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Purpose: Vessel wall imaging techniques have been introduced to assess the burden of peripheral

arterial disease (PAD) in terms of vessel wall thickness, area or volume. Recent advances in a 3D

black-blood MRI sequence known as the 3D motion-sensitized driven equilibrium (MSDE) pre-

pared rapid gradient echo sequence (3D MERGE) have allowed the acquisition of vessel wall

images with up to 50 cm coverage, facilitating noninvasive and detailed assessment of PAD. This

work introduces an algorithm that combines 2D slice-based segmentation and 3D user editing to

allow for efficient plaque burden analysis of the femoral artery images acquired using 3D MERGE.

Methods: The 2D slice-based segmentation approach is based on propagating segmentation results

of contiguous 2D slices. The 3D image volume was then reformatted using the curved planar refor-

mation (CPR) technique. User editing of the segmented contours was performed on the CPR views

taken at different angles. The method was evaluated on six femoral artery images. Vessel wall

thickness and area obtained before and after editing on the CPR views were assessed by comparison

with manual segmentation. Difference between semiautomatically and manually segmented con-

tours were compared with the difference of the corresponding measurements between two repeated

manual segmentations.

Results: The root-mean-square (RMS) errors of the mean wall thickness (tmean) and the wall area

(WA) of the edited contours were 0.35 mm and 7.1 mm2, respectively, which are close to the RMS

difference between two repeated manual segmentations (RMSE: 0.33 mm in tmean, 6.6 mm2 in

WA). The time required for the entire semiautomated segmentation process was only 1%–2% of

the time required for manual segmentation.

Conclusions: The difference between the boundaries generated by the proposed algorithm and the

manually segmented boundary is close to the difference between repeated manual segmentations. The

proposed method provides accurate plaque burden measurements, while considerably reducing the

analysis time compared to manual review. VC 2011 American Association of Physicists in Medicine.

[DOI: 10.1118/1.3633899]
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I. INTRODUCTION

Peripheral arterial disease (PAD) affects about 27 million

people in Europe and North America and has become a seri-

ous health issue in the western world.1 The symptoms of

PAD range in severity from intermittent claudication (leg

pain) to critical limb ischemia. If left untreated, critical limb

ischemia can lead to nonhealing wounds, gangrene and even-

tual limb amputation. The risk of limb-lost due to critical
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ischemia, however, is overshadowed by the risk of mortality

from cardiovascular events and death.2 Criqui et al.3 showed

that patients with PAD are 6 times more likely to die within

10 years of cardiovascular disease regardless of the presence

of symptoms. Also, symptomatic PAD patients have a 15-

year survival rate of 22%, compared to a survival rate of

78% in patients without symptoms.1 Therefore, PAD in

lower extremity should be assessed in the context of coexis-

tent generalized atherosclerosis in other vascular beds.

While critical stenosis is the immediate cause of severe

PAD symptoms and limb loss, stenosis may not be as valua-

ble as plaque burden in characterizing earlier disease and the

risk of developing critical stenosis. Notably, stenosis severity

underestimates atherosclerosis when the plaque is diffused

and undergoes positive remodeling,4 which has been shown

to exhibit in the peripheral vasculature,5 direct measure-

ments of plaque may be better suited for monitoring clinical

progression and evaluating pharmaceutical interventions.

Furthermore, the association of PAD with global cardiovas-

cular risk may make PAD burden a valuable marker of total

risk.

Recent efforts have been made to investigate the role of

plaque burden in the superficial femoral artery using MR

vessel wall imaging to extract metrics such as wall volume

and eccentricity.6,7 There are several potential advantages of

assessing plaque volume in the superficial femoral artery.

Imaging the femoral artery is usually less prone to move-

ment artifacts, comparing to other vascular beds, such as the

carotids and coronaries. The volume of plaques in the femo-

ral artery is also several orders of magnitude greater than

volumes of carotid or coronary plaques. The large volume of

plaques in the superficial femoral artery reduces the sample

sizes needed to detect differences in clinical studies with

adequate power. However, the requirement of extended cov-

erage in assessing PAD poses a challenge both for image ac-

quisition and analysis.

