conditioned media con-
taining a  100-fold excess of neutralizing antibody to TGFβ1 
(Sigma T9429). Cardiomyocytes incubated with fresh media 
alone served as negative controls. Positive controls were 
obtained by use of the inductor phenylephrine (100 μM), 
an α-adrenoreceptor agonist in the presence of 10 μM propa-
nolol, a β-adrenoreceptor antagonist [17,18]. Cardiomyocytes 
were fi xed with 3% paraformaldehyde at 48 hours post treat-
ment. Slides were  incubated with α-sarcomeric actin antibody 
(Sigma A2172) and labeled with Alexa fl uor 488 (Molecular 
Probes), followed by washing with PBS + 0.2% Triton. Cell 
size was quantifi ed by measuring cell surface area with laser 
confocal microscopy (LSM 410 Carl Zeiss) and a 60× (1.3 NA) 
objective. Two-dimensional confocal images were acquired 
by scanning 512 × 512 pixels per image and processed with 
Zeiss KS400 3.0 software [17,18].

Data analysis

All data are expressed as mean ± standard error (SE). In 
all cases a minimum of three independent in vitro experi-
ments were performed. Statistical analysis for paired and 
unpaired analyses was performed by Student’s t-test. 
Comparison of mean change in endpoints between multiple 
treatment groups and controls was by ANOVA. Statistical 
signifi cance was set a priori at p < 0.05.

medium (n = 4) following myocardial infarction, using 
identical dosing and delivery strategies to those described 
above.

Magnetic resonance imaging (MRI)

Cardiac imaging with MRI was performed at two time 
points; forty-eight hours after infarction but prior to ther-
apy, and at 8 weeks post-therapy. A 1.5 Tesla MRI system 
(Signa Horizon 9.0, GE Medical Systems) with gradient 
strength of 22mT/m was used, and a phased array surface 
coil was employed for each study. All images were ECG 
gated and acquired during suspended respiration. For 
measurement of ventricular volume and mass, short-axis 
gradient echo cine images prescribed over the entire ven-
tricle were used with the following imaging parameters: 
slice thickness = 7 mm, gap = 0 mm, fi eld of view = 20 
cm, matrix = 256 × 128, fl ip angle = 20 degrees, NEX = 1 
(FASTCARD, GE Medical Systems,). Echo time (TE) was 
selected as minimum allowable (range, 6.7 to 7.8 msec). In 
this pulse sequence, repetition time (TR) ranged from 11.5 
to 12.6 msec. The number of cardiac phases acquired per 
slice was 20. For measurement of infarct size, injection of 0.2 
mmol/kg of a gadolinium-based contrast agent (Magnevist, 
Berlex Laboratories) followed 10 minutes later by an inver-
sion recovery sequence was performed. The imaging plane 
and scan locations were copied from the short-axis cine pre-
scription to facilitate matching of the delayed enhancement 
and cine images. Scanning with multiple inversion times 
was performed with selection of the inversion time that 
produced best  nulling of the myocardial signal. Imaging 
parameters for the delayed enhancement images were slice 
thickness = 7 mm, gap = 0 mm, fi eld of view = 20 cm, 
matrix = 256 × 128, fl ip angle = 20 degrees, NEX = 1. TE 
was selected as minimum allowable (6.8 msec). In this pulse 
sequence, TR was 14.2 for all studies. Two independent 
observers who were blinded to treatment assignment per-
formed measurements from MRI images for assessment of 
ventricular volume, mass, and infarct size using a commer-
cially available workstation (Advantage Windows 4.2, GE 
Medical Systems, Milwaukee, WI) and commercially avail-
able software (Mass Analysis Plus, MEDIS Medical Imaging 
Systems). Regional analysis was performed by division of 
short-axis segments into 17 segments as recommended by 
the American Heart Association[15]. The lateral and inf-
erolateral segments were grouped together as the infarct-
related territory (IRT) of the left ventricle for regional mass 
analysis.

