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A direct numerical simulation (DNS) procedure is employed to study the thermal motion of a
nanoparticle in an incompressible Newtonian stationary fluid medium with the generalized Langevin
approach. We consider both the Markovian (white noise) and non-Markovian (Ornstein-Uhlenbeck
noise and Mittag-Leffler noise) processes. Initial locations of the particle are at various distances
from the bounding wall to delineate wall effects. At thermal equilibrium, the numerical results are
validated by comparing the calculated translational and rotational temperatures of the particle with
those obtained from the equipartition theorem. The nature of the hydrodynamic interactions is ver-
ified by comparing the velocity autocorrelation functions and mean square displacements with ana-
lytical results. Numerical predictions of wall interactions with the particle in terms of mean square
displacements are compared with analytical results. In the non-Markovian Langevin approach, an
appropriate choice of colored noise is required to satisfy the power-law decay in the velocity au-
tocorrelation function at long times. The results obtained by using non-Markovian Mittag-Leffler
noise simultaneously satisfy the equipartition theorem and the long-time behavior of the hydrody-
namic correlations for a range of memory correlation times. The Ornstein-Uhlenbeck process does
not provide the appropriate hydrodynamic correlations. Comparing our DNS results to the solution
of an one-dimensional generalized Langevin equation, it is observed that where the thermostat ad-
heres to the equipartition theorem, the characteristic memory time in the noise is consistent with the
inherent time scale of the memory kernel. The performance of the thermostat with respect to equilib-
rium and dynamic properties for various noise schemes is discussed. © 2011 American Institute of
Physics. [doi:10.1063/1.3635776]

I. INTRODUCTION

Hydrodynamic interactions and thermal fluctuations both
play important roles in determining the motion of the
nanoparticle in an incompressible Newtonian stationary fluid
medium. Nanoparticles undergo thermal motion in a fluid
which can be simulated either using the fluctuating hydro-
dynamics approach or using the Langevin approach. In the
fluctuating hydrodynamics approach, the nanoparticle motion
incorporates both the Brownian motion and the effect of hy-
drodynamic force acting on its surface imparted from the
surrounding fluid. Over the years, many numerical simula-
tion schemes, such as the finite volume method,1, 2 the lattice
Boltzmann method (LBM),3–8 and the stochastic immersed
boundary method,9 have been developed to investigate the
Brownian motion of a particle using fluctuating hydrodynam-
ics. A coarse-graining methodology has been developed to
bridge molecular dynamics and fluctuating hydrodynamics
simulations.10, 11 In our recent paper,12 we have employed a
finite element method (FEM) to determine the thermal mo-
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tion of a nanoparticle in a fluid medium using fluctuating hy-
drodynamics approach. Even though the Brownian motion of
a nanoparticle using fluctuating hydrodynamics has been ex-
tensively studied using the LBM technique,6, 7 the advantage
of the FEM approach is that it is versatile for flow description
through arbitrary geometries.13

In this paper, we pursue the Langevin approach, in which
the thermal fluctuations from the fluid are incorporated as ran-
dom forces and torques in the particle equation of motion.14–19

The primary objective here is to build a robust thermostat,
which preserves equilibrium distributions at constant tem-
peratures (i.e., adheres to the equipartition theorem) and en-
ables the evaluation of free energy landscapes of nanoparticle
adhesion with surfaces in future applications. By definition,
coupling to a thermostat will alter the hydrodyamics of the
nanoparticle system. Hence, our objective here is to charac-
terize the performance of the thermostat as well as how it
alters the associated hydrodynamic correlations. In this re-
spect, this study will complement our earlier investigation.12

The results of the classical Langevin equation using the in-
stantaneous friction law predict rapid exponential decay in
the velocity autocorrelation function (VACF). Using com-
puter simulations on a hard-sphere system, Rahman20 and
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Alder and Wainwright21 found a long-tailed decay (∼ t−3/2)
in the VACF. Zwanzig and Bixon22 have theoretically justified
the power-law decay of VACF using a frequency dependent
version of the Stokes-Einstein diffusion formula. Hauge and
Martin-Löf have considered the Brownian motion of particles
of arbitrary shape and have shown that in the Langevin ap-
proach, the momentum equation for the nanoparticle can be
appropriately modified to satisfy the generalized fluctuation-
dissipation theorem.23 Numerical schemes for studying the
nanoparticle motion in a fluid must simultaneously consider
the momentum (Langevin) equation for the particle and the
Navier-Stokes equation for the fluid. The random force/torque
in the particle equation can then be related to the fric-
tional force/torque via the generalized fluctuation-dissipation
theorem.24, 25 The implementation can occur in two ways:
(i) directly adjust the variance of the random force term in the
classical Langevin equation to play the role of a thermostat.
In this context, Iwashita et al.18, 19 have considered an iterative
scaling scheme within the direct numerical simulation (DNS)
by adjusting the variance of the random force term in the mo-
mentum equation; such a procedure, while useful in construct-
ing a thermostat that preserves hydrodynamic correlations, is
still ad hoc in the sense that it deviates from the structure of
the generalized Langevin equation. (ii) A second, more di-
rect approach that preserves the structure of the generalized
Langevin equation (GLE), is to consider the power spectrum
for the variance of the random force term using a correlated
or colored noise with a well defined characteristic memory
time. This is the approach employed in the present study. As
we show here, such a formalism simultaneously preserves the
equipartition theorem and the nature of the long time hydro-
dynamic correlations, and proves to be a versatile thermostat.
Eventually, this formalism can also easily be extended to cap-
ture (i.e., reproduce an a priori specified) the thermal force
fluctuations such as those experienced by a nanoparticle due
to collisions with blood cells.26 This is important in intravas-
cular nanoparticle-based targeted drug delivery (TDD)27–29

which is a major motivation for this study.
Here, we solve the momentum equations simultaneously

for the nanoparticle and the fluid using arbitrary Lagrangian-
Eulerian (ALE) based FEM to determine the thermal char-
acteristics. The paper is organized as follows: Sec. II is fo-
cused on the thermostat described by a one-dimensional (1D)
GLE. Section III describes the formulation of the hydrody-
namic equations in a three-dimensional (3D) system. This in-
cludes the Galerkin finite element combined formulation for
the fluid and particle momentum equations subject to thermal
fluctuations. Numerical results along with validations are pre-
sented in Sec. IV and conclusions are presented in Sec. V.

