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ABSTRACT We consider recombinant inbred lines obtained by crossing two given homozygous parents and then applying multiple
generations of self-crossings or full-sib matings. The chromosomal content of any such line forms a mosaic of blocks, each alternatively
inherited identically by descent from one of the parents. Quantifying the statistical properties of such mosaic genomes has remained an
open challenge for many years. Here, we solve this problem by taking a continuous chromosome picture and assuming crossovers to be
noninterfering. Using a continuous-time random walk framework and Markov chain theory, we determine the statistical properties of
these identical-by-descent blocks. We find that successive block lengths are only very slightly correlated. Furthermore, the blocks on the
ends of chromosomes are larger on average than the others, a feature understandable from the nonexponential distribution of block
lengths.

WITH the advent of dense genomic maps, in particular
based on single-nucleotide polymorphism (SNP) data,

the study of haplotypes has become central for modern anal-
yses in population genetics (Buckler and Gore 2007; Carlton
2007; Frazer et al. 2007; Mott 2007; Jakobsson et al. 2008;
Bryc et al. 2010). Here, the term haplotype refers to the
series of alleles that an individual carries on a chromosome
pair at a collection of (possibly many) loci and contrasts
with single-locus genotypes that were the objects of many
past studies. Haplotypic information can be used for associ-
ation studies (Gold et al. 2008), for diversity studies (Lind-
blad-Toh et al. 2005), or for recognizing signals of positive
selection using various measures of haplotype homozygosity
(Sabeti et al. 2002; Zhang et al. 2006; Lencz et al. 2007;
Tang et al. 2007; Curtis et al. 2008). Many approaches cap-
italize on the apparent “block” structure of haplotypes
(Stumpf 2002; Cardon and Abecasis 2003; Wall and Pritch-
ard 2003; Altshuler et al. 2005; Zheng and McPeek 2007).

Various causes can be called upon to explain the apparent
structuration of genomes in haplotype blocks (Tishkoff and
Verrelli 2003; Zondervan and Cardon 2004; Pe’er et al.
2006), among which are recombination hotspots (Goldstein
2001; Jeffreys et al. 2001) and population structure (Pritch-
ard et al. 2000; Grote 2007; Slate and Pemberton 2007).
However, the situation is often complicated (Shifman et al.
2003; Yalcin et al. 2004; Cuppen 2005; Kauppi et al. 2005;
Greenawalt et al. 2006; Moore et al. 2008). In particular, the
theoretical properties of many of the objects mentioned
above, e.g., haplotype block lengths, remain largely un-
known. Often, the distribution of blocks is declared “non-
random” (Curtis et al. 2008) although the null hypothesis is
not clearly specified.

The task of determining statistical properties of chromo-
somal block structures has arisen in many different contexts.
These can be classified into two types according to the kind
of populations considered and lead to different mathemat-
ical techniques. In the first class, one asks how the genome
of one or more parents in a population gets broken up into
blocks at successive generations and how different descend-
ents may share identical-by-descent (IBD) blocks. The frame-
work most generally taken allows for random mating
between individuals, a stochastic number of offspring for
each individual, and possibly population growth; because
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of this stochasticity, the mathematical theory of branching pro-
cesses plays a key role. The second class on the contrary
assumes complete knowledge of all genealogies and so is rele-
vant only for controlled crosses. But because the corresponding
framework is thus constrained, Markov chains can be used to
follow the statistics of IBD blocks and even how the genomes of
all founding parents get shared among descendants.

The mathematical treatments in the first class typically
build on Fisher’s “theory of junctions” (Fisher 1949). Fisher
defined a junction in a chromosome as a boundary point
between segments descended by different routes from the
founders. Once formed by crossovers, junctions can be
inherited, just like point mutations. Fisher (1949, 1954,
1959) and Bennett (1953) investigated the expected num-
ber of chromosomal regions separated by junctions for dif-
ferent systems of inbreeding (repeated selfing, repeated sib
mating, repeated parent–offspring mating, etc.). Stam
(1980) extended Fisher’s theory of junctions to a random
mating population of constant size and any number of gen-
erations. Furthermore, he was able to derive the “probability
distribution of the heterogenic part of the genome” (and not
just the expected number of fragments) by assuming that
the fragments were exponentially distributed—a critical
hypothesis that was justified by numerical simulations.
Chapman and Thompson (2003) extended Stam’s work to
the case of a subdivided population. They were also able to
relax the hypothesis of an exponential distribution and
showed that the IBD tracts of chromosomes followed a distri-
bution not quite exponential, having in fact a fat tail. They
also determined how these properties were affected by the
population size. Analogous work by Baird et al. (2003)
focused on the case of a formally infinite population; this
simplifies the problem because related individuals never mate
with one another. Furthermore, they worked in the approxi-
mation of allowing only 0 or 1 crossover at each meiosis, a
case sometimes referred to as complete interference; then
each individual can carry at most just one block from the
reference founding parent. Within this framework, they were
able to treat the problem exactly, deriving in particular the
distribution of the number of descendants containing blocks
and the first two moments of these block sizes.

The mathematical treatment of the second class was
initiated by Donelly (1983). Numerous studies since have
derived exact mathematical results on different kinds of
pedigree systems (Slatkin 1972; Franklin 1977; Donelly
1983; Guo 1994; Bickeboller and Thompson 1996a,b;
Stefanov 2000; Browning and Browning 2002; Cannings
2003; Dimitropoulou and Cannings 2003; Ball and Stefanov
2005; Walters and Cannings 2005; Rodolphe et al. 2008).
Such studies map the IBD problem to that of a random walk
on a pedigree-dependent graph. It is that Markovian frame-
work which we use here in the context of recombinant
inbred lines, a particular kind of pedigree that has the ad-
ditional complication of allowing for an infinite number of
generations. We provide a description that is mathematically
rigorous but also of practical use.