Histologic assessment of cardiomyocyte size

Cardiomyocyte size among pigs in each experimental 
group was evaluated from frozen sections of the infarct-
related territory, using established morphometric method-
ology[16]. Slides were incubated with anti-laminin antibody 
(Sigma L8271) and anti-α sarcomeric actin (Sigma A2172) 
and subsequently labeled with Alexa Fluor 488 (Molecular 
Probes) and goat anti-mouse IgM Rhodamine-conjugated 
antibody (Chemicon AP128R). Cell nuclei were stained with 
DAPI. At least 3 distinct sections from the infarct-related 
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compared to 2 month follow up, but comparison of mean 
change in LV ejection fraction between groups showed 
no signifi cant difference (Table 2). A similar pattern was 
observed for cardiac output and stroke volume; signifi cant 
improvement within each group was observed, but no sig-
nifi cant difference was found when this change was com-
pared between groups (Table 2). There was no signifi cant 
change in end-systolic volume from baseline to 2 months 
post treatment in individual groups. Control and EPC 
treated pigs exhibited signifi cant increase in end-diastolic 
volume (EDV) from baseline to 2 months post treatment 
but CM treated pigs did not (Table 2).

Regional changes in LV mass, infarct size, 
wall motion, and wall thickening

Subsequent analysis of the infarct related territory 
(IRT) revealed signifi cant increase in mass in both the EPC 
and CM treated groups (Figure 2) (p < 0.05). Again, these 
changes were signifi cant when compared by ANOVA to 
control change (Table 2) (p < 0.05). Control pigs exhibited 
signifi cant thinning of the infarct wall from baseline to 2 
months, but such thinning was not observed in EPC and 
CM treated pigs (Figure 2) (p < 0.05 for all changes). Infarct 
size (expressed as a percentage of LV mass) decreased sig-
nifi cantly in both EPC and CM treated pigs (Figure 3). When 
assessed by absolute weight in grams, decrease in infarct 
size was signifi cant only for CM treated pigs (Figure 3)

Results

Endothelial progenitor cell phenotype

Following 48 hours of culture, both porcine and human 
EPC demonstrated uptake of both Ac-LDL and isolectin IB4 
(Figure 1). These cells also expressed typical endothelial 
proteins including von Willebrand Factor, eNOS, Flk-1, and 
VE-cadherin (Figure 1). Autologous porcine EPC were used 
for in vivo experiments, and both human and porcine EPC 
were used in subsequent in vitro studies.

In vivo autologous EPC and conditioned media 
therapy studies

Baseline characteristics of pigs assigned to EPC treat-
ment or control therapy were similar, with no signifi cant 
differences in baseline body weight, infarct size, ejec-
tion fraction, global left ventricular and regional mass, or 
left ventricular chamber size (ANOVA; p > 0.05 for each 
comparison) (Table 1). Following therapy the most strik-
ing change observed was a signifi cant increase in global 
and infarct territory LV mass in EPC and CM treated pigs 
(Figure 2). These changes were signifi cant both within 
individual EPC and CM groups (comparing baseline to 
2 month estimates of LV mass) and when change in LV 
mass was compared by ANOVA across the 3 experimental 
groups (Table 2). Improvement in LV ejection fraction was 
observed within each group when baseline values were 
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Flk-1 Flk-1

vWF

CD31 CD105
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FIG. 1. Immunostaining and fl uorescent-
activated cell sorting (FACS) analysis of 
porcine (left) and human (right) endothelial 
progenitor cells (EPC). A and D, Isolectin 
IB4 staining, B and E, Dil-labeled acetylated 
low density lipoprotein staining; C and F, 
Combined Isolectin IB4 and Dil-labeled acet-
ylated low density lipoprotein immunostain-
ing. FACS analysis shows cell expression of 
Flk-1, vWF, eNOS, CD31 and CD105 antigens 
(open histograms) in porcine and human 
EPC. Filled histograms represent the isotype 
matched control antibody.
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conditioned media treated animals we studied 2 histologic 
indices of hypertrophy at 2 months post-therapy (Figure 4). 
Cardiomyocyte size in the IRT was signifi cantly greater in 
EPC and CM treated pigs versus controls (Figure 4); mean 
cell surface area in control pigs was 1105 μm2, compared 
with 1462 μm2 in EPC and 1383 μm2 in CM treated animals 
(ANOVA; p < 0.01 for each comparison versus control). In 
addition, cardiomyocyte number per high power fi eld was 
64.4 in control pigs compared to 52.1 in EPC and 55.2 in CM 
treated pigs (ANOVA; p < 0.01 for each comparison versus 