The analysis burden is further exacerbated by recent

developments in three-dimensional (3D) MR imaging. In

vessels such as the carotid artery, two-dimensional (2D)

black-blood fast spin-echo (FSE) acquisition techniques

have been the mainstay of plaque burden assessments by

MRI.8 In femoral arteries, however, 3D acquisitions have

been found to yield improved signal-to-noise ratios (SNR),

extended coverage and higher resolution without increasing

imaging time over 2D acquisitions.9,10 The use of 3D imag-

ing has specifically benefitted from the introduction of blood

suppression techniques, such as motion-sensitized driven

equilibrium (MSDE), which depends on the flow velocity of

blood and not on the outflow volume for black-blood imag-

ing.11 This blood suppression technique has been integrated

into the 3D black-blood sequence called 3D MSDE prepared

rapid gradient echo sequence (3D MERGE) Ref. 12 and

used to acquire image volumes with 50 cm coverage at iso-

tropic resolution of 1.0 mm in around 7 mins.13

While 3D MERGE provides good conspicuity for simul-

taneous detection of both lumen and wall boundaries, it also

poses a challenge for analysis because of the large number

of 2D cross-sectional images that need to be segmented per

subject. Thus, a streamlined and validated tool is needed for

rapid, reproducible segmentation of lumen and wall bounda-

ries on extended coverage 3D MRI. Our group has described

a framework for arterial lumen and outer wall segmentation

in 2D MR images that allows manual editing.14 In this work,

we extended this 2D segmentation algorithm by propagating

2D contours to the adjacent slices. 2D-slice-based 3D seg-

mentation based on contour propagation has been proposed

and applied in Wang et al.15 and Ding et al.16 In this work,

we improved the propagation by adding a registration mod-

ule: After having finished segmenting an image slice (Image

1), we registered Image 1 with the adjacent 2D image (Image

2) before defining the initial contour of Image 2. That is,

instead of just using the final contour of Image 1 as the initial

contour of Image 2, we applied the transformation obtained

in registering Image 1 and 2 to transform the final contour of

Image 1 before copying it to Image 2. Since deformable con-

tour models are sensitive to initialization, better initialization

will result in a more accurate segmentation.

An additional goal of our work was to provide a rapid

assessment tool for confirmation and possible editing of the

segmentation results by an expert reviewer. Because of the

large number of axial image slices in a femoral artery image,

a slice-by-slice editing using the existing editing tool in our

2D segmentation framework14 is not a viable solution. Also,

editing on 2D axial planes fails to account for vessel wall

and plaque continuity in the longitudinal direction. In this

paper, we describe a manual editing mechanism in which

user interactions occur in curved planar reformatted (CPR)

views. CPR is an established technique for displaying the

longitudinal view of tubular structures in a single image.17

In this paper, we applied our segmentation approach to

the femoral artery images acquired using 3D MERGE to

evaluate the accuracy compared to manual segmentation.

The evaluation consisted of two parts. First, the accuracies

of the lumen and outer wall boundaries segmented semiauto-

matically were evaluated using a set of distance- and area-

based metrics.18,19 Second, the ability of the segmentation

approach to extract common measures of plaque burden –

vessel wall thickness and area – was assessed by comparison

with manual segmentation.

II. METHODS

The proposed segmentation algorithm applied the B-

spline snake model14 in many stages to deform 2D contours

according to image characteristics. Thus, a brief description

of the snake model is provided in Sec. II A. The algorithm has

three major steps: (a) Lumen segmentation (Sec. II B). (b)

Outer wall segmentation (Sec. II C). (c) Wall contour editing

on curve planar reformatted (CPR) views (Sec. II C). The

flowchart of the whole algorithm is shown in Fig. 1. In Fig. 1,

the outer wall segmentation step was divided in three building

blocks, which will be individually described in Sec. II C.

II.A. B-spline snake model

The B-spline boundary, represented by C(u)¼ (cx(u),

cy(u)), is parameterized as:
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cxðuÞ ¼
XK

k¼1
nkbð u� kb cKÞ; (1a)

cyðuÞ ¼
XK

k¼1
wkbð u� kb cKÞ; (1b)

where K is the number of initial points u 2 0;Kð Þ, nk and wk

are spline coefficients,

ab cK¼
aþ K; a � �K=2

a� K; a > K=2

a; otherwise

8<
: ; (2)

and b is the cubic B-spline kernel defined by:

bðaÞ ¼
3
4
jaj3 � 3

2
a2 þ 1; 0 � jaj � 1

ð2� jajÞ3=4; 1 < jaj � 2

0; jaj > 2

8<
: : (3)

The spline coefficients nk;wkf gK
k¼1 are determined based on

the x- and y-coordinates of the initial points. The resulting

B-spline contour is uniformly sampled, which serves as the

initial contour of the snake model. The snake model maxi-

mizes the total energy function (ET), which is the product of

the image energy (Eim) and a penalty term (Ep):