Recombinant inbred lines (RILs) can be derived by either
self-fertilization (plants) or brother–sister matings (ani-
mals). RILs have become a tool of choice for animal and
plant studies [genetic maps, QTL detection, and association
studies (Churchill et al. 2004; Churchill 2007; Crow 2007;
Keurentjes et al. 2007; Yu et al. 2008)]. Moreover, such lines
are fixed and provide ever-lasting replicable reference ho-
mozygous genomes; these are very useful to dissect complex
traits and estimate epistatic effects or genotype · environ-
ment interactions (Bergland et al. 2008; Maccaferri et al.
2008; Alcazar et al. 2009). To produce a RIL, one typically
starts with F1 hybrids derived from the cross of two homo-
zygous parents, say PA and Pa. Offspring are generated from
these F1 and the process is repeated for many generations;
this can be done by selfing [single-seed descent (SSD)] or by
full-sib mating (hereafter referred to as “SIB”). At each gen-
eration mean heterozygosity decreases and in fact the pro-
cess tends toward homozygosity at all loci. Due to the
formation of crossovers during meiosis, the genomes at each
generation are mixtures of the two parental ones, in which
closer loci have a higher probability of descending from the
same parent PA or Pa. The fixed genomes then form succes-
sions of blocks, each block being IBD to one of the two
parents. In effect, we have a mosaic genome for the RIL,
patching together pieces from each parent PA or Pa. What
is the mean length of blocks? We shall see that it is 0.5 M in
SSD and 0.25 M in SIB if the chromosome genetic length is
large. But one may also ask what is the block length distri-
bution, what is the mean number of blocks on a finite chro-
mosome, or even what are the analogous statistics before all
loci are fixed. As genome coverage becomes dense or as one
approaches a nucleotide-level description of genomes [be it
for association studies or genomic selection (Meuwissen
et al. 2001)], one is inevitably driven toward a continuous
chromosome picture, requiring block-like descriptions. Here,
we address the need to work at this level where blocks are
the elements of interest. In particular, we show how to cal-
culate block statistics in RILs, using a mix of combinatorial
analysis and probability theory.

Model and Methods

Junctions

For all our work, we deal with diploid organisms and are
concerned with the construction of RILs in both SSD and
SIB. Each chromosome pair is subject to independent
dynamics, so without loss of generality we can focus on
the case of a single chromosome pair. Furthermore, the
objects of study are the IBD blocks, hereafter simply referred
to as blocks. The F1 is considered to be the zeroth generation
(g = 0). To go from one generation to the next, we produce
one offspring in the case of SSD and a brother–sister pair in
the case of SIB. An offspring individual is the union of two
gametes, each of which is produced by a parent through
meiosis, during which there can be crossovers. (In the case
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of SSD, there is just one parent.) Once a locus is fixed, it
stays so forever. In SSD this simply requires the two homol-
ogous chromosomes to have the same allele at that locus; in
SIB, it requires all four chromosomes to have the same
allele.

We measure continuous positions on the chromosome in
morgans, with the leftmost end of the chromosome corre-
sponding to the origin of our axis; i.e., x = 0. Following the
work of Fisher (1949, 1954, 1959), Bennett (1953), and
Donelly (1983), a crossover is referred to as a “junction”
and is identified with an arbitrarily precise point on the
chromosome. We assume that crossovers arise without in-
terference; then the production or not of a junction in the
interval [x, x + dx] is independent of occurrences of junc-
tions in any other interval. Here x denotes the genetic posi-
tion, dx is infinitesimal, and junctions arise with density 1
along the chromosome. Figure 1 illustrates the use of these
junctions when following successive generations under SSD.
At one generation, consider the pair (H, H9) of homologous
chromosomes. A meiosis takes place and results in an off-
spring chromosome (gamete) that is a mosaic of chromo-
some segments coming from either H or H9. A junction
separates two adjacent segments. We use a binary label (0
or 1) to specify the origin (H or H9) of each segment. For any
position x, having the list of its labelings for all generations g
allows us to determine the IBD content at x as shown on the
right-hand side of Figure 1. Note that the numbering of the
junctions is done from left to right, not as a function of its
occurrence in generations. The successive steps of the pro-
cedure are shown in Supporting Information, Figure S1: first
one lays out the junctions and their numbering, then one
introduces the binary labels across each junction, and finally
one reconstructs the haplotypes (see File S1). As illustrated
in Figure S2, the case of SIB mating is analogous, and again
at each generation a chromosome consists of a mosaic of the
founding parents’ chromosomes (see File S1).

So far, the introduction of junctions can be formulated
for any pedigree system. Many previous studies have done
this and mapped the IBD problem to that of a continuous-
time random walk on a pedigree-dependent graph (Slatkin
1972; Franklin 1977; Donelly 1983; Guo 1994; Bickeboller
and Thompson 1996a,b; Stefanov 2000; Browning and
Browning 2002; Cannings 2003; Dimitropoulou and Cannings
2003; Ball and Stefanov 2005; Walters and Cannings 2005;
Rodolphe et al. 2008). Here we consider RILs and then the
Markovian framework’s pedigree-dependent graph is a hy-
percube. The sequence of binary labels at any given locus x
specifies a unique vertex of the hypercube, and how this
vertex changes as one moves along the chromosome deter-
mines the block structure. Note that some of this mathemat-
ical framework is close in spirit to that used for studying the
coalescent in the presence of recombination; there the cen-
tral object is the so-called ancestral recombination graph,
and the problem (Wiuf and Hein 1999; McVean and Cardin
2005) is to describe how this graph changes with position
along a continuous chromosome. This is a very difficult

problem and so the authors of those studies derived rela-
tively few exact results.

The application of this Markovian framework for SSD and
SIB RILs requires considering all possible continuous-time
walks on a high-dimensional hypercube. We do this in two
steps. First, we enumerate by computer all possible discrete
time random walks on that hypercube. Then we tackle the
continuous waiting times of the original walks by analytical
techniques. Finally, the numerical treatment of these analy-
tical expressions is performed using Mathematica (Wolfram
1991). The C and Mathematica codes for these different
tasks are provided in File S2.

The continuous-time Markov process

When creating the generations 1 to g, 2g gametes are pro-
duced in the SSD mating scheme, and 4g gametes are pro-
duced in the SIB mating scheme. Denote this number by Nc

as it is also the number of (new) chromosomes produced in
the RIL construction (remember we follow only one chro-
mosome pair). Rather than follow each gamete from one
generation to the next, it is (more) useful to consider all
Nc gametes simultaneously. This can be visualized by stack-
ing the pairs of chromosomes for all generations on top of
each other and then scanning the chromosome stack from
left to right to see where the junctions appear in order of
increasing x.

Of great importance is the fact that the junctions on these
Nc gametes are independent in all respects: having a junction
on one gamete in [x, x + dx] does not affect the probability
of having another junction elsewhere, be it on the same
gamete or on any other gamete. Because of this indepen-
dence, one can think of the production of junctions among

Figure 1 Labeling in a SSD RIL. At each generation the homologs are
called H and H9. To keep track of the IBD property, for each point on the
continuous chromosome under consideration we specify the origin (H or
H9 in the parent) using a 0–1 label, covering zones separated by junctions.
The genotype at any generation g can be reconstructed from these binary
numbers as shown on the right. Note that a junction need not separate
two blocks.
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the whole set of gametes as being a “continuous-time”Markov
process (Feller 1950), where x plays the role of time. For
the interval [x, x + dx], a junction arises with probability
Ncdx, and then if such an event is realized the junction is
assigned randomly to one of the Nc gametes (each with
probability 1/Nc). The operation is then repeated for the
interval [x + dx, x + 2dx], and so forth. We thus have a
Markov process where interevent intervals are independent
and distributed as

rðDxÞ ¼ Nc expð2NcDxÞ (1)

while junction assignments to chromosomes are done
equiprobably.