(p < 0.05). A small but non-signifi cant improvement in 
infarct wall motion and wall thickening was observed 
in control pigs, but a greater and statistically signifi cant 
improvement was observed among EPC and CM treated 
pigs (Figure 3) (p < 0.05).

Histologic assessment of cardiomyocyte size

To confi rm that cardiomyocyte hypertrophy contri buted 
to the striking changes in IRT cardiac mass in cell and 
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FIG. 2. Changes in myo-
cardial mass before and 
2 months post-therapy. A, 
representative short axis 
MRI images (end-diastole) 
pre- and post-therapy in 
each treatment group. B 
and C, Changes in global 
and infarct related territory 
(IRT) LV mass pre- and post-
therapy in each treatment 
group. D, Changes in infarct 
thickness pre- and post-
therapy in each treatment 
group. Histograms: Gray 
bars indicated pre-therapy 
values, black bars indicate 
post-therapy values. *repre-
sents p < 0.05 for compari-
son of baseline to 2 month 
post-therapy values. EPC 
indicates endothelial pro-
genitor cells and CM condi-
tioned media.

Table 1. Structural and Functional Cardiac Indices at Baseline 
(Post-Infarction and Pretreatment) for All Groups

 Control EPC CM p

Left ventricular mass (g) 74.1±4.2 68.5±4.4 75.3±6.4 ns
Infarct-related territory mass (g) 39.4±2.9 34.0±3.0 38.9±3.5 ns
Ejection fraction (%) 50.3±5.1 49.6±6.4  49.7±4.5 ns
Infarct size (g) 12.5±1.2   6.0±1.9 13.4±3.0 ns
Infarct size (% of LV mass) 16.6±1.7   8.7±2.7  17.6±3.2 ns
End-diastolic volume (ml) 58.6±3.1 55.3±4.3 46.1±4.7 ns
End-systolic volume (ml) 34.4±4.8 29.8±5.7 23.6±3.6 ns
Cardiac output (l/min)  2.6±0.3  2.3±0.2  2.1±0.3 ns
Stroke volume (ml) 28.7±2.3  25.5±2.2 22.5±2.6 ns
Infarct wall thickness (mm)   8.19±0.25  7.87±0.32   8.90±0.22 ns
Infarct wall thickening (mm) 39.9±4.1 41.9±4.2 33.2±3.7 ns
Infarct wall motion (mm)  4.03±0.34   4.52±0.32  3.71±0.25 ns
Pig body mass (kg) 31.2±0.9 31.7±0.9 28.9±1.4 ns

p value denotes comparison of mean baseline values in the control group to mean 

baseline values in the EPC and CM treated groups using ANOVA. ns = not signifi cant.
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IRT was signifi cantly greater in the CM group when com-
pared to the basal medium group (relative increase in cell 
surface area 1.55 ± 0.21, p < 0.001). Of note, PCNA stain-
ing of sections from the infarct border zone did not demon-
strate evidence of signifi cant cardiomyocyte proliferation at 
8 weeks post-therapy in active treatment or control groups 
(data not shown).

Analysis of conditioned media

Conditioned media from both human and porcine 
 progenitor cell culture contained active TGFβ1 in physio-
logically relevant concentrations (human 267.3 pg/ml, pig 
57.1 pg/ml). Insulin-like growth factor 1 (IGF-1) was also 
detected in conditioned media (human 44.3 pg/ml, pig 
33.9 pg/ml). Fibroblast growth factor (FGF) was not detected 
in either human or porcine conditioned medium.