ET ¼ EimEp; (4a)

Eim ¼ b
XP

i¼1

n½i� � rI½i�=lðCÞ; (4b)

Ep ¼
XK

k¼1

exp
ðnk � nk;0Þ2 þ ðwk � wk;0Þ

2

r2

" #
; (4c)

where the following notations were used:

P¼ total number of sampled points

l(C)¼ the length of the contour

b¼ a multiplicative factor set as either 1 or �1

K¼ total number of initial points

n[i]¼ the inward normal at Point i of the contour

rI i½ � ¼ the image gradient at Point i of the contour

nk,0, wk,0¼ the spline coefficients of the initial contour

r¼ a user-defined parameter for adjusting the penalty term.

The role of Eim is to drive the contour to the strongest

edge. The term n i½ � � rI i½ � quantifies the strength of the edge;

however, the sign of this term depends on the relative bright-

ness of the interior of the contour comparing to its exterior.

To segment a contour that is brighter in the exterior than the

interior, such as the lumen boundary, b is set to �1, whereas

a brighter interior is segmented by setting b¼ 1. Dividing by

l(C) ensures that all curves, regardless of the length, are

weighted equally and prevents a contour from infinitely

expanding. Since the initial contour is expected to be reason-

ably close to the real boundary, a Gaussian penalty term Ep

was introduced to limit the range in which the spline coeffi-

cients nk and wk can vary. The width of this range is depend-

ent on r of the Gaussian function, which is adjustable by the

user.

II.B. Registration-based propagation in lumen
segmentation

In the proposed algorithm, the manually segmented con-

tour on the first image was used to initialize the segmenta-

tion. The initial contour on the second image was then

determined based on the boundary on the first image. 2D-

slice based algorithms usually simply copy (or propagate)

the boundary on the first image to the second image. In the

proposed algorithm, we obtained a better initialization to the

snake model by first registering the first and the second

image. We then obtained the initial boundary for the second

image by applying the resulting transformation to the lumen

boundary on the first image. The registration algorithm is

based on the optical flow registration algorithm.20 The opti-

cal flow algorithm can be understood as the estimation of a

path x(t) along which intensity, I, is conserved (i.e.,

I(x(t),t)¼ c). Taking the temporal derivative yields:

@I

@x

dx

dt
þ @I

@t
¼ 0: (5)

In registering two images I1 and I2, the first and the second

image can be modeled as I(t¼ 1) and I(t¼ 2) respectively. In

this model, @I=@t is the difference between I1 and I2 and

dx=dt is the displacement required to register the two

images. To obtain the 2D displacement (u, v) at each pixel

[m, n] required to register I1 and I2, we solve the following

two equations iteratively:

u½m; n� ¼ �s
I2½m; n� � I1½m; n�

@I2=@x
; (6a)

FIG. 1 Schematic diagram for the proposed semiautomatic segmentation algorithm.
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v½m; n� ¼ �s
I2½m; n� � I1½m; n�

@I2=@y
; (6b)

where s is a user-defined parameter that controls the amount

of movement at each iteration.

The lumen boundaries propagated to the next image in

the same way until lumen boundaries on all image slices

were segmented. Although this propagation implicitly

ensures continuity of contours between slices, contours on

adjacent slices can be very different. This happens mostly

due to the presence of a severely stenotic region or poor

blood suppression, and the large change in contour size and

shape between adjacent slices usually indicates segmentation

error. In the proposed algorithm, we constrained the continu-

ity of boundaries by checking whether the ratio between the

luminal areas on adjacent slices was between 0.5 and 1.5. If

the ratio is outside this range, the algorithm pauses to allow

a user to edit the contour on the current image slice, and the

user determines whether or not to edit the contour before

continuing the propagation.

II.C. Outer wall segmentation

II.C.1. Forward and backward propagations

Outer wall segmentation was achieved by a two-pass pro-

cess, which we call forward and backward propagations. In

forward propagation, an initial contour was selected by an

expert observer in the first slice of the image stack. On each

slice, the outer wall was determined using the conditional

shape model (CSM) Refs. 14 and 21, which is briefly

described in Sec. II C 2. The segmentation propagated for-

ward until it reached the last image slice. In backward propa-

gation, an initial contour was selected in the last slice. The

algorithm propagated backward in the same manner as for-

ward propagation until all slices had been segmented. After

the forward and backward propagations, there were two

semiautomatically segmented outer wall boundaries on each

axial image slice. A gradient-based decision rule was used to

determine the final contour (Sec. II C 3) from these two

contours.

