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Summary
Metabolomics describes the measurement of the full complement of the products of metabolism in
a single biological sample and correlating these metabolomic profiles with known physiological or
pathological states. The metabolome offers the possibility of finding unique fingerprints
responsible for different phenotypes. Analytical techniques such as nuclear magnetic resonance or
mass spectrometry measure thousands of compounds within the metabolome simultaneously and
appropriate data mining and database tools allow the finding of significant correlations between
the measured metabolomes. The first direct outcome of nutritional metabolomics will be the
discovery of biomarkers, which can reveal changes in health and disease but also indicate short
term and long-term dietary intake. The concerted actions of nutrigenomics and metabolomics will
play a crucial role in understanding how specific interactions of single nucleotide polymorphisms
(SNP) influence a person’s response to a diet. Finally, systems biology approaches to human
nutrition combine transcriptomics, proteomics and metabolomics with the aim of understanding
how diets interact within the human being.
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Introduction
Nutrition and clinical scientists are routinely profiling human biofluids for a range of
physiological markers, including many macro- and micronutrients as well as a limited
number of known metabolites that can be related to nutrition. These markers then provide
information on nutritional status and risk factors for health and disease, such as on the
bioavailability of nutrients from food sources, on the interrelationships of selected
metabolites and their correlation with disease, or on deficiencies that individuals may have
of essential nutrients etc. Importantly, these targeted profiling approaches usually only test
one specific nutritional hypothesis, measure a specific marker or investigate a specific
biochemical pathway, for which results are correlated or compared with predicted outcomes
or recommended intake values. Today, however, analytical technologies have emerged that
permit the measurement of thousands of metabolites and nutrients simultaneously from a
single sample. This opens up numerous possibilities for studying nutritional effects and
interactions of metabolites, with important applications such as the determination of disease
and pre-disease biomarkers or the identification of the individual metabolism of persons,
allowing for personalised nutrition to address specific health problems. This integrative
approach of measuring the distribution and concentration of a wide range of metabolites in a
body sample (referred to as the metabolome), resulting from the gene and protein
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expression, and correlating the information with a known physiological or pathological state,
is called metabolomics. Nutritional metabolomics focuses on those active metabolites,
nutrients (or non-nutrients) among the thousands of components in the metabolome that are
associated with the effects that different diets have on us.

Systems biology
Unfortunately, metabolites and genes alone are not sufficient to fully describe the effects of
nutrition. Genes are transcribed into RNA and RNA is translated into proteins and a
comprehensive picture of nutrition must include all these steps. Different large scale, multi-
centre projects are trying to tackle nutritional research questions through systems biology
approaches, combining transcriptomics, proteomics and metabolomics with the aim of
understanding how diets interact within the human being. These highly complex and
difficult to design experiments require significant budgets to cover the required complexity.
Moreover, the bioinformatics tools to connect and integrate the different data sets are still
under development and data crunching often takes several years to complete. In other fields
of science, data is made publicly available, such as gene expression data through the Gene
Expression Omnibus (GEO) of the National Center of Biotechnological Information (http://
www.ncbi.nlm.nih.gov/geo), enabling the bioinformatics community worldwide to develop
and test new algorithms for data conversion (Shaik & Yeasin 2008). Presently, systems
biology studies addressing the complexity of nutritional research are very difficult to
perform because of the immense budget requirements. Further technological advancements
in all omics areas, however, will undoubtedly enable such complex studies in the near
future.

Opportunities for human nutrition
Metabolomics offers a drastically different approach to nutritional science, as already seen
in other areas of biomedical research, e.g. pharmacology and toxicology. Nutrition research
will be significantly impacted by metabolomics, for several reasons. Firstly, metabolism and
nutrition are closely linked and thus metabolomics is the logical first choice for application
among the various omics technologies (genomics, transciptomics, proteomics, and
metabolomics). Another important advantage is that metabolomics – and metabolomics
techniques – address and consider the entire metabolic complexity of diets. Classical
reductional, hypothesis-driven nutrition research tests one compound at a time, which has
lead to key findings such as the importance of vitamins or minerals. But this strategy
struggles with food components or diets, which have more subtle, less explicit biological
functions. In the classical approach, the complexity of dietary patterns is reduced to one or
several metabolites, which are thought to represent the larger group. For example, in fish oil
studies, eicosapentaenoic acid (EPA) is often used to describe the entire polyunsaturated
fatty acid (PUFA) group, or in the case of the Mediterranean diet, flavonoids are represented
as a single compound, quercetin. In these cases, the positive effects for health or for the
treatment of a disease become extremely difficult to prove in intervention studies. A
metabolomics approach is much more powerful because it has the potential to reveal which
components in the diet are responsible for which effect. Finally, metabolomics will have a
tremendous impact on nutrition research through the discovery of important new
biomarkers. In fact, biomarker research will be the driving force in the rapid progress of
nutrition research in the future because nutrition deals with diseases and the health of
humans. Whereas the pathology of disease and clinical outcomes can usually be clearly
defined, health is much more difficult to describe and improvements in health can rarely be
measured. Appropriate biomarkers will enable us to precisely determine health and changes
in health in the future. Biomarkers can also reveal dietary intake. Developing methodologies
to determine exactly what people are eating has always been essential in nutrition research.
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Biomarkers of nutritional intake will be extremely important for this area, but it is expected
to require a significant amount of focussed metabolomics research.