II. THERMOSTAT DESCRIBED BY AN 1D GLE

A. 1D GLE with correlated noise schemes

For a Brownian particle, the GLE in one dimension is
given by

m
dU

dt
= −

∫ t

−∞
ζ (trans)(t − t ′)U (t ′)dt ′ + R(t), (1)

where U is the velocity of the particle, ζ (trans)(t) is the fric-
tional memory kernel and m is the mass of the particle. The
random force R(t) is generally taken to be zero-centered and
stationary Gaussian,24, 30 which is sampled from the correla-
tion function,

〈R(t)R(t ′)〉 = C(|t − t ′|). (2)

The memory kernel ζ (trans)(t) is related to the correlation
function of the noise via the second fluctuation-dissipation
theorem,31

C(|t − t ′|) = kBT ζ (trans)(|t − t ′|), (3)

where, kB is the Boltzmann constant and T is the abso-
lute temperature. In particular, if R(t) is both Gaussian and
Markovian, then Doob’s theorem32 states that R(t) is neces-
sarily an Ornstein-Uhlenbeck process,33 with an exponential
correlation function given by,

ζ (trans)(|t − t ′|) = ζ (trans)γ (|t − t ′|),

γ (|t − t ′|) = 1

τ
e−|t−t ′ |/τ , (4)

where, ζ (trans)(= 6πμa) is the constant friction coefficient,
γ (|t − t ′|) is the dissipative memory kernel, τ is the charac-
teristic memory time, μ is the dynamic viscosity of the fluid,
and a is the radius of the nanoparticle. In the limit of charac-
teristic memory time τ → 0,

γ (|t − t ′|) = 2δ(t − t ′), (5)

which corresponds to a white noise, non-retarded friction,
and standard Brownian motion.34 Zwanzig and Bixon22 have
shown that for a constant friction coefficient ζ (trans), the
VACF of the particle in a simple fluid obeys

〈U (t)U (0)〉 = kBT

m
e−ζ (trans)t/m, (6)

i.e., an exponential decay. Also, for the time dependent fric-
tion coefficient ζ (trans)(t) (derived from a linearized Navier-
Stokes equation), the decay of the VACF at long times obey

〈U (t)U (0)〉 ≈ BkBT

m
(ζ (trans)t/m)−3/2, (7)

i.e., a power-law decay, where 〈〉 denotes the ensemble aver-
age, B is a constant. Rahman20 and Alder and Wainwright21

have demonstrated using molecular dynamics simulations that
the velocity autocorrelation function of the particle has a long
time tail as given by Eq. (7). In the literature, pure power-law
correlation functions have been employed to investigate the
anomalous diffusion behavior of the particle that is related
to the long time tail correlations.35–38 Recently, Viñales and
Despósito39 have considered a Mittag-Leffler noise given by

C(|t − t ′|) = kBT ζ (trans)(|t − t ′|) = mkBT γ (|t − t ′|),

γ (|t − t ′|) = γ (λ)

τλ
Eλ

[
−

( |t − t ′|
τ

)λ ]
, (8)

where the exponent λ taken as 0 < λ < 2, γ (λ) is the propor-
tionality coefficient dependent on the exponent λ, and Eλ(y)
is the Mittag-Leffler function defined through the series as40
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Eλ(y) =
∞∑

n=0

yn

�(λn + 1)
, λ > 0. (9)

Here, � denotes the Gamma function. The exponent λ is de-
termined by the dynamics of the physical process considered.
The correlation function described by Eq. (8) behaves as a
stretched exponential for short times and as an inverse power-
law for long times when λ 	= 1,41 and it is non-singular at the
origin due to the presence of characteristic memory time τ .
For λ = 1, the function in Eq. (8) reduces to an exponential
form, which describes a standard Ornstein-Uhlenbeck pro-
cess given in Eq. (4) with γ (|t − t ′|) = (γ /τ )e−|t−t ′|/τ . For
λ 	= 1 and in the limit of characteristic memory time τ → 0,
the function in Eq. (8) reduces to a pure power-law correla-
tion function. It is interesting to note that the Mittag-Leffler
function, Eλ(−tλ), shows different behaviors depending on
the value of exponent λ.41, 42

The particle’s mean velocity (i.e., VACF) and the mean
square displacement (MSD) for the generalized Langevin
equation with a Mittag-Leffler memory kernel are given
by35, 39, 43

〈U (t)U (0)〉 = kBT

m
E2−λ[−(ωλt)

2−λ], (10)

〈
x2(t)〉 = 2
kBT

m
t2E2−λ,3[−(ωλt)

2−λ], (11)

where ω2−λ
λ = γ (λ) (units of γ (λ) is sλ−2). In the short and

long time regimes, the above Mittag-Leffler series reduces
to a stretched (0 < λ < 1) or compressed exponential (1 < λ

< 2) and an inverse power-law, respectively (see Table I). It is
well known that 1D GLE with Mittag-Leffler noise describes
the motion of an anomalously diffusing particle.