II.C.2. Conditional shape model (CSM)

The outer boundary search utilized the B-spline snake

described above, constrained by the CSM described by

Underhill et al.21 In the model, the vessel wall was repre-

sented by a vector consisting of 16 radial points organized as

xi0; yi0; xi1; yi1;…; xi15; yi15ð ÞT. Based on a training set of ves-

sel wall contours, the shape model was parameterized as

X ¼ lXjz þ bp; (7)

where lXjz is the conditional mean of X given z, where z is

the ratio of the lengths of the long and short axis of the con-

tour on the preceding slice (i.e., Slice i� 1 for forward prop-

agation, and Slice iþ 1 for the backward propagation, if the

current slice is Slice i), and p is the most significant eigen-

vector of the covariance matrix of X. Allowable shapes are

given by any value of b. To initialize the search, the lumen

boundary was radially expanded by a distance d, determined

by taking the average wall thickness associated with the pre-

ceding image slice. Then, 16 radial points from this

expanded contour were arranged into the vector W0, which

was fitted to the conditional mean shape lXjz. This involved

finding the optimal rotation, h, scaling factor, s, and transla-

tion (tx, ty) to minimize

E ¼ ðW0 �Mðs; hÞ½lXjz� � tÞTðW0 �Mðs; hÞ½lXjz� � tÞ;
(8)

where

Mðs; hÞ
xik

yik

� �
¼
ðs cos hÞxik � ðs sin hÞyik

ðs sin hÞxik þ ðs cos hÞyik

� �
:

t ¼ tx; ty;…; tx; ty

� �T
This initial shape was then deformed using the B-spline

snake (Sec. II A). After the deformation, the result was fitted

to the CSM by finding the value of b that minimized the

mean square difference between the B-spline snake and X.

This deformation-fitting procedure was repeated until

convergence.

II.C.3. Final contour determination

Figure 2(a) shows two wall segmentations on the same

image slice: One is the result of the forward propagation and

the other was produced by the backward propagation. Each

contour was radially sampled with 45� intervals, resulting in

eight sample points. The curve with sample points marked as

hollow circles is denoted as C1 and that with sample points

marked as black dots is denoted as C2. For the ith pair of cor-

responding points, one of the two points on one contour

must lie inside the other contour, which is denoted as Pinner,i,

and the other point is denoted by Pouter,i. We sampled the

line connecting Pinner,i to Pouter,i into 10 uniform intervals.

Each sample point, pi, can be represented by a single param-

eter, r. We denote the coordinates of each sample point by

pi(r), which is defined by:

piðrÞ ¼ rPinner;i þ ð1� rÞPouter;i for i ¼ 0; 1;…; 7: (9)

In our case, since we sampled with 10 uniform intervals, r
increases from 0 to 1 with a 0.1 increment. For each sample

point, we calculated the following dot product, which we

denote as Ci(r):

CiðrÞ ¼ u � GimðpiðrÞÞ for i ¼ 0; 1;…; 7: (10)

where u is the unit vector in the direction from Pinner,i to Pou-

ter,i, Gim(pi(r)) is the two-component image gradient eval-

uated at the point pi(r). Ci(r) can be interpreted as the

directional derivative of image intensity along the direction

from Pinner,i to Pouter,i. We chose r̂i to be the r 2 0:1nf g10
n¼0

that evaluates to the minimum Ci(r). The minimum point

was chosen to be the boundary because the arterial wall is

relatively bright, and thus, the intensity on the edge of the ar-

terial wall should be sharply decreasing.

To ensure that the final outer wall boundary is smooth, r̂i

was filtered by a smoothing kernel:

ri ¼ f�1r̂ði�1Þmod 8 þ f0r̂i þ f1r̂ðiþ1Þmod 8: (11)
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In our application, f�1¼ f1¼ 0.2 and f0¼ 0.6. The final wall

contour was then produced by interpolating the set of points

pi rið Þf g7
i¼0 using the Cardinal spline.22

II.D. Contour editing in curved planar reformatted
(CPR) views

In more extreme cases in which the blood signal is not

properly suppressed or the artery is severely stenosed, the

slice-based algorithm described above may not work well

and boundary editing may be necessary. Since manual edit-

ing introduces observer variability and takes time, a good

manual editing mechanism should keep the user interaction

to a minimum, while also providing flexibility. Our manual

editing mechanism contains two major components: (1)

Curve planar reformatted (CPR) views and (2) construction

of smoothed contours in CPR views.