Discrete and continuous-time random walks on
the hypercube

We initialize the binary labels at x = 0 randomly and uni-
formly because segregation is unbiased. The continuous-
time Markov process extends these labels from x = 0 toward
increasing x. At any given x, and using a {0, 1} notation for
each binary label, we call M the map from the Nc dimen-
sional hypercube H ¼ f0; 1gNc. to the genotypes at gener-
ation g; this map can be thought of as a coloring of the
vertices of the Nc-dimensional hypercube. There are as many
colors as there are one-locus genotypes at generation g: 4 for
SSD and 16 for SIB. Then the block pattern at generation g
can be “read off” by examining the succession of vertex
colors visited by the Markov walk on the hypercube. Note
that having a junction appear at x corresponds to hopping to
a random neighboring vertex on H at that time, while the
residence time on each vertex is exponentially distributed
(cf. Equation 1).

For the block statistics, we want to find the probability
that the walk on H leads to a given pattern of successive
colors. For this, we sum over all possible walks compatible
with the desired pattern. The crucial point is that the con-
tinuous variables of the interjunction values affect the
lengths of the blocks, but not the pattern of successive
blocks. This allows us to decompose the problem of block
statistics into two parts. The first comes from the discrete set
of possibilities for the sequence of vertices visited on H (the
“topology” of the junctions); we use the master equation of
the discrete-time random walk on the hypercube to track
these sequences. The second is associated with the continu-
ous nature of the junction–junction intervals, which involves
summing over known probability distributions derived from
Equation 1.

Extracting block length distributions

Consider the simplest observable: the length of the first
block along the chromosome. If the block is heterozygous,
then its length distribution in SSD is that of the distance of
the first junction and is given by Equation 1. Indeed, the
locus x = 0 must be heterozygous at generation g, but in
SSD, at the very first hop of our random walk on the hyper-

cube, the heterozygous block will end, starting a fixed block.
The situation is more instructive if the first block is homo-
zygous (fixed). To calculate the length distribution of that
first block, we first consider all possibilities for the different
walks from the starting vertex (defined from the situation at
x = 0). A walk will maintain the homozygous structure at
generation g for perhaps a few hops and then one hop will
change that. If k is the first hop that ends the block, we can
collect together all the discrete time walks that have the
same k. We thus define P(1)(k) as the probability to perform
k – 1 hops while staying at generation g in the same fixed
state as that of x = 0 and to then terminate the block at the
kth hop. P(1)(k) is the sum of the probabilities of all discrete
time walks on H that are compatible with staying in the first
fixed state during exactly k – 1 hops. Because the number of
such walks grows exponentially with k, it is best to deter-
mine this quantity by recursions rather than by enumera-
tions. This is precisely what is done when using the
associated master equation. Each iteration of that equation
updates a vector on the hypercube and generates the suc-
cessive P(1)(j). To obtain P(1)(k) one has to perform k iter-
ations of the master equation. File S1 specifies this master
equation, the initialization of the vector iterated, and the
relation between the iterated vector and P(1)(j); the C pro-
grams for implementing these iterations are also provided
(see File S2).

Given the P(1)(k) probabilities, we can reintroduce the
continuous times spent on each vertex of the hypercube to
get the distribution of the length of the first bloc. Indeed, for
SSD as well as for SIB, for all walks that contribute to this
situation, x will go from 0 to xk with xk distributed as
a rescaled Gamma distribution,

rkðxkÞ ¼
Nk
c x

k21
k expð2NcxkÞ

ðk2 1Þ! (2)

as this the distribution of the sum of k independent expo-
nentially distributed variables. The distribution of ℓ1, the
length of the first block (assuming it is fixed) is then given
by

mð1Þðℓ1Þ ¼
XN
k¼1

Pð1ÞðkÞrkðℓ1Þ: (3)

This result holds for an infinite chromosome. For a finite
chromosome of length L, we note that if ℓ1 . L, we have
“stepped off” the finite chromosome. Thus, if the value of ℓ1
(distributed as in Equation 3) is greater than L, we see that
on the finite chromosome the block is actually only L long.
Thus to adapt Equation 3 to a finite chromosome, we simply
keep the distribution as is when ℓ1 , L while for all those
values ℓ1 $ L we set ℓ1 = L. Mathematically, this generates
a delta function at that point of weight given by the proba-
bility that ℓ1 $ L. This derivation corresponds to a simple
truncation of a distribution, and it can be extended to other
observables. These include the length of the nth block,
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which requires calculating the probabilities P(n)(k) of step-
ping off the nth block after k steps, and the joint distribution
of lengths for different blocks. Details on such derivations
are given in File S1. The Mathematica codes for performing
sums like those in Equation 3 are also provided in File S2.

Results

Infinite and semi-infinite chromosomes
Mean block lengths: As the number g of generations
increases, alleles become fixed and since nothing changes
thereafter the statistics of the blocks must have a limit at
large g. In that situation, there is only alternation of IBD
blocks homozygous of type PA or Pa. We focus on the statis-
tics of such blocks, either at arbitrary g or in the g / N

limit, approximated by taking g large enough. However, our
computational framework applies to arbitrary blocks, homo-
zygous or heterozygous. From the practical point of view,
we are limited computationally by the part of the algori-
thm that follows occupation probabilities on the hypercube
H: executing this master equation on the computer uses
OðNJNc2NcÞ operations where NJ is the maximum number
of hops of the walks; this restricts our study to 14 genera-
tions in SSD and 7 generations in SIB.

A simple statistic of blocks is their mean length hℓi. This
quantity is related to the density h of block extremities: on
a very large chromosome of size L, the number of blocks n
will satisfy n/L � h while hℓi � L/n. For SSD RILs the density
h is known to be 2 while it is 4 in SIB. Such a result follows
by considering a small interval [x1, x2] and asking that the
interval be recombinant. In SSD this occurs with probability
R = 2r/(1 + 2r), where r is the recombination rate per mei-
osis between x1 and x2 (Haldane and Waddington 1931).
Taking x2 – x1 to be infinitesimal, we get r � (x2 – x1)
(Haldane 1919) and so R � 2(x2 – x1); noting that recombi-
nation then implies the presence of a block extremity in this
interval, we see that the density of block extremities is 2.
Setting h = 2, one obtains directly hℓi = 1

2, valid at large g
and for large chromosomes. An identical reasoning gives
hℓi = 1

4 for SIB since in this case R = 4r/(1 + 6r).