B. Numerical modeling of the 1D GLE

In this study, the GLE in Eq. (1) together with the cor-
relation function in Eqs. (4) or (8) is numerically solved
using a finite difference method. The time scales involved
are (i) τb = m/ζ (trans), the Brownian relaxation time over
which velocity correlations decay in the Langevin equation,
(ii) τd = a2ζ (trans)/kBT , the Brownian diffusive time scale
over which the nanoparticle diffuses over a distance equal to
its own radius, and (iii) τν = a2/ν, the hydrodynamic time
scale for momentum to diffuse over a distance equal to the
radius of the nanoparticle, where ν is the kinematic viscosity
of the fluid. The time scale 
t for the numerical simulation

FIG. 1. Temperature convergence for a particle of radius a = 50 nm in 1D
GLE as a function of characteristic memory time using both the Ornstein-
Uhlenbeck process and the Mittag-Leffler noise.

has been chosen to be smaller than all the relevant physical
time scales described above. The simulations presented in this
study have been carried out for long enough durations to al-
low for the temperature of the particle to equilibrate, i.e., if N

is the number of simulated time steps then N · 
t = t 
 τν .
We consider a neutrally buoyant nanoparticle of radius 50 nm,
and density ρ(p) = 103 kg/m3, diffusing in water with vis-
cosity, μ = 10−3 kg/ms, and density, ρ(f ) = 103 kg/m3. For
a particle of radius a = 50 nm, τb ≈ 5.55 × 10−10 s, τν

≈ 2.5 × 10−9 s, and τd ≈ 5.5 × 10−4 s and for a particle of
radius a = 250 nm, τb ≈ 1.38 × 10−8 s, τν ≈ 6.25 × 10−8 s,
and τd ≈ 6.88 × 10−2 s.

In the non-Markovian process (colored noise), the char-
acteristic memory time τ adds a certain amount of memory
from the previous history of fluctuations in the system. The
value of τ is chosen such that it is much longer than the
time step of integration. Figure 1 shows numerically evalu-
ated translational temperature of the particle (T (trans)) versus
characteristic memory time for both the Ornstein-Uhlenbeck
process and the Mittag-Leffler noise. The temperature of the
particle is normalized with the preset temperature, Tp, of the
thermostat. It is observed that the equipartition theorem is
satisfied by both the colored noise schemes, validating our
numerical procedure. The error bars have been plotted from
standard deviations of the temperatures obtained with five dif-
ferent realizations, each realization computed up to 100 000
time steps.

Figure 2 shows the VACF of the particle obtained
from the 1D GLE simulations with Mittag-Leffler noise for
various values of the power-law exponent λ. As shown, the
short and long time behavior of VACF displays a stretched
exponential and an algebraic decay, respectively, which

TABLE I. The VACF and MSD of the particle at short and long time regimes for the generalized Langevin
equation with a Mittag-Leffler memory kernel. Here, γ (λ) is a proportionality coefficient dependent on the expo-
nent λ. We note that γ (λ) is obtained for a given λ (but is independent of time t or τ ) such that the equipartition
theorem is satisfied.

Short time regime Long time regime

VACF
kBt

m
exp{−χt2−λ}; χ ≈ γ (λ)

�(3 − λ)

kBt

m
φtλ−2, φ ≈ 1

γ (λ)�(λ − 1)

MSD 2
kBt

m
t2 exp{−�t2−λ}; � ≈ γ (λ)

�(5 − λ)
2
kBt

m
�tλ,� ≈ 1

γ (λ)�(1 + λ)
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FIG. 2. VACF of the particle of radius a = 50 nm for four different values of λ (holding τ fixed at 100
t) obtained using the 1D GLE. Here, MLN stands for
Mittag-Leffler Noise, φ and χ are given in Table I.

depends on the exponent λ of the Mittag-Leffler noise. This is
in agreement with the analytical solution presented in Table I.
We note that: (1) we have verified that the VACF for λ = 1.0
(Ornstein-Uhlenbeck process) decays exponentially and (2)
for λ = 0.5 the long time decay of VACF ∼ t−3/2, and this is
consistent with correlations in classical hydrodynamics of a
Newtonian fluid.

III. FORMULATION OF HYDRODYNAMIC EQUATIONS
IN THREE DIMENSIONS

Now, we consider the thermal motion of a nanoparticle
in an incompressible Newtonian stationary fluid medium in a
horizontal circular vessel (see Figure 3). The fluid and particle
equations are formulated in an inertial frame of reference with
the origin coinciding with the center of the cylindrical vessel
(Figure 3). The diameter, D, and the length, L, of the vessel

FIG. 3. Schematic representation of a nanoparticle in a stationary fluid
medium in a circular vessel (not to scale). Diameter of the vessel: D

= 2R = 5 μm; length of the vessel: L = 10 μm; diameter of the nanopar-
ticle: d = 2a = 100 or 500 nm; viscosity of the fluid: μ = 10−3 kg/ms; den-
sity of the fluid and the nanoparticle: ρ(f ) = ρ(p) = 103 kg/m3. Particle lo-
cations away from the center are not displayed in this figure.

are very large compared to the nanoparticle diameter, d. Ini-
tially, a nanoparticle is introduced either at the vessel center-
line or at suitably chosen locations away from the center line
towards the bounding wall. Initially, both the fluid and parti-
cle are at rest. No body force is assumed to be applied either
on the particle or in the fluid domain. Starting at time t = 0,
the nanoparticle experiences Brownian motion. The motion
of the nanoparticle is determined by the hydrodynamic forces
and torques acting on the particle and subject to the wall
interactions.

A. Governing equations and boundary conditions

The motion generated in the incompressible Newtonian
fluid satisfies the conservation of mass and momentum as
given by

∇ · u = 0, (12)

ρ(f )

(
∂u
∂t

+ (u · ∇) u
)

= ∇ · σ , (13)

where u and ρ(f ) are the velocity and density of the fluid,
respectively, and σ is the stress tensor. For a Newtonian fluid,
the stress tensor is given by

σ = −pJ + 2μD[u], D[u] = 1

2
[∇u + (∇u)T ], (14)

where p is the pressure, J is the identity tensor, μ is the dy-
namic viscosity, and D[u] is the rate of deformation tensor.