In vitro cardiomyocyte size assay

Cardiomyocytes demonstrated marked increases in 
in vitro cell mass after 48 hours incubation with conditioned 
media derived from EPC cultures (n = 6 separate experi-
ments for each group) (Figure 5). A signifi cant effect on car-
diomyocytes was seen with conditioned medium regardless 
of human or porcine origin (Figure 5). The relative increase 
in cell surface area was comparable for all experimental 
groups with a range in relative increase from 44% to 73% over 
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control). Further in vivo experiments compared the effect of 
therapy with CM versus basal medium following  myocardial 
infarction (n = 4 for both groups). Cardiomyocyte size in the 

Table 2. Comparison of Mean Changes in Global Cardiac Size and Function 
(From Baseline to 2 Months Post Therapy) in all Treatment Groups

Control
Mean ± SE

EPC
Mean ± SE

CM
Mean ± SE p value

LV mass (g) 10.4±5.5   39.5±4.6*   36.4±8.4* <0.05
IRT mass (g)   0.0±4.0    19.6±3.2*    14.3±3.8* <0.05
EF (%)    7.4±2.9*    16.9±6.3*    10.2±4.8* ns
CO (L/min)    1.2±0.3*    2.1±0.3*    0.7±0.3* ns
SV (ml)   28.7±2.3*   25.5±2.2*   22.5±2.6* ns
EDV (ml)   15.1±5.0*   18.2±4.8*    6.4±3.2 ns
ESV (ml)   2.7±3.2 −2.5±5.8 −2.8±3.1 ns

p value denotes ANOVA comparison of each treatment group change to control change. 

*denotes p < 0.05 for students t-test comparison of change from baseline to 2 months post 

therapy within individual groups.

FIG. 3. Changes in infarct-related territory structure and 
function assessed by MRI in each treatment group from 
baseline to 2 months post-therapy. A, Change in infarct size 
expressed as a percentage of LV mass. B, Change in infarct 
size expressed as mass in grams. C, Change in infarct wall 
thickening expressed as percentage change from end-
diastolic wall thickness to end-systolic wall thickness. D, 
Change in infarct wall motion during systole expressed in 
millimeters. Histograms: Gray bars indicate pre-treatment 
values, black bars indicate post-treatment values. *repre-
sents p < 0.05 for comparison of baseline to 2 month values.
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factor (G-CSF), granulocyte-macrophage colony-stimulating 
growth factor (GM-CSF), stromal derived factor 1, and insu-
lin like growth factor 1(IGF-1) [11,29]. Soluble factors released 
by endothelial progenitor cells are known to augment migra-
tion of native endothelial cells and cardiac resident progen-
itor cells in vitro [11]. Moreover, treatment with conditioned 
media derived from mesenchymal cells overexpressing the 
survival gene Akt1 demonstrated reduction in apoptosis of 
adult ventricular cardiomyocytes exposed to hypoxia and 
subsequent infarct size in an rodent acute myocardial infarc-
tion model [10].

The major fi ndings of the current study were: (1) pro-
genitor cell therapy altered post-infarction remodeling by 
increasing infarct territory mass, associated with improved 
regional systolic function (2) therapy with conditioned 
media alone (derived from progenitor cells) altered infarct-
related remodeling in vivo in a similar fashion to cell therapy 
(3) signifi cant increases in cardiomyocyte size in vivo were 
observed in the treated territory in both cell and conditioned 
media treated animals (4) a cardiotrophic effect of progeni-
tor cell-derived conditioned media was confi rmed in vitro, 
an effect that could in part be attributed to TGFβ1 secreted 
from both human and porcine CPC studied.