Distribution of block lengths: Getting the distribution of
a block length cannot be achieved by such shortcuts. In-
stead, we generalize Equation 3, again at very large g and
for a very long (semi-infinite) chromosome. Starting from x
= 0, the successive block lengths are ℓ1, ℓ2, . . . ; as the block
number n increases, the distributions of ℓn tend toward a lim-
iting distribution m*(ℓ) that has no memory of the state at
the chromosome’s origin. The computation of the distribu-
tion at any given n, in direct analogy with what was done for
ℓ1, requires calculating the probabilities P(n)(k) of staying on
the nth block during k – 1 hops and stepping off at the kth
one. Again, we use the master equation to compute these
quantities iteratively; cf. File S1. Then the distribution of ℓn is
obtained by replacing the P(1)(k) in Equation 3 by P(n)(k).
These successive distributions are displayed for SSD in Fig-

ure 2. Note that the convergence in n is very rapid; only the
first block is visibly different from the others. In File S1, we
provide a parameter-free approximation to m*(ℓ) that works
quite well as shown in Figure S3. In the case of SIB RILs, the
convergence with n is much slower as shown in Figure S4.

A log–log plot of these distributions shows that they are
not exponential, though in the tail they all are well approx-
imated by an exponential; such a form in the tail is a conse-
quence of the spectral decomposition of the Markov process
(see File S1). Note that these distributions for ℓ1, ℓ2, . . . must
all decay at the same asymptotic rate. Another important
point is that the distribution of ℓ2 is slightly different from
that of ℓ3, proving that the successive lengths are not inde-
pendent: the block lengths are not generated by a stationary
renewal process.

Although we were not able to derive the analytic form of
m*, we nevertheless have

m*ðℓ/0Þ ¼ 3  in  SDD and m*ðℓ/0Þ ¼ 7  in  SIB: (4)

This can be proved by relating m*(ℓ / 0) to double-
recombinant frequencies as follows. We take two successive
intervals I1,2 and I2,3, each of length dx (infinitesimal), and
ask what the probability is that the intervals are both
recombinant. There is a probability 2dx in SSD and 4dx in
SIB that the first interval is recombinant (recall that the
densities of block extremities are respectively 2 and 4). Then
given this first extremity, the probability that there is an-
other extremity in the second interval is m*(ℓ / 0)dx, lead-
ing to a total probability of 2dxm*(ℓ / 0)dx in SSD and
4dxm*(ℓ / 0)dx in SIB. However, this double-recombinant

Figure 2 Block length distribution. Displayed is the probability density of
homozygous block length for block number 1, 2, . . . , 10 in SSD. The
chromosome is semi-infinite, and the number of generations is large to be
in fixation; except for the first block, the curves seem to superpose but in
fact are distinct.
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probability can also be computed (Martin and Hospital
2006) in terms of the three recombination frequencies
R1,2, R2,3, and R1,3 associated with the locus pairs (1, 2),
(2, 3), and (1, 3). In the limit of small dx, it is (2dx)23/2
for SSD and (4dx)27/4 for SIB. Identifying the different
expressions, we get the claimed results.

Analogous studies can be performed at given values of g,
including or not heterozygous blocks. Recalling that fixation
arises rather rapidly in SSD, it is no surprise that the statis-
tics of homozygous blocks converge quickly to a large g
limit. For example, if one computes in SSD the length dis-
tribution of the first block when it is homozygous, one finds
that it does not vary much for g $ 3 as illustrated in Figure
S5. For completeness, we show the analogous result in SIB
in Figure S6.

The first block is longer than the following ones: The
system does not follow a stationary renewal process. Never-
theless, it turns out that the large difference we see between
the first and the remaining blocks is not so much due to the
memory from one block to the next but to the nonexponential
distribution of block lengths. Even in the presence of memory
from block to block, one has the following general relation on
a semi-infinite chromosome at large g,

D
ℓ1
E
¼

�
ℓ2N

�
2hℓNi; (5)

where ℓ1 denotes the length of the first block and ℓN denotes
that of faraway blocks. The proof boils down to considering
the blocks on the infinite line and taking the origin of the
(semi-infinite) chromosome at random. It falls inside a block
of length ℓN with probability density proportional to ℓN
itself. Denoting as before by m(1)(ℓ1) the probability density
of the length of the first block, we have

mð1Þðℓ1Þ ¼
RN
ℓ1
m*ðℓNÞdℓN
hℓNi : (6)

(The reader can check that this is a normalized probability
density.) Using this density, the computation of the first
moment of ℓ1 leads directly to Equation 5. To interpret this
result, note that Equation 5 implies that the relative differ-
ence (hℓ1i – hℓNi)/hℓNi is equal to the [relative variance of
m*(ℓN)2 1�=2. When m*(ℓN) is a pure exponential, this quan-
tity vanishes and then hℓ1i = hℓNi. Thus we have hℓ1i . hℓNi
if and only if the relative variance of m*(ℓN) . 1, which is
what we find to happen in this system. For instance in the
SSD case, we have hℓ1i= 0.595, to be compared with hℓNi= 1

2.
The first block is thus on average substantially larger than the
others.

From Figure 2 one can see that m(1) is more spread out
than m*; m* gives m(1) from Equation 6 so that m(1)(0) = 2 in
SSD and 4 in SIB by direct computation using hℓNi. Note that
m(1)(0)dx can also be interpreted as the probability of having
the first block end between x = 0 and x = dx; since that is

the same as the density of junctions times dx, i.e., 2 or 4 · dx,
we indeed recover the result m(1)(0) = 2 for SSD and
m(1)(0) = 4 for SIB.

The lengths of successive blocks are slightly correlated:
Even though junctions are independent, each junction
affects the IBD property in its neighborhood. Two positions
will have nearly independent IBD only when they are distant
along the chromosome because only in that case will there
be many crossover events separating them. It thus seems
natural to expect that the successive block lengths will not
be independent in contrast to the underlying Dx separating
junctions. In fact this must be the case given that we found
earlier that on a semi-infinite chromosome the distribution
of lengths is different for the second and the third block.

Our framework allows one to compute joint distributions
and thus the linear correlation coefficients

Cðℓn; ℓnþ1Þ ¼ hℓnℓnþ1i2 hℓnihℓnþ1i
sℓnsℓnþ1

; (7)

where sℓn (resp. sℓnþ1 ) is the standard deviation of ℓn (resp.
ℓn+1). The joint distribution of ℓn and ℓn+1 is given by

mðn;nþ1Þðℓn; ℓnþ1Þ
¼ PN

kn¼1

PN
knþ1¼1

Pðn;nþ1Þðkn; knþ1ÞrknðℓnÞrknþ1
ðℓnþ1Þ;

where P(n,n+1)(kn, kn+1) is the probability that the nth block
ends after kn hops and the n + 1th after kn+1. From this
distribution, the mean of the product ℓnℓn+1 is the sum of the
probabilities P(n,n+1)(kn, kn+1) times the average of ℓn times
the average of ℓn+1 (factorization), each of which is obtained
from Equation 2. The linear correlation coefficient then
reduces to

Cðℓn; ℓnþ1Þ ¼ hknknþ1i2 hknihknþ1ih�
s2
kn
þ hkniÞðs2

knþ1
þ hknþ1iÞ

i1=2; (8)

where skn (resp. sknþ1 ) is the standard deviation of kn (resp.
kn+1). These quantities are directly obtainable from the
probability P(n,n+1)(kn, kn+1), as long as the number of gen-
erations is not too large. We have computed these quantities
in SSD for a semi-infinite chromosome, for different g’s and
choices of block numbers. For instance, if we consider the
first and second blocks, assumed to be fixed, the value of
C(ℓ1, ℓ2) is –0.0197 at g = 2, –0.0125 at g = 3, –0.00841 at
g = 4, . . . , with a trend that is compatible with a vanishing
limit at large g. We find the same trend for the following
blocks too. Furthermore, at given g, C(ℓn, ℓn+1) rapidly con-
verges to a limiting value as n increases. This is illustrated in
Table S1. The computer programs for obtaining these cor-
relation coefficients are also provided (see File S2).