Analytical technologies and strategies for metabolomics
Metabolomics has emerged as a complementary technology to the other omics disciplines
(in particular genomics, transciptomics and proteomics), which are concerned with the
measurements of DNA, mRNA, proteins and their interactions. Unlike these disciplines,
which apply a single analytical technique or measure, at least in theory, a single chemical
class of compounds, metabolomics profiles entire populations of chemically very diverse,
low molecular weight metabolites. Moreover, the relative concentration levels of these
compounds range from ultra-trace (picomolar or less) to millimolar or even higher levels,
thus most likely exceeding the linear dynamic ranges of the applied analytical techniques.

Because of these analytical challenges, the field of metabolomics is currently strongly driven
by technological developments. The two most common techniques used are nuclear
magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). Mass spectrometry
is almost always combined with a preliminary chromatographic separation step, either gas
chromatography (GC-MS) or liquid chromatography (LC-MS or LC-MS/MS, tandem mass
spectrometry). It is outside the scope of this article to discuss technical details of the
analytical technologies. The interested reader is referred to several excellent review articles
on this subject (e.g. Coen et al. 2008, Schlotterbeck et al. 2006).

It is important to consider that some of the new analytical technologies are so sensitive that
they will likely identify previously undetected compounds, thus yielding results that
possibly conflict with outcomes of earlier studies. Also, in many cases, the structures of
candidate metabolites will be unknown at the discovery stage of the metabolomics study,
therefore necessitating extensive structure elucidation work at the subsequent validation
stage.

In most metabolomics studies, differential sets of samples are analysed by directly
comparing two situations and looking for significant differences between them; for example,
obese versus lean or diabetic versus non-diabetic. Metabolomics can be either biased or
unbiased (targeted or untargeted), depending on whether a hypothetical pathway is
investigated with a target group of known metabolites or whether the pathway is totally
unknown and the analysis must cover the entire complement of the metabolome in question.
A typical workflow for metabolomics studies is illustrated in Figure 1.

Equally important to the analytical technologies are the methods used to find the significant
correlations between the metabolomes under investigation. State-of-the-art bioinformatics,
data mining and database tools are rapidly emerging to manage and interpret the massive
data sets from these experiments.

Data mining
Metabolomics research is relatively fast and inexpensive as compared to other omics
disciplines, e.g. transcriptomics and proteomics. Importantly, it facilitates the inclusion of
experiments at various time points and the use of a large number of variables and replicates,
whereas for micro-arrays and MudPIT (multidimensional protein identification technology)
proteomics experiments, samples are usually pooled to reduce time and costs (Usaite et al.
2008). Using larger sample numbers and variables, however, results in vast quantities of
data. One of the major challenges in metabolomics therefore is the conversion of this
complex raw data into useful information. The first step is data reduction (see Figure 2).
Most metabolomics experiments focus on the conversion of LC-MS raw data files to peak
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lists, where each peak has one or more identifiers (retention time and m/z or tandem mass
spectrometry MS2 spectra) and an intensity or level, which should relate to the amount of
compound responsible for that peak. Where LC-MS data are continuous and
multidimensional, peak lists are usually 2-dimensional and can be easily converted into
spreadsheets. Principle component analysis (PCA) and related strategies will usually be
applied first for data interrogation. PCA is an unsupervised technique that determines
correlation differences between sample sets, which can be caused by either a biological
difference or a methodological bias. In most cases, it is a highly informative way for
obtaining a first impression of the quality of the acquired data, independent of the actual
research question. For example, PCA analysis can differentiate between the metabolic
profile of men and women as well as vegetarians and non-vegetarians (Holmes et al., 2008).
When the data reveals analytical run dependent effects, this is usually the result of an
inadequate data normalisation method. Optimal normalisation processes are extremely
difficult to achieve without proper control samples, which are therefore an essential part of
any metabolomics experiments.