For a rigid particle suspended in an incompressible
Newtonian fluid, the translational motion of the particle satis-
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fies Newton’s second law,

m
dU
dt

= F + R(t), (15)

and the rotational motion satisfies the Euler equation,

d (Iω)

dt
= T + �(t), (16)

where m is the mass of the particle, I is its moment of iner-
tia, and U and ω are the translational and angular velocities
of the particle, respectively. The random force R and random
torque � are added into the particle equations of motion sim-
ilar to that of GLE (Eq. (1)). The hydrodynamic force F and
the torque T acting on the particle are given by

F = −
∫

∂�p

σ · n̂ ds,

T = −
∫

∂�p

(x − X) × (σ · n̂) ds, (17)

where X is the position of the centroid of the particle, (x − X)
is a vector from the center of the particle to a point on its sur-
face, ∂�p denotes the particle surface, and n̂ is the unit normal
vector on the surface of the particle pointing into the particle.
The random force R and random torque � are assumed to be
Gaussian with

〈R(t)〉 = 0, 〈R(t)R(t ′)〉 = C(|t − t ′|) = mkBT α(|t − t ′|),
(18)

〈�(t)〉 = 0, 〈�(t)�(t ′)〉 = D(|t − t ′|) = IkBTβ(|t − t ′|),
(19)

where α and β are the dissipative memory kernels for force
and torque, respectively. Equations (18) and (19) satisfy the
fluctuation-dissipation theorem.24, 25 The right-hand sides of
Eqs. (18) and (19) denote the mean and variance of the ther-
mal fluctuations. By including this Brownian force due to the
thermal fluctuations in the governing equations, the macro-
scopic hydrodynamic theory is generalized to include the
mesoscopic scales ranging from tens of nanometers to a few
micrometers.

The initial conditions for the problem are

U(t = 0) = 0,

u(t = 0) = 0 on �0 − ∂�i, (20)

and the boundary conditions are given by

u = 0 on ∂�i, (21)

σ · n̂ = 0 on ∂�o, (22)

u = U + ω × (x − X) on ∂�p, (23)

where �0 is the domain occupied by the fluid and ∂�i and
∂�o are the inlet and outlet boundaries, respectively. The gov-
erning equations (12)–(16) along with the initial and bound-
ary conditions (20)–(23) are solved numerically.

B. Combined fluid-solid weak formulation

Owing to the complex nature of the particle motion,
finite-element techniques are particularly useful for discretiz-

ing the governing fluid equations. For this purpose, a weak
formulation that incorporates both the fluid and particle equa-
tions (Eqs. (12), (13), (15) and (16)) is considered.44, 45

Let V be the function space given by

V =
{

V = (u, U,ω)|u ∈ H 1, (U,ω) ∈ R3

u = U + ω × (x − X) on ∂�p, u = up on ∂�i

}
.

(24)

Here, H 1 corresponds to the Hilbert space defined on the fluid
domain, and R3 stands for the real space for the particle ve-
locities. The square integrable L2-functions in an L2 space is
chosen for the pressure and is denoted by

P = {p|p ∈ L2}. (25)

The test function V (variation) is considered as follows
to derive the weak formulation for the combined fluid-particle
system

Ṽ = (ũ, Ũ, �̃) ∈ V0. (26)

Here, the variational space V0 is the same as V , except that
u = 0 on ∂�i . Multiplying Eq. (13) by the test function for
the fluid velocity, ũ, and integrating over the fluid domain at
time t gives∫

�0

ρ(f )

(
∂u
∂t

+ (u · ∇) u
)

· ũ dV

+
∫

�0

σ : ∇ũ dV −
∫

∂�p

(σ · n̂) · ũ ds = 0. (27)

It should be noted that the variations for each variable intro-
duced above are arbitrary except on the particle surface where
the no-slip boundary condition in Eq. (21) enforces the equal-
ity of variations of fluid and particle velocities given by the
following relation:

ũ = Ũ + ω̃ × (x − X) on ∂�p. (28)

Using the equations of motion for the particles
(Eqs. (15) and (16)), the surface integral in Eq. (27) is
rewritten as follows:

−
∫

∂�p

(σ · n̂) · ũ ds

= −Ũ ·
∫

∂�p

(σ · n̂) ds − ω̃ ·
∫

∂�p

(x − X) × (σ · n̂) ds

= Ũ ·
[
m

dU
dt

− R(t)

]
+ ω̃ ·

[
I
dω

dt
− �(t)

]
. (29)

Substituting for stress tensor σ from Eqs. (14) and (29) into
Eq. (27), the combined fluid-particle momentum equation for
the Langevin approach is given by∫

�0

ρ(f )

(
∂u
∂t

+ (u · ∇) u
)

· ũ dV −
∫

�0

p (∇ · ũ) dV

+
∫

�0

{μ[∇u + (∇u)T ]} : ∇ũ dV + Ũ ·
[
m

dU
dt

− R(t)

]

+ ω̃ ·
[

I
dω

dt
− �(t)

]
= 0. (30)
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The weak formulation for the mass conservation equation is
obtained in a similar fashion. Let p̃ be the variation of pres-
sure p such that p̃ ∈ P . Here, the function space for both p̃

and p are chosen to be the same. The weak form of Eq. (12)
is then given by ∫

�0

p̃ (∇ · u) dV = 0. (31)

The domain movement is handled by an ALE scheme. The
details of spatial discretization, mesh movement techniques,
and temporal discretization of time derivatives are discussed
in Ref. 12. These details will not be repeated here for brevity.
Briefly, the fluid domain is approximated by quadratic tetrahe-
dral finite-elements (10 nodes defined per tetrahedron with 10
basis functions that are second-order polynomials). The dis-
crete solution for the fluid velocity is approximated in terms
of piecewise quadratic functions, and is assumed to be con-
tinuous over the domain (P2 elements). The discrete solution
for the pressure is taken to be piecewise linear and continu-
ous (P1 element). This P1/P2 element for the pressure and ve-
locity is consistent with the Ladyzhenskaya-Babuska-Brezzi
or inf-sup condition and yields convergent solutions. A sec-
ond order implicit time stepping scheme is used for solving
Eq. (30).44, 45

IV. RESULTS AND DISCUSSION

In this section, in a stationary Newtonian fluid medium,
we numerically predict (i) the translational and rotational tem-
peratures of the nanoparticle, where the temperature calcula-
tion is carried out until thermal equilibration is obtained for
the particle, (ii) the translational and rotational velocity distri-
butions of the nanoparticle motion, (iii) the translational and
rotational VACFs, (iv) the translational and rotational MSD
of the particle for both ballistic and diffusive regimes, and (v)
the effects of the presence of the bounding wall on a particle
initially placed at various locations are evaluated for several
cases. The various numerical predictions have been compared
with analytical results.