Case of finite chromosomes
Length distributions: Clearly on a finite chromosome of
length L the distributions of block lengths are modified. The
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computations are more complicated, but remain feasible. As
an illustration, consider the case where the chromosome has
just two blocks. We use the P(1,2)(k1, k2) probabilities, and for
each (k1, k2) we impose the filter that ℓ1 , Lwhile ℓ1 + ℓ2 . L.
Then we have for the probability densities m(1)(ℓ1) = m(1)(ℓ2)
and thus the distribution must be symmetric about L/2, and
we also have hℓ1i= hℓ2i= L/2. The explicit expression for this
density is

mð1Þðℓ1Þ ¼
XN
k1¼1

XN
k2¼1

Pð1;2Þðk1; k2Þrk1ðℓ1Þ
Z N

L2ℓ1
rk2ðℓ2Þ : (9)

From this it turns out that m(1)(ℓ1) has a minimum at ℓ1 =
L/2: it is more likely to have one rather short and one rather
long block than to have two blocks of approximately the
same size.

A comparison with experimental RIL data: It is appropriate
to compare our theoretical computations with block statis-
tics measured in experimental RILs. Since the block sizes are
random variables, it is best to work with RIL data sets where
(i) the block structure has been determined precisely,
requiring high-density genotyping, and (ii) there are many
lines, an easier task for SSD than for SIB crosses. Such a data
set has been produced within the species Arabidopsis thali-
ana by Singer et al. (2006). These authors genotyped several
hundred thousand loci via hybridization arrays, from which
they determined block extremities in 100 SSD recombinant
inbred lines derived from the crossing of Columbia and
Landsberg homozygotes. Singer et al. provide the genetic
map of their cross and the physical positions of the block
extremities. From these data we determined the block
lengths for each RIL and each of the five chromosomes.
We display in Figure S7 the distributions of the first block
length, for all five chromosomes. The solid line is the theo-
retical curve, corresponding to the infinite chromosome case
but truncated to the genetic length of each chromosome. As
was explained previously, if the (infinite chromosome) ran-
dom variable ℓ1 is larger than the length L of the chromo-
some, one sees in practice a block of length ℓ1 = L; this
happens with a finite probability that is represented in Fig-
ure S7, using a solid dot. The histograms are for the exper-
imental data, and we have included the 95% confidence
intervals for each bin. We see that the theoretical predictions
agree well with the experimental values except for the last
bin of chromosome 1 and chromosome 4. Interestingly, for
both of these the segregation data exhibit significant distor-
tion; such distortion, typically caused by loci under selection
pressures, can affect recombination rates. It is thus satisfying
that the agreement between theory and experiment is as
good as it is in spite of this distortion.

Number of blocks: Clearly the typical number of blocks will
grow with the total length L of the chromosome. Further-
more, for large g, the density of block extremities is 2 in SSD
(4 in SIB); thus at large L the mean number of blocks should

grow as 2L in SSD (as 4L in SIB). It is also of interest to
determine the distribution of the number of blocks.

Consider first the probability that the whole chromosome
at generation g is in one single homozygous block. Starting
at the left end of the chromosome, we must be in a fixed
state: we choose it to be, for instance, the PA genotype. This
constraint is used to set the occupation probabilities of the
random walks on H before the first hop. Explicitly, at x =
0 we introduce Vi(0) = 0 on vertex i if its color is incompat-
ible with the PA genotype; otherwise Vi(0) is a site-indepen-
dent constant such that the total probabilities sum to 1. At
each junction (hop), the master equation is used to update
the vector of probabilities on the hypercube, and so for K
hops we have the vector fVðKÞ

i gi¼1;:::;2Nc. We iterate for up to
a given total of NJ junctions. In practice we cannot take NJ =
N because of the numerical nature of the algorithm; so in-
stead we take NJ sufficiently large so that only negligible
probabilities are dropped in the truncation. As a ballpark
estimate, NJ must be large enough to have NJ/Nc ? L, and
then each gamete can have many junctions per morgan.
During the application of the master equation to the vector,
hops terminating the block are stored and we keep in a file
the probabilities P(1)(K) that the first block ends after K
hops, 1 # K # NJ. Then the probability p1 that there will
be just one block in 0 # x # L is given by

p1 ¼
XN
K¼1

Pð1ÞðKÞ
Z N

L
rKðxÞdx (10)

times the probability of fixing at x = 0 (in SSD this is 1 – 1/
2g; in SIB it is given by a recurrence relation). Note that
these integrals correspond to incomplete Gamma functions,
allowing for a relatively efficient computation (see File S2).
As mentioned before, in practice the sum over K is truncated
to K # NJ and one must check that the error induced by this
truncation is small enough. We find that the probability to
have a single block decreases exponentially when L grows.
For instance in SSD, at large g, the probability is 0.417 for
L = 0.5 M, 0.189 for L = 1.0 M, and 0.088 for L = 1.5 M.

The previous approach can be extended to compute the
probability that the chromosome consists of n blocks as fol-
lows. For simplicity, consider directly the large g limit so we
can ignore hops on H leading to heterozygous genotypes at
g. We use the master equation framework to keep track of
the joint probabilities of being on a vertex of H and of being
in the mth block, for the number of hops K going from 0 to
NJ. At each hop, there are transitions from vertex to vertex
and potentially from block to block. If one hops to a vertex
incompatible with the desired block pattern, the probability
is set to 0. We keep track of the probabilities P(n)(K) that the
nth block terminates at the Kth hop. The probability of hav-
ing at most n blocks when 0 # x # L is then given by the
same formula as for one block (Equation 10) but replacing
P(1)(K) by P(n)(K). (Note that K is the sum of the number of
hops for blocks 1, 2, . . . , n.) Repeating the computation for
n – 1, we obtain the probability of having at most n – 1
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blocks in the region 0 # x # L, and taking the difference of
the two results we obtain the probability of having exactly n
blocks (see File S2). As an illustrative example, Figure 3
gives the probability distribution of n at large g in the case
of SSD for a chromosome of length L = 1.5 M.