In a follow-up step, supervised multivariate statistics can be used, for which partial least
square discriminant analysis (PLSDA) is the most commonly applied method. Supervised
techniques use prior knowledge about the samples; i.e. which samples are known to belong
to a certain group. Nevertheless, for much larger numbers of variables than numbers of
samples, there is a severe chance of over-fitting the data (Westerhouse et al. 2008). In
addition to the concept of differentiating peaks, it is also possible to use data-mining tools to
look for correlating peaks (either correlating in a linear or a non-linear fashion). This results
in correlation networks that give additional information on the interconnectivity of peaks
and metabolites.

In general, the aim at this stage is to reduce the complete peak list to a much shorter list of
‘interesting’ peaks. The relevance of these interesting peaks has to be assessed, which in
most cases is initially conducted based on chemical information. The peak shape and
behaviour across the sample will be interrogated to check whether a real metabolite is
present or whether an artefact of the method caused the peak. In addition, chemical
information will be used to classify or identify the responsible metabolite.

Databases
One of the main driving forces in the rapid technical developments taking place in the post-
genomics era are open access databases. A wealth of information can be readily obtained
today by aligning protein or DNA sequences with these internet-based databases. Although
there is still a reasonable chance that sequences are returned as unknown “open reading
frames” (ORF), in many cases the search will show that the protein or gene is either a
known gene or similar to a known gene, with a known function, facilitating the biological
interpretation. Metabolites, however, are intrinsically different. Where proteins and genes
with the same function are similar in structure across organisms; metabolites have the same
structure but similar or different functions across organisms. This is not the only drawback
encountered in metabolomics, because structural similarity is much more difficult to assess
with small molecules as they can not be reduced to a sequence of building blocks, in the way
DNA is a string of nucleotides and proteins are a string of amino acids. Even the
unambiguous assignment of a chromatographic peak to a metabolite is a laborious process.
This is one of the main reasons why many metabolomics groups rely heavily on NMR
analysis for metabolic profiling because it yields spectra that are reasonably similar across
different institutes and different instrument manufacturers. LC-MS/MS on the other hand
does not generally provide these universal and standardised results. Chromatographic
retention times are difficult to reproduce and mass spectra of the same metabolite are often
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quite mass spectrometry vendor-specific. There are, however, a number of open access
databases containing mass spectral information, e.g. HMDB (human metabolome database),
Massbank and Metlin (Wishart et al. 2007). The increasing speed and resolution of mass
spectrometers will further reduce the number of possible candidates for each
chromatographic peak and when these results are combined with other spectral information
(in particular high resolution MSn data), it is foreseeable that future mass spectrometers will
be able to yield enough information with sufficient accuracy for rapid database searching
and metabolite classification, overcoming current differences in machine type and brand.
Even though automated database searching is not universally available yet for metabolomics
applications, different research groups have started to establish large-scale databases on
metabolites, e.g. the Kyoto Encyclopaedia on Genes and Genomes (KEGG), which
integrates metabolites with proteins and genes. This information is relevant in metabolomics
experiments and the ability to search rapidly for the function of a specific gene helps in
understanding the relevance of a particular metabolite in the experiment.

Nutritional metabolomics, however, is even more complex. Humans are heterotrophic
organisms; that is, they feed on other organisms, each with its own metabolome. The
number of different metabolomes that we consume daily in our diet is significant, making
nutritional metabolomics drastically more complex than other metabolomics disciplines.
Consider a simple example: the amount of calories or the protein, fat and carbohydrate
content of a bowl of cereal can be easily found in the literature. The metabolic profile of the
same bowl of cereal, however, is extremely complex and will probably consists of several
thousands (if not ten thousands) of different metabolites, most of which are not known or
not available in any open-access database.

Validation
The next step in a metabolomics experiment, after the raw data is reduced to a short-list of
significantly differentiating metabolites, which are either fully identified or at least classified
metabolites, is the interpretation and correlation with phenotype. In most cases, however,
where unbiased or untargeted methods are used, it is highly desirable to further validate the
results. It is very difficult to validate a metabolic profiling method, as differences found
between sample sets may simply be the result of artefacts of the methodology rather than
genuine results. It is therefore essential to confirm the results with a targeted analytical
method. At this stage, the differentiating peaks are assumed to be originating from known or
classified metabolites, which can be easily confirmed by re-analysing the samples
specifically for those compounds, using authentic standards and/or previously published and
validated methods. This essential step in metabolomics is very often omitted, but is clearly
required to avoid speculation (Villas-Boas et al. 2007).