A neutrally buoyant solid spherical particle of radius ei-
ther a = 50 nm or a = 250 nm is initially placed either at
the centerline of a cylindrical vessel (R = 2.5 μm) contain-
ing a quiescent Newtonian fluid or at suitably chosen loca-
tions away from the center line towards the bounding wall.
The instantaneous flow description around the particle and
the motion of the particle are fully resolved. The physical
parameters used are: kB = 1.3806503 × 10−23 kg m2/s2K ,
μ = 10−3 kg/ms, ρ(f ) = 103 kg/m3, and ρ(p) = 103 kg/m3.
For a given nanoparticle of radius a, and vessel radius R, a
“realization” consists of N time steps. The number of time
steps, N , depends upon equilibration of particle tempera-
ture (N = 20 000), or determination of VACFs and MSD (N
= 100 000). In order to ensure the uniqueness of the realiza-
tions, different initial seeds are chosen for seeding the Gaus-
sian random number generator.

A. Markovian process

For the Markovian stochastic process, the dissipative
memory kernel for force and torque in Eqs. (18) and (19), re-

spectively, are Dirac delta functions given by

α(|t − t ′|) = 2(ζ (trans)/m)δ(t − t ′),

β(|t − t ′|) = 2(ζ (rot)/I)δ(t − t ′), (32)

where ζ (trans) = 6πμa and ζ (rot) = 8πμa3 are the dissipa-
tive friction coefficients for the force and torque, respectively,
and a is the radius of the particle. Here, δ(t − t ′) signifies
that there is no correlation between impacts at distinct time
intervals.

The equilibrium probability density function of the ve-
locity of the fluctuating particle should follow the Maxwell-
Boltzmann distribution (MBD),

P (U) =
√

2

π

(
m

kBT

)3/2

〈U2〉 exp

{
−m〈U2〉

2kBT

}
,

and by symmetry, the equilibrium statistics of the three com-
ponents of U along the three coordinate directions should be
independent of each other.

In Figure 4, the numerically simulated components of
U (represented by three different symbols) are compared
with the analytical Maxwell-Boltzmann distribution (with
mean zero and variance kBT /m). It is observed that each
component of U individually follows the Gaussian distri-
bution. However, the large deviation between the variance
of the numerically determined distribution (obtained by us-
ing the uncorrelated or white noise) and that predicted by
the Maxwell-Boltzmann distribution, indicates a mismatch
between the average kinetic energy of the particle and
the thermal energy of the system. The translational tem-
perature of the particle obtained from its average kinetic
energy is

T (trans) = m〈U2〉
3kB

. (33)

These are obtained from five different realizations in each co-
ordinate direction. Each realization consists of N = 20 000
time steps. Thus, to evaluate the equilibration of the particle
temperature with the preset temperature, we have employed

FIG. 4. Equilibrium probability of the velocity of the nanoparticle of radius
a = 50 nm by using white noise.
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FIG. 5. Translational temperature of the Brownian particle, T (trans), calcu-
lated by using white noise in a cylindrical vessel of radius R = 2.5 μm.

3 × 5 × 20 000 = 300 000 time steps. Furthermore, the to-
tal number of realizations for each case has been arrived
such that any further increase in the number of realizations
does not significantly change the prediction of temperature
equilibration.

We note that Figure 5 exhibits a systematic error of
∼89% in the translational temperature of the various sizes
of the particle considered . The error bars have been plotted
from standard deviations of the temperatures obtained with 15
(3 × 5 = 15) different realizations.

In DNS, the frictional dissipation, or more generally the
resistance offered by the surrounding fluid on the particle
is time (memory) dependent. The generated fluctuations of
random forces and random torques in Eq. (32), however,
are uncorrelated in time. This contradicts the fluctuation-
dissipation theorem from a GLE standpoint, as the random
force and torque must have the power spectrum determined
by the friction.24, 25, 30 This inequality in the systematic and
random parts of the microscopic forces manifests as a lack
of adherence to the equipartition theorem resulting in the
large deviation between the computed velocity distribution
and the Maxwell-Boltzmann distribution. This implies that
a numerical scheme with white noise (Markovian) is not
sufficient to serve as a thermostat within the generalized
Langevin approach when the hydrodynamics is fully resolved.
A noise with a well defined characteristic memory time is
required.

B. Non-Markovian process

For a non-Markovian stochastic process, the random-
noise depends on the memory effects considered through
time correlations. In this case, Eqs. (18) and (19) satisfy the
generalized fluctuation-dissipation theorem.24, 25 For a time
correlated Mittag-Leffler noise,39, 46 the dissipative mem-
ory kernel for force and torque in Eqs. (18) and (19) are

given by

α(|t − t ′|) = α0(λ)

τλ
Eλ

[
−

( |t − t ′|
τ

)λ
]

,

β(|t − t ′|) = β0(λ)

τλ
Eλ

[
−

( |t − t ′|
τ

)λ
]

, (34)

respectively, where λ is the exponent taken as 0 < λ < 2,
α0(λ) (units of α0(λ) is sλ−2) and β0(λ) (units of β0(λ) is sλ−2)
are the proportionality coefficient dependent on the exponent
λ but independent of t or τ , and Eλ(y) is the Mittag-Leffler
function40 defined through the series given by Eq. (9). When
λ 	= 1, the noise correlation function in Eq. (34) behaves as a
stretched exponential for short times and as an inverse power-
law in the long time limit.41

For λ = 1, the noise correlation function in Eq. (34) re-
duces to the Ornstein-Uhlenbeck process,33, 47

α(|t − t ′|) = (ζ (trans)/m)

τ
e−|t−t ′ |/τ ,

β(|t − t ′|) = (ζ (rot)/I)

τ
e−|t−t ′ |/τ . (35)

In the limit τ → 0, the Ornstein-Uhlenbeck process, i.e.,
Eq. (35), reduces to the Markovian stochastic process given
by Eq. (32).