Discussion

In the dense marker or continuous chromosome picture,
genotypes appearing in a RIL form IBD blocks. The block
structure is nontrivial in part because the consequence of
a crossover at generation g depends on crossovers arising at
previous generations. To study the statistics of such blocks,
we used a labeling procedure that allows for a mapping onto
a Markov process. Such a process reduces our problem of
blocks to linear operations (associated with a master equa-
tion that we implemented in a C code), followed by rela-
tively standard analysis involving sums and integrals (that
we treated via Mathematica). The sources for these compu-
tations are provided with this work (see File S2).

We illustrated a number of properties of block statistics,
highlighting in particular several closed-form results. Al-
though the joint statistics of blocks are quite complex, we
found that block-to-block correlations were very weak and
thus genotype frequencies are well approximated by a sta-
tionary renewal process. In addition, the distributions of
block lengths are not too far from exponential. Thus
approximating the RIL case using exponential distributions
will lead to qualitatively correct results with an accuracy of
�20%. This level of accuracy should hold for other systems
of crosses such as randomly mating populations, justifying
the use of the exponential approximation in several previous
studies (Stam 1980; Chapman and Thompson 2003).

We mainly stressed cases with complete fixation because
the construction of RILs aims to have homozygous geno-
types, but our formalism is applicable to both homozygous
and heterozygous blocks. Note that within SSD RILs, as
shown in Results, heterozygous blocks have an exponential

distribution for their lengths; furthermore, heterozygous
blocks interrupt the memory of the process in SSD; that is,
two blocks separated by a heterozygous segment are inde-
pendent. The reason is that there is only one way to be
heterozygous in SSD (up to irrelevant exchanges of gametes
at the same generation).

Clearly it is possible to extend our formalism to cases
involving more than two parents; this may be of use when
dealing with multiparental RILs that are being developed
currently to have greater power in association studies
(Churchill et al. 2004). We hope our results will stimulate
work in this direction.
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Methods

General aspects

LetPA andPa be the parents of the originalF1 hybrid (cf. Fig. 1, main text). LetNc be the total number of gametes produced. The

probability of staying heterozygous at a given locus can be computed without much difficulty. In SSD, one has a probability 1/2 of

maintaining heterozygousy from one generaƟon to the next, so the probability of remaining heterozygous aŌer g crossings is 2−g .

In SIB, fixaƟon is reached more slowly as should be clear from the fact that there are four chromosomes rather than only two. To

determine the dependence with g, one can use a recursion for the probabiliƟes to have 0, 1, 2, 3, or 4 copies of the parental PA

allele. At large g, this recursion shows that the probability of being heterogyzgous at a locus decays as 0.8357g; in pracƟce this

means that about ln(1/2)/ ln(0.8357) = 3.86 Ɵmes as many generaƟons are required in SIB than in SSD to reach the same level

of homozygosity. A similar study could be performed using two loci, but that would not tell us anything about the blocks we are

interested in; instead, it is necessary to tackle the conƟnuous chromosome framework straight-on.

The objects of study are the IBD (idenƟcal by descent) blocks, which we refer to as ``blocks''; one can think of the two parents

PA and Pa as having different alleles at all loci; that way IBD blocks are also idenƟcal in state and can be determined directly

from the allelic state of the loci, assuming no mutaƟons occurred in the RIL construcƟon process. However, this is just for conve-

nience, and our work does not require that all loci be polymorphic in the parents. The blocks that we describe refer in all cases to

chromosomal stretches that are idenƟcal by descent to the parents of the F1 hybrid.

Our goal is to understand how genomic blocks are organized in SSD and SIB recombinant inbred lines. The staƟsƟcs of such

blocks will depend on the number g of generaƟons used to construct the RIL. However, since all loci eventually get fixed aŌer

sufficient generaƟons, there will be a limiƟng probability law as g increases. In the case of an infinite chromosome, the mean size

of blocks and the probability density of very short blocks can be derived as shown in the main text. For other staƟsƟcal properƟes

of blocks, in parƟcular for finite chromosomes, the problem is more complex. Fortunately, it can be mapped to a random walk

process on a hypercube, in direct analogy with the case of other studies on various pedigrees [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. The

enumeraƟon of all walks can be treated by computer; the C source codewehave developed for that is provided in the Supplemental

InformaƟon (see File S2). Furthermore, the conƟnuous waiƟng Ɵme variables of the random walks can be treated by standard

mathemaƟcal analysis; we have performed these calculaƟons usingMathemaƟca [13]) and the associatedMathemaƟca notebooks

are provided in the Supplemental InformaƟon (see File S2). Our mathemaƟcal and computaƟonal approach builds on the work of

Donelly [1], Stefanov [6, 7] as well as Rodolphe et al. [12]. We now give some details about the mapping, the algorithmic approach

for enumeraƟon, and the applicaƟon to block staƟsƟcs.

JuncƟons and labelings

Each (haploid) gamete or homologous chromosome is produced from a diploid parent; we refer to a gamete/chromosome as being

``paternal'' or ``maternal'' depending on whether it has been produced via a male or female meiosis. This situaƟon is shown for

SSD in Fig. 1 (main text) and also in Fig. S1 using a slightly different viewpoint, with the use of theH andH ′ labels for the paternal

and maternal origins. In animals, the sex of the parent determines the nature of the gametes, while in most plants it is the organ.

Since for our purposes a diploid individual is the union of two such gametes, we shall say for the chromosome pair of interest

that there is one chromosome that is paternal (coming from the male meiosis) and one that is maternal (coming from the female

meiosis).

Given a gamete, produced by a parent P , we need to determine its composiƟon in PA and Pa genomes. The conceptually

simplest way to do this would be through the allelic content at each posiƟon along the gamete; unfortunately such an approach

leads to complex dependencies which we have found to be untractable. Instead, we follow [6, 12] and specify which genomic
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regions come from the paternal chromosome ofP andwhich come from thematernal chromosome ofP , regardless of the regions'

genotypes; this choice will allow a mapping to a Markov process and ulƟmately to a manageable framework for determining all

quanƟƟes of interest. To each point at posiƟon x on the gamete, we assign ``0'' when geneƟc material comes from the paternal

chromosome of P , and ``1'' when it comes from the maternal chromosome. A chromosome then consists of regions labeled by

0's and 1's, separated by crossing-over (juncƟon) events.