Genetics, genomics and metabolomics
Pharmacogenomics and nutrigenomics are removing the idealised concept that all humans
react the same way in an experiment. Metabolomics shows that metabolic phenotypes can be
specific to persons (Assfalg et al. 2008). Differences in genes lead to differences in
metabolism and differences in efficacy of compounds. These differences can have dramatic
effects in pharmacology but the same applies to nutrition. International collaborations like
the “haplotype map of the human genome” (HAPMAP) are mapping the single nucleotide
polymorphisms (SNP) in the human genome and studies on the effect of SNPs on human
metabolism are rapidly advancing (Marvelle et al. 2008, Méplan et al. 2008). At the same
time, technological developments make it possible to rapidly and inexpensively map all
SNPs in a person and it is expected that within a few years this SNP mapping will be an
essential step in every nutritional study involving humans. Although the information is
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already available to predict the effect of one SNP (Yang et al. 2007), the ability to forecast
the effects of interacting SNPs is still years from being substantiated, especially in relation
to metabolism. Metabolomics will play a crucial role in understanding this interaction and it
will help to elucidate how specific interacting SNPs influence a person’s response to a diet.

The development of genetic markers and chips has also accelerated the research in human
genetics. Large studies involving ten thousands or more subjects enable scientists to
determine which regions of the genome are responsible for a disease or the predisposition to
a disease (e.g. obesity or metabolic syndrome). The interpretation of these results are always
obscured by what are called epistatic effects, which describe the specific interactions of
regions in the genome that hinder the ability to link a specific trait to a specific region
(Boone et al. 2007). Geneticists, however, are dependent on phenotypic details (traits) to be
able to map them to the genome. Currently this is mainly done with traits that are clinically
relevant and measurable, such as weight, BMI or glucose levels in urine. Combining
nutritional and metabolomics data to phenotype humans will allow geneticists to reveal how
genes interact with food in much more detail, and how this information can be used for
health changes. Such projects demand a concerted action of different research disciplines
and are strongly dependent on a large enough number of subjects and sufficient
experimental detail to make significant progress in the future. Nutritional research and
nutrition in general would benefit tremendously from such projects, however, as it opens up
the possibility for personalised nutrition given by nutrition clinicians according to people’s
specific genetics. In the same context, it is worthwhile mentioning that the food industry will
recognise soon that specific genetic profiles will open up new markets.

Outlook to the future
Metabolomics is rapidly changing nutrition science, the same way it changed other areas of
biomedical research over the past several years. Currently, the field of nutritional
metabolomics is driven by tech-savvy bioanalytical chemists, interested in method and
technology development, by bioinformaticians developing novel data mining and database
tools, and by nutrition biochemists wanting to learn more about the influence of different
types of diets on a molecular level. This will most likely be the case for a few more years
until the technology for metabolomics is mature, user-friendly and powerful enough.

Nutrition places unique demands on scientists developing metabolic fingerprinting
techniques for metabolomes, which currently makes nutritional metabolomics one of the
most exciting fields of bioanalytical research. Firstly, nutritional metabololomic profiles are
time-dependent as metabolism is a dynamic process, thus requiring multiple time-points in
dietary interventions to measure the metabolic flux. In addition, the human metabolomes
cannot be isolated from ‘interfering’ foreign metabolomes such as those from our gut
microflora and those from all the organisms we consume with our diet. These complicating
factors necessitate the development of state-of-the-art high-throughput and high-resolution
analytical methodologies and equally sophisticated bioinformatics tools to interrogate the
massive amount of resulting raw analytical data.

The first promising field of application in nutritional metabolomics is the discovery and
application of biomarkers, as fingerprints of metabolites in the metabolome can be
correlated with changes in physiology or with the early detection of a pathological state.
Importantly, future metabolomics studies will undoubtedly reveal pre-disease biomarkers
based on the detection of very subtle changes in the metabolism of healthy individuals,
which are early signs of disease. Moreover, metabolomics may eventually reveal a true
biomarker for a healthy organism rather than the current biomarkers for diseases. Nutritional
treatment can then be used to maintain an optimal metabolism specific for every individual
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(“personalised nutrition”). Systems biology, nutrigenomics and metabolomics are expected
to open the door for personalised nutrition, where the genetic variations of individuals and
its influence on metabolism will allow us to use person-specific diets to maintain health and
prevent disease.
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Figure 1.
Workflow of biased and unbiased metabolomics studies
(Abbreviations: LC-MS/MS, liquid chromatography-tandem mass spectrometry; GC-MS,
gas chromatography-mass spectrometry).
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Figure 2.
Data mining strategy in metabolomics: the first step is data reduction, the second step is data
interrogation
(Abbreviations: LC-MS, liquid chromatography-mass spectrometry; PCA, principal
component analysis).
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