For λ 	= 1, the proportionality coefficients α0 and β0 are
chosen such that the Mittag-Leffler noise satisfies the equipar-
tition theorem. In our numerical simulations, initially α0 and
β0 are dynamically optimized during the course of a trajectory
according to the scheme (see, Ref. 18),

α0(λ, t + 
t) = α0(λ, t)e1−U2/〈U2〉,

β0(λ, t + 
t) = β0(λ, t)e1−ω2/〈ω2〉. (36)

We expect that for a given λ and characteristic memory
time τ/τν in the long time limit, α0 and β0 will converge
to constant values, making them effectively independent of
time t .

1. Equipartition theorem

Figures 6(a) and 6(b) show that for λ = 0.5 and τ/τν

= 2, α0 and β0 do converge to constant values over an en-
semble average of 45 different realizations. The proportion-
ality coefficients α0 and β0 are non-dimensionalized using
τλ−2
ν = τ−1.5

ν (for λ = 0.5). Figures 6(c) and 6(d) show α0

and β0 as functions of τ . For any given value of τ/τν , if α0

and β0 are chosen from Figures 6(c) and 6(d), respectively,
then the evaluated temperature of the nanoparticle is noted to
agree with the preset temperature of thermostat within 3% er-
ror. As a result, the model serves as a general thermostat for a
range of the characteristic memory time τ/τν .

It is interesting to note from Figures. 6(c) and 6(d) that
α0 and β0 remain constant (i.e., independent of τ ) over a fi-
nite plateau region where the characteristic memory time τ is
larger than the hydrodynamic time scale, τν . The significance
of this numerical result is that when τ is sampled from the
interval defined by the plateau region, the values of α0 and
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FIG. 6. Convergence in the proportionality coefficient, (a) α0(λ), (b) β0(λ) for τ/τν = 2; characteristic memory time as a function of proportion-
ality coefficient (c) α0(λ), (d) β0(λ), and (e) translational and rotational temperatures of the nanoparticle of radius a = 50 nm by using Mittag-
Leffler noise (λ = 0.5). The proportionality coefficients α0 and β0 are non-dimensionalized using τλ−2

ν = τ−1.5
ν . For a given τ/τν , if α0(λ) and β0(λ)

are chosen from (c) and (d), respectively, then the thermostat satisfies the equipartition theorem within 3% error. When α0(λ)/τ−1.5
ν = 1.61 × 10−9

(a) and β0(λ)/τ−1.5
ν = 2.03 × 10−9 (b) are independent of τ , the thermostat satisfies the equipartition theorem in the plateau region given by (e).

It is to be noted that in the same plateau region ((c) and (d)), α0 and β0 remain constant and agree with the values given in (a) and (b),
respectively.

β0 for which the nanoparticle translational as well as rota-
tional temperatures agree with the preset temperature (Figure
6(e)) are independent of τ and t . Thus, we are able to numer-
ically demonstrate that the characteristic memory time in the
external noise has to be chosen consistent with the inherent
time scale of the memory kernel, i.e., the hydrodynamic time
scale, in order to adhere to the equipartition theorem within
the statistical error.

In Figure 7, we plot the velocity distributions of the par-
ticle for each component of U [Figure 7(a)] and ω [Figure
7(b)] corresponding to the plateau regions of Figures. 6(c)–
6(e), where thermal equilibrium has been attained. These dis-

tributions agree within 5% error (see dotted line in Figure 7)
with that of the analytical Maxwell-Boltzmann distribution.
This agreement provides further validation in support of the
correctness of the numerical procedure.

Figure 8 shows the translational temperature of the par-
ticle as a function of the normalized surface mesh (mesh
length divided by particle radius) for two different radii of the
nanoparticle by using the Ornstein-Uhlenbeck process and
the Mittag-Leffler noise. It is observed that the temperature
of the particle is independent of mesh sizes and the time step
of integration, showing domain and time step convergence of
our numerical protocols.
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FIG. 7. Equilibrium probability of the (a) translational and (b) rotational ve-
locities of the nanoparticle (a = 50 nm) using Mittag-Leffler noise (λ = 0.5).
MBD: Maxwell-Boltzmann distribution.

2. Dynamics of the nanoparticle coupled to the GLE
thermostat

Here, we discuss, how coupling to a thermostat alters
the dynamics of the nanoparticle subject to hydrodynamic
interactions. The translational and rotational VACFs of the
nanoparticle (a = 50 nm) in a circular vessel (R = 2.5 μm)
subjected to the time correlated noise schemes are shown
in Figures 9(a) and 9(b). For determining the VACF of the
nanoparticle, 45 (15 × 3 = 45) realizations have been em-
ployed with total computation of 45 × 100 000 = 4 500 000
time steps. It is observed from Figure 9(a) that the transla-
tional VACF of the nanoparticle using Ornstein-Uhlenbeck
process (dotted line) follows an exponential decay, while
it follows a stretched exponential decay (exp{−(t/τν)3/2})
and a power-law decay (a0(t/τν)−3/2) at short and long
time regimes, respectively, using Mittag-Leffler noise (solid
line) for λ = 0.5. Similarly, the rotational VACF of the
nanoparticle using Mittag-Leffler noise follows a stretched
exponential decay (exp{−(t/τν)3/2}) and a power-law decay
(b0(t/τν)−5/2) at short and long time regimes, respectively,
and this is shown in Figure 9(b). The error bars have been

FIG. 8. Translational temperature of the nanoparticle as a function of
normalized surface mesh (mesh length divided by particle radius). The
non-dimensionalized characteristic memory time τ/τν = 3 for radius (a) a

= 50 nm and for radius (b) a = 250 nm.

plotted from standard deviations of the decay at particular
time instants obtained with 45 different realizations. Hauge
and Martin-Löf23 have analytically shown that the decay of
the translational and rotational VACFs at long time obeys a
power-law,

〈U(t)U(0)〉
〈U(0)U(0)〉 

(
mρ(f )1/2

12π3/2μ3/2

)
t−3/2 = 1

6
√

π

(
t

τν

)−3/2

= a0

(
t

τν

)−3/2

, (37)

〈ω(t)ω(0)〉
〈ω(0)ω(0)〉 

(
Iρ(f )3/2

32π3/2μ5/2

)
t−5/2 = 1

40
√

π

(
t

τν

)−5/2

= b0

(
t

τν

)−5/2

, (38)

where the values of constants a0 and b0 are provided in
Table II.