Our labeling scheme is illustrated for the SSD case in Fig. 1 (main text) and in Fig. S1; note that the parental linePA (respecƟvely

Pa) contributes enƟrely to the paternal (respecƟvely maternal) chromosome of the hybrid F1 at generaƟon g = 0. From these

labelings, we can determine the idenƟty by descent for any posiƟon. For instance, in the figure, the individual at generaƟon g = 1

has a ``maternal'' chromosome which has contribuƟons from both PA and Pa (the crossover points are represented by small

verƟcal segments) and clearly all the loci outside of the region between juncƟons J1 and J4 are fixed already at this stage (in fact

they are IBD to the parent Pa). The SSD offspring at g = 2 further fixes some more loci, and we see that the regions adjacent to

J4 are now fixed and that this J4 juncƟon delimits two blocks. On the other hand, J1 has not been passed on to g = 2 and so

will not delimit two blocks, in fact the region around that point is fixed with alleles from Pa.

In SIB maƟngs, one produces a male and a female individual at each generaƟon so there are now four gametes to follow from

one generaƟon to the next. Our labeling scheme is the same as in SSD: each chromosome (gamete) is labeled with a binary ``0-1''

coding at posiƟon x depending on whether the associated geneƟc material comes from the paternal or maternal chromosome of

its parent. Note that now one gamete comes from one parent, and the other gamete from the other parent, so these paternal and

maternal ``origins'' correspond in SIB to the sex (male or female) of the grand-parent from which the geneƟc material came. An

illustraƟve example of the resulƟng mosaic structures is given in Fig. S2.

Note: were one to use allelic content rather than the ``0'' and ``1'' labelings, the introducƟon of a new juncƟon at generaƟon g

would change the alleles of all generaƟons beyond that and the dynamics would become untractable. Our ``0'' and ``1'' labelings

only refer to the material at the previous generaƟon, and not directly to the original parents PA and Pa. If one wants to know the

final allelic state at a locus in the last generaƟon, one has to follow the series of relaƟve heredity events ``0'' and ``1'' at that locus,

back to the original parent. However, it is because the ``0'' and ``1'' labelling is only relaƟve to the previous generaƟon, and hence

has no memory, that the Markov machinery can be applied.

Given all the labelings, we want to examine the blocks arising at generaƟon g. It should be clear that a juncƟon does not

necessarily signal the extremity of a block: for example, the region around a juncƟon can very well not be passed on to offspring,

as was illustrated in Fig. S1 for juncƟon J1. But if we know the ``0'' and ``1'' labels of allNc gametes at a given point, then we can

reconstruct the IBD origin (PA or Pa) of the alleles at that point; in fact this mapM from {0, 1}Nc to genotypes is x independent

and corresponds to a coloring of the verƟces of the Nc-dimensional hypercube. There are as many colors as there are one-locus

genotypes at a given generaƟon: 4 for SSD and 16 for SIB. (This number disƟnguishes Aa from aA, so that there is no phase

ambiguity.)

The master equaƟon to treat the random walks

Each random walk will lead to a sequence of colors on H and thus will be compaƟble or not with a desired block paƩern. For

instance, one might ask for a first block fixed of the Pa type, followed by a heterozygous block, followed by another block of the

Pa type, etc. To keep the explanaƟons as simple as possible, we shall oŌen restrict the cases to fixed (homozygous) blocks but the

Markov approach is applicable in complete generality to homozygous as well as heterozygous blocks. We want to go over all walks

compaƟble with the desired block paƩern, taking into account their weights, and then sum all their weights to get the probability

of having the predefined paƩern.

Before dealing with the full conƟnuous Ɵme Markov process beginning at x = 0 and ending at x = L, let us ignore the

residence Ɵmes and focus only on the sequence of verƟces visited by the walk on the hypercube. We use the Master equaƟon

approach [14]: within a computer algorithm, we follow the probability Vi of being on vertex i of H before each hop. At a given

hop (juncƟon), we consider each vertex, divide the probability at that vertex intoNc equal parts, and send one part to each of the

neighboring verƟces. If the receiving vertex is not compaƟble with the block paƩern requested, the part sent is instead thrown

away, i.e., set to 0. These operaƟons define the updaƟng of the probabiliƟes on each vertex aŌer the hop; the implementaƟon
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corresponds mathemaƟcally to applying a (sparse) matrix to the vector of probabiliƟes V (k) aŌer hop k to obtain the probabiliƟes

aŌer hop (k + 1):

V
(k+1)
i =

∑
〈ij〉

Mi,jV
(k)
j (S1)

The indices i and j label hypercube verƟces, and the sum is over theNc neighbors of vertex i. This Master equaƟon, encoded in

the matrixM , in effect considers all possible random walks onH in a systemaƟc way. (Without loss of generality, we shall assume

that the iniƟal vector of probabiliƟes V (0) is set so as to be compaƟble with the desired block paƩern.) From this determinisƟc

evoluƟon of probabiliƟes, we can extract numerous relevant quanƟƟes, the simplest one being the probability P (n)(k) that the

n'th block lasts exactly k hops. Later, these probabiliƟes will be used to construct the block size distribuƟons. Other quanƟƟes of

use are the joint probabiliƟes P (n,n+1)(kn, kn+1) that two successive blocks n and n+ 1 terminate aŌer their knth and kn+1th

hop; from these we can get joint block size distribuƟons, etc.

The role of chromosome length

Implicitly the total length L of the chromosome has been ignored in the previous discussion. However, L influences both the

lengths and the number of blocks, so the computaƟon of the block sizes given in the previous secƟon has to be modified to take

into account L. Clearly one must force the last block to contain the value x = L; such a constraint can be imposed via a ``filter''

on the events. Suppose for instance one wants to find the probability of having a paƩern of 3 blocks when 0 ≤ x ≤ L. One can

first compute (on the infinite chromosome) the quanƟƟes P (1,2,3)(k1, k2, k3) via the Master equaƟon. For given k1, k2 and k3,

block i will have a length `i distributed according to ρki ; the filter will then simply be the constraint `1 + `2 < L < `1 + `2 + `3.

One must then integrate over all values of the `i compaƟble with these constraints, and finally sum over all cases of k1, k2, k3

along with their probabiliƟes. Here and in most other cases, there are short-cuts to make the computaƟon more efficient because

the filter applies only to the last block. In this example, a short-cut consists in applying the Master equaƟon to give the quanƟƟes

P ([1−2],3)(k[1−2], k3) associated with the cases where the union of the first and second blocks (both constrained to be non empty)

uses k[1−2] hops and the third uses k3 as before. Now instead of having triple integrals, one has double integrals, and the overall

probability P3 of having the desired paƩern with three blocks becomes

P3 =

∞∑
k[1−2]=2

∞∑
k3=1

P ([1−2],3)(k[1−2], k3)

∫ L

`[1−2]=0

d`[1−2]ρk[1−2]
(`[1−2])∫ ∞

`3=L−`[1−2]

d`3ρk3(`3) . (S2)

Such sums and integrals can be treated by mathemaƟcal soŌware and we have used MathemaƟca [13] (see File S2). It turns out

that further simplificaƟons are oŌen possible. For instance to determine the probability of having n blocks when 0 ≤ x ≤ L,

one can first compute the probabiliƟes of having at mostm blocks; determining these requires only summing over the one index

k[1−...−m] and integraƟng over the one variable `[1−...−m] with the constraint that `[1−...−m] > L (the filter). Given these

probabiliƟes, quanƟƟes such as P3 are obtained by simple differences as is illustrated in the main text.