Our studies suggest that induction of cardiac hyper-
trophy in the infarct border zone may be a heretofore 
unrecognized mechanism contributing to progenitor cell 
therapy-mediated cardiac repair. Post-infarction cardiac 
hypertrophy is initially adaptive and usually develops in 
myocardial regions remote from the acute infarction. In con-
trast, we have observed cardiac hypertrophy occurring not 
only on serial measures of global LV mass but specifi cally 
including the infarct border zone. Importantly, these effects 
occurred as a result of a non-sustained stimulus in the early 
aftermath of acute infarction. Whether this intriguing pat-
tern of postinfarction hypertrophy that includes the infarct 
territory is associated with more favorable long term repair 

control studies (p < 0.05 for all experimental vs. control com-
parisons - Figure 5). The cell mass effect of 1 ml conditioned 
media (1:2 dilution with basal media) from each cell culture 
was comparable to that induced by 10 μM phenylephrine, an 
accepted positive control for induction of in vitro increase in 
cardiomyocyte cell mass. These changes in cardiomyocyte 
size were reproduced using recombinant TGFβ1 added to 
fresh media in similar concentrations to those found in con-
ditioned media (50 and 250 pg/ml). Furthermore, the addi-
tion of 100-fold molar excess concentration of neutralizing 
antibody to conditioned media from both human and por-
cine EPC attenuated the pro-hypertrophic action, which was 
previously observed.

Discussion

Recently, emerging cell therapy strategies have sought to 
reverse post-infarction left ventricular dysfunction by direct 
transplantation of stem or progenitor cells. Enthusiasm for 
this therapeutic approach has been bolstered by a number of 
promising early phase human clinical trials [1–3,24,25], but 
the precise mechanism(s) underlying the apparent benefi cial 
effects have yet to be fully elucidated.

Progenitor cells have been variously hypothesized to 
regenerate myocardium by transdifferentiation and/or by 
coaxing non-cardiac or resident progenitor cells to a cardiac 
muscle fate, thus augmenting recovery of myocardial mass 
and retarding pathologic LV remodelling [5–7,11,26–28]. 
Progenitor cells may also harbor benefi cial paracrine or 
 neurohormonal activity which thus far has been poorly 
characterized. In earlier studies, circulating progenitor cells 
cultured under conditions similar to the present investiga-
tion were shown to secrete various cytokines with potential 
cardiotrophic and neoangiogenic effects, including vascu-
lar endothelial growth factor (VEGF), hepatocyte growth 
factor (HGF), granulocyte colony-stimulating growth 
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to model. Moreover the porcine MNC-derived cells in cul-
ture shared many antigens found in human EPCs such as 
Flk1, eNOS, CD105 as well as positivity for AcLDL and 
Isolectin B4. However, it must also be acknowledged that 
the progenitor cells used in this study were a heteroge-
nous preparation and therefore the specifi c lineage of the 
progenitor cells contributing IGF1 and TGFβ secretion is 
still unclear.

Progenitor cell therapy in this animal model recapitu-
lates the fi ndings of previous human studies demonstrat-
ing preservation of infarct thickness, reduction in infarct 
size and improved regional systolic function following cell 
therapy [3,24,41]. There are also a number of differences 
between this model and human cell therapy that are worthy 
of mention. First, progenitor cell function may be altered or 
impaired in patients receiving cell therapy, particularly the 
elderly and those with multiple risk factors for vascular dis-
ease [32], whereas the animals studied here were all healthy 
prior to induction of myocardial infarction. Second, adjunc-
tive post-infarction pharmacotherapy may interfere with 
the signalling pathways of the candidate paracrine factors 
which we have identifi ed, modulating this component of the 
reparative response to cell therapy in humans. Specifi cally, 
angiotensin II blockade [42], statins [43,44] and β-blockers 
[45] may affect growth factor expression and/or signaling 
in the heart. Interplay of this kind between cell and phar-
macologic therapy for acute myocardial infarction has not 
yet been examined in human or experimental studies, but 
certainly merits greater attention as this treatment approach 
evolves. Finally the focus of this study was the cardiomyo-
cyte size and LV mass changes after cell therapy (with par-
ticular emphasis on changes in the infarct and border zone) 
and not traditionally studied parameters such as angiogen-
esis and scar formation.

In conclusion, this study shows circulating progeni-
tor cells exert a potent paracrine effect impacting cardio-
myocyte size with direct consequences for infarct-related 
remodeling post myocardial infarction. These data 
strongly support a robust contribution of progenitor cells 
to regional post infarct repair with mechanistic and ther-
apeutic implications for future human studies in the cell 
therapy fi eld.
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