TABLE II. Values of a0 (translational) and b0 (rotational) for long time de-
cay of VACF.

Approach a0 b0

Fluctuating hydrodynamics
(Hauge and Martin-Löf23) 0.094 0.014
(Virtual mass, M = m + m0/2, where m0 is the
mass of the displaced fluid)
Langevin approach:
Iwashita’s thermostat 0.3 0.037
Generalized Langevin approach:
Mittag-Leffler noise 1.06 0.49
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FIG. 9. Translational (a) and (c), and rotational (b) and (d) VACFs of the Brownian particle of radius a = 50 nm through a circular vessel of radius R = 2.5 μm
obtained using colored noise (a) and (b) and Iwashita’s model (c) and (d). The legends are OUP: Ornstein-Uhlenbeck process; MLN: Mittag-Leffler noise for
λ = 0.5; IT: Iwashita’s thermostat. Solid lines in (a)–(d) and dotted line in (a) are present numerical simulation results. The error bars have been plotted from
standard deviations of the decay at particular time instants obtained with 45 different realizations. The values of constants a0 and b0 are provided in Table II.

For completeness, we have also compared the perfor-
mance of an analogous optimization protocol that has been
proposed by Iwashita et al.,18 for which the noise correlation
function is given by

α(|t − t ′|) = α(trans)δ(t − t ′), β(|t − t ′|) = α(rot)δ(t − t ′).

(39)

Here, α(trans) and α(rot) represents the noise intensity for each
degree of freedom of the translational and rotational motions
of the particle, respectively. They are controlled such that the
variance of the translational and rotational velocities of the
particle satisfy the relation,

〈U2〉 = 3kBT

m
, 〈ω2〉 = 3kBT

I
. (40)

The time evolution of noise intensity is described as

α(trans)(t + 
t) = α(trans)(t)e1−U2/〈U2〉,

α(rot)(t + 
t) = α(rot)(t)e1−ω2/〈ω2〉. (41)

The translational and rotational VACFs of the particle for
a = 50 nm are found to obey the power-law correlations
(Figures 9(c) and 9(d)) with a0 and b0 values provided in
Table II.

The numerical results obtained by using the Mittag-
Leffler noise are in accordance with the GLE presented in
Sec. II; therefore, the choice of λ = 0.5 enables our model
to show long time correlations consistent with that expected
from classical hydrodynamic correlations (algebraic decay).
However, coupling to a thermostat does alter the dynamics of
the system. In particular, we observe that the computed value
of constants a0 (translational) and b0 (rotational) differ from
those predicted by Hauge and Martin-Löf.23 The main reason
for this difference is that the short time behavior of the Mittag
Leffler thermostat predicts a stretched exponential behavior
as opposed to an exponential behavior. This important differ-
ence highlights how the Mittag Leffler thermostat alters the
hydrodynamic correlations (and the diffusion coefficient, see
below) of the nanoparticle.

Figure 10 shows the numerically obtained translational
and rotational MSDs of a neutrally buoyant nanoparticle (a
= 50 nm) in a quiescent fluid medium, initially placed at the
center of the vessel of radius, R = 2.5 μm, for both short
and long times. For determining the MSD of the nanopar-
ticle, 15 realizations in each coordinate direction have been
employed with each realization computed up to 100 000
time steps. It is observed that in the regime where the
particle’s motion is dominated by its own inertia (ballis-
tic), the translational and rotational motions of the particle
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TABLE III. At thermal equilibrium, our numerical observations for velocity distribution and temperature of the nanoparticle along with the constraints obtained
using various correlated and uncorrelated noise schemes. Abbreviations are MBD: Maxwell-Boltzmann distribution; OUP: Ornstein-Uhlenbeck process; MLN:
Mittag-Leffler noise; IT: Iwashita’s thermostat.

Thermostat Equilibrium

Thermostat
Velocity distribution and

equipartition theorem Constraints Implementation remarks

White noise Does not satisfy MBD and
equipartition theorem


t < τb for stability (i) Depends on position and shape of
the particle, (ii) does not conform to
GLE, and (iii) imbalance between
memory and friction

OUP Satisfies MBD and equipartition
theorem


t < τb for stability; τ > τν for thermostat to work (i) Depends on position and shape of
the particle and (ii) approximately
conforms to GLE

MLN Satisfies MBD and equipartition
theorem


t < τb for stability; τ > τν for thermostat to work;
α0(λ) and β0(λ) are independent of τ in a small plateau
region where τ � τν

(i) Does not depend on position and
shape of the particle and (ii)
approximately conforms to GLE

IT Satisfies MBD and equipartition
theorem


t < τb for stability (i) Does not depend on position and
shape of the particle and (ii) does not
conform to GLE

FIG. 10. The MSD of a neutrally buoyant Brownian particle (a = 50 nm)
initially placed at the center of the cylindrical vessel in a stationary fluid
medium using Mittag-Leffler noise for λ = 0.5. The legends are, SER:
Stokes-Einstein relation; SEDR: Stokes-Einstein-Debye relation.

follow 0.3 × (kBT /m)t2 and 53 × (kBT /I)t2, respectively.
In the diffusive regime, t 
 τb, the translational and ro-
tational MSDs increase linearly in time to follow 12
× 2D

(trans)
∞ t and 103.2 × D

(rot)
∞ t , respectively, where D

(trans)
∞

= kBT /ζ (trans), and D
(rot)
∞ = kBT /ζ (rot) (ζ (r) = 8πμa3) are

the translational and rotational self-diffusion coefficients. It
is also observed from Figure 10 that in the diffusive regime,
the translational and rotational MSDs of the particle follow
Stokes-Einstein30 and Stokes-Einstein-Debye48 relations, re-
spectively, with scaling factors of 12 and 103.2, respectively.