Results

A spectral decomposiƟon for the length distribuƟon

The conƟnuous Ɵme stochasƟc process on the hypercubeH admits a spectral decomposiƟon [15]. Thismeans that the evoluƟon of

probabiliƟes on the hypercube can be represented in terms of a diagonal operator (just like thematrix in Eq. S1 can be diagonalized),

the spectrum being the corresponding eigenvalues {λj}j=1,2Nc . The probability of being in a block of given color can then be
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wriƩen as ∑
i

′Vi(x) =

2Nc∑
j=1

αje
−λjx (S3)

where the first sum is restricted to verƟces i of the hypercube that have the color under consideraƟon, x is the conƟnuous posiƟon

along the chromosome, and the coefficients αj depend on the eigenvectors. We then see that the probability of staying within

a given color for some length (such as the block size) decomposes into a sum of exponenƟals. As a consequence, the probability

density of block sizes is dominated at large sizes by a single exponenƟal of rate λ∗, the smallest of the λj ; in fact this rate is the

same for all blocks. Note that for g = ∞, formally one has an infinite sum of exponenƟals which a priori could change this result,

but in reality that is not the case because these terms, coming from larger and larger g, have contribuƟons that decay fast with g.

A similar analysis can be applied to the values of P (n)(k) (at large n) from which the steady-state block size distribuƟon

are computed. Indeed, exploiƟng again the Markov process at any given n, these probabiliƟes can be represented by a sum of

exponenƟals, and we find that a single exponenƟal dominates at large k.

A good SRP approximaƟon

Even though juncƟons are independent, each juncƟon affects the IBD property in its neighborhood; only at large distances (many

crossover events) will we get decorrelaƟon as is oŌen the casewithMarkov processes. As explained in themain text, the successive

block lengths are not independent, in contrast to the underlying ∆x separaƟng juncƟons. Nevertheless, since we found the

correlaƟons between block lengths to be weak, it is of interest to consider the approximaƟon whereby these correlaƟons are

simply neglected, leading to a staƟonary renewal process (SRP) [14] when considering the infinite chromosome. The block lengths

are then taken to be i.i.d. random variables of distribuƟon µ∗(`). This distribuƟon was obtained in the main part of the paper.

In the absence of a closed form expression for µ∗(`), we have empirically fiƩed it. For instance in the case of SSD, we find that

the funcƟon µ∗(`) ≈ 3e−A`/(1 + B`) works quite well. In this parameter-free funcƟon, the 3 comes from µ∗(0) = 3 while the

values A = 0.9789 and B = 4.1295 are set so that the distribuƟon is normalized and 〈`〉 = 0.5. Fig. S3 shows µ∗(`) and its

approximaƟon which clearly is very saƟsfactory.

Although such an SRP framework is formulated for an infinite chromosome, it can be applied to finite chromosomes by con-

sidering that the interval [0, L] acts as a filter, just as it did when deriving block number distribuƟons.
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Table S1 Linear correlaƟon coefficients Cn,n+1 between successive block lengths (for blocks n and n+ 1) at increasing values

of g. Note that all coefficients are small, and approach 0 as g increases.

g C1,2 C2,3 C3,4 C4,5

2 -0.0197 -0.0334 -0.0221 -0.0285

3 -0.0125 -0.0237 -0.0195 -0.0205

4 -0.00841 -0.0165 -0.0141 -0.0144

5 -0.00597 -0.0115 -0.00967 -0.00970

6 -0.00446 -0.00803 -0.00609 -0.00618
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Figure S1: Principle of genotype monitoring using juncƟons, illustrated in the case of SSD. Only one pair of homol-
ogous chromosomes (H, H') is depicted, for three generaƟons (g = 0 to 2, from leŌ to right). The process is de-
composed into three steps for the sake of clarity: A) at all generaƟons, juncƟons (verƟcal bars) are placed randomly
on chromosomes. The example shows four juncƟons, J1 to J4. The juncƟons are indexed from leŌ to right when all
chromosomes/generaƟons are projected onto the same map (see text for details). B) RelaƟve inheritance (IBD) from
one generaƟon to the next is described using 0 and 1 labels, with 0 (resp. 1) indicaƟng that the chromosome segment
is a copy of the H (resp. H') chromosome of the previous generaƟon. The labels are random at the leŌ side of the
chromosomes (corresponding to x = 0, then necessarily switch (0 → 1 or 1 → 0) at each juncƟon. It is important
to note that during steps A) and B) the genotypes (allelic content) of the chromosomes are not considered. This is
emphasized by a uniform gray colouring of all chromosomes. C) Genotypes are deduced. Knowing the true genotype
of the F1 (assumed here to be fully heterozygous white/black), one can then follow the relaƟve inheritance paƩerns
of step B) from one generaƟon to the next and deduce the genotypes of the chromosomes in the last generaƟon. It is
important to keep in mind that there is no direct relaƟonship between the 0/1 labels and the white/black genotypes
(except for g = 1).
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Figure S2: Two parental lines are crossed in SIB to produce a recombinant inbred line. A given chromosome from
this line then forms a mosaic of blocks, each IBD with one of the parents. The final block paƩern here consists of 3
alternaƟng fixed blocks.
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Figure S3: Probability density µ∗(`) of a block far away from the origin and the parameter-free approximaƟon
3e−A`/(1 + B`) with A = 0.9789 and B = 4.1295 so that the distribuƟon is normalized and 〈`〉 = 0.5. The
number of generaƟons is large, and the RILs use SSD.
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Figure S4: Probability density of homozygous block size for block number 1, 2, ... 10 in SIB. The chromosome is semi-
infinite, and the number of generaƟons is 7. Convergence in block number is oscillatory. One sees that the memory
effects are much larger than in the SSD RILs.
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Figure S5: Probability density of the length of the first block on a long chromosome, assuming it is homozygous.
Results are for g = 2 to g = 12 in SSD, exhibiƟng the rapid convergence of block staƟsƟcs with g.
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Figure S6: Probability density of the length of the first block on a long chromosome, assuming it is homozygous.
Results are for g = 1 to g = 7 in SIB, exhibiƟng the convergence of block staƟsƟcs with g.
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Figure S7: Comparison of theoreƟcal predicƟons to experimental data for the length of the first block in SSD RILs.
The experimental data is from Singer et al. [16] for 100 RILs and high density genotyping. The conƟnuous curve is the
theoreƟcal distribuƟon with the filled dot corresponding to the cases with no second block. The histograms are for
the experimental data, and 95% confidence intervals are also represented. Results for chromosomes 1 through 5 are
shown on the successive subfigures.
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