3. Hydrodynamic interactions – Wall effects

The hydrodynamic wall effects on the particle diffusiv-
ity are important for a nanoparticle thermal motion in a fluid
flow that occurs in TDD and similar microparticle flows. For
a particle initially located at the center of the cylindrical ves-
sel, the wall effects play a minimal role (≤3%, compared to
an unbounded fluid domain) on the diffusion coefficient (in
other words MSD) (see Figure 10).49 When a particle of ra-
dius a is initially placed at a distance h from the tube wall
to the center of the particle, h < R, the particle-wall interac-
tions modify the particle diffusivity. For a � R, in a quies-
cent fluid, the Brownian motion near the vessel wall is similar
to that of motion in the vicinity of a plane wall (curvature ef-
fects may be neglected).49, 50 For a particle initially located in
the near vicinity of the wall, there is reduced space for the sur-
rounding fluid to negotiate the particle, and the corresponding
drag force in a direction parallel to the wall is higher. The dif-
fusivity of the particle in the proximity of the wall may be
estimated to be

D(trans)
w = D(trans)

∞
ζ (trans)

ζ
(trans)
w

, (42)

in x, y, and z directions,51 while ζ (trans)
w depends on the par-

ticular direction. Figure 11 shows the numerically obtained
parallel (x direction) and perpendicular (y direction) MSDs
of neutrally buoyant particle of radius, a = 50 nm, initially
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FIG. 11. Parallel and Perpendicular MSDs of a neutrally buoyant Brownian particle (a = 50 nm) initially placed at different locations h from the wall of the
cylindrical vessel in a quiescent medium using Mittag-Leffler noise for λ = 0.5.

placed at various distances, h, from the tube wall, in a quies-
cent medium. In the diffusive regime, the translational MSD
of the particle increases linearly in time and numerically
obtained diffusion coefficient agrees with the prediction of
Happel and Brenner49 with a scaling factor of 12. It is to
be noted that for determining the translational MSD of a
nanoparticle of radius, a = 50 nm, initially placed at various
distances from the tube wall, the scaling factor 12 remains
unchanged.

V. CONCLUSIONS

An ALE based FEM is implemented to simulate the ther-
mal motion of a nanoparticle in an incompressible Newto-
nian stationary fluid medium. Thermal force from the fluid
is incorporated as represented by the Langevin approach, in
which the thermal fluctuations are included in terms of the
random force and torque in the particle equations of mo-

tion. They are assumed to follow either the Markovian pro-
cess (white noise) or the non-Markovian process (Ornstein-
Uhlenbeck process; Mittag-Leffler noise; Iwashita’s model),
and will for certain scenarios, serve as a reliable thermo-
stat. In a quiescent fluid, at thermal equilibrium, the nu-
merical predictions are validated by comparing with ana-
lytical results. Our findings are summarized in Tables III
and IV.

Based on our observations presented in Tables III and IV,
a thermostat based on the Mittag-Leffler noise with an appro-
priately chosen characteristic memory time τ/τν adheres to
the equipartition theorem. Moreover, this thermostat captures
the correct (long-time) hydrodynamic correlations (algebraic
decay of the VACF) and normal diffusive behavior; however,
given the difference in short-time behavior of VACF, the dif-
fusion coefficient is altered by a scaling factor. The Mittag-
Leffler thermostat is most useful for future applications in-
volving computations of thermodynamic properties such as
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TABLE IV. Our numerical observations for VACF and MSD of the nanoparticle obtained using various correlated noise schemes. Abbreviations are OUP:
Ornstein-Uhlenbeck process; MLN: Mittag-Leffler noise; IT: Iwashita’s thermostat.

Thermostat Dynamics

Thermostat VACF Diffusivity Remarks

OUP Follows an exponential decay at short and long times Not considered in this study
MLN Follows (i) an exponential decay at short times and (ii) an algebraic

decay over long times (translational: t−3/2 and rotational: t−5/2)
Obeys Stokes-Einstein (translation) and
Stokes-Einstein-Debye (rotation) relations, with
scaling factors of 12 and 103.2, respectively

Conformed to
hydrodynamic wall
interactions

IT Follows (i) an exponential decay at short times and (ii) an algebraic
decay over long times (translational: t−3/2 and rotational: t−5/2)

Not considered in this study

free energy landscapes of nanoparticle adhesion subject to hy-
drodynamic interactions (such as in a flow field).

We note that our approach in developing the Mittag-
Leffler thermostat is analogous in scope to the extended
Lagrangian approach for building a thermostat in molecular
dynamics as described by the Nose-Hoover scheme.52 In the
future, our thermostat can be made more versatile by intro-
ducing generalized correlated noise schemes with multiple
characteristic memory times for complex physical systems.
This would be in analogy with the Nose-Hoover chain ap-
proach (an extension to the Nose-Hoover thermostat) in the
extended Lagrangian molecular dynamics.53 Extensions of
our approach to include solvation effects in addition to hy-
drodynamics (see Voulgarakis et al.10, 11), especially in the
case of hydrophobic nanoparticles can represent useful future
directions of research. Finally, a computational protocol to
study constant temperature properties of a nanoparticle sub-
ject to hydrodynamic interactions enables the study of more
complex and biologically interactions, such as nanoparticle
adhesion to cells via receptor-ligand interactions. This will
also be considered in the future.
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