II.D.1. CPR views

A centerline is required to produce a CPR view. This cen-

terline needs to be smooth for a continuous CPR view. We

created a smooth centerline by taking the centroid of the

lumen boundary of every tenth slice as an input to the Cardi-

nal spline model. For each axial image slice, there is an

intersection with this centerline, which we denote as

Cn¼ (Cn,x, Cn,y) on Image Slice n. From Cn, Image Slice n
was resampled at an angle h and at an interval equal to the

pixel size. The result was mapped to the CPR view accord-

ing to the following equation:

F½m; n� ¼ In Cn;x þ m� M

2

� 	� �
p cos h;Cn;y

�

þ m� M

2

� 	� �
p sin h

�
; (12)

where 0�m�M and Mþ 1 is the total number of samples

obtained in Slice n, 0� n�N and Nþ 1 is the total number

of image slices in the 3D image, F is the CPR view, In is

Image Slice n, and p is the pixel size.

Four CPR views were generated with h set to 0, p=4, p=2,

and 3p=4. Figure 3 shows these four views in the right panel.

In this figure, one of the contours in the p=2-view was

selected and highlighted by red markers. The corresponding

point being edited was also highlighted in the axial view

with a red marker.

II.D.2. Contour reconstruction and editing in CPR
views

The lumen and outer wall boundaries were mapped to the

CPR views according to the transformation described in

Eq. (12). After the transformation, we smoothed each con-

tour on the CPR views using the Gaussian kernel Gr,L where

r is the standard deviation of the kernel, which is defined

inside [�L, L]. Let X[n] be the x-coordinate when the y-coor-

dinate equals n before smoothing. Except at control points

(i.e., those marked with a red marker in the p=2-view in

Fig. 3) that were not smoothed, the x-coordinates of the con-

tours after smoothing, denoted by X̂½n�, were obtained using

the following equation:

X̂½n� ¼
XminðN�1;nþLÞ

i¼maxð0;n�LÞ
Gr;L½n� i�X½i�=MGr;L; (13)

where MGr;L ¼
PminðN�1;nþLÞ

i¼maxð0;n�LÞ Gr;L½i�. Dividing by this

normalization factor ensures the sum of weighting factors in

FIG. 2 Illustration of the final contour determination rule described in Sec. II C 3. (a) C1 and C2 are segmented in the forward and backward propagation

respectively. For each pair of the 8 sampled points, the optimum boundary point was searched from Pinner,i to Pouter,i. (b) shows the contour segmented in the

forward propagation (dark blue), backward propagation (orange) and the optimum contour (light blue) on an axial image. The semiautomatically segmented

lumen boundary is also shown (red).

FIG. 3 The CPR editing tool. The left panel shows the axial view of a femo-

ral artery 3D MERGE image. The right panel shows the CPR views

resampled at 0, p=4, p=2, and 3p=4. The white lines represent the position

of the displayed axial=CPR views.
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Eq. 13 equals 1. This operation is just the convolution opera-

tion with the boundary conditions considered.

Every tenth point of the contour was assigned to be a con-

trol point, and L in Eq. 13 was assigned to be 5. In addition,

the first and last points were also assigned as control points.

Once a user edits the control points on a CPR view, the

edited contour is updated on the axial view immediately. In

the CPR views, the control points are not smoothed by

Eq. 13 to give the user the flexibility to move the control

points. Not smoothing the contours at control points also

causes the user to pay attention to the location where the ac-

curacy of the semiautomated segmentation is problematic.

At control points where a semiautomatically segmented con-

tour is discontinuous on a CPR view, a user would pay extra

attention to determine whether the contour is accurate or not.

Thus, in addition to serving as an efficient editing tool, the

CPR views also allow the continuity of the contours to be

readily assessed and draw immediate attention to discontinu-

ous points.

III. EXPERIMENTAL METHODS

III.A. Study subjects

We used six 3D MERGE images acquired for five sub-

jects to evaluate our algorithm. We evaluated the left and

right arteries of one subject, while evaluating only one side

of the remaining five subjects. These subjects were sympto-

matic with intermittent claudication.

III.B. 3D MERGE acquisition and reslicing

The 3D MERGE sequence was implemented using

MSDE preparation and spoiled segmented FLASH readout

with centric phase encoding.13 The femoral artery images

were acquired using two stations with field-of-view (FOV)

400� 40� 250mm to cover up to 500mm longitudinally

with isotropic voxel size of 1.0mm (zero-interpolated to

0.5mm). Total scan time was 7 min. The imaging parameters

were TR¼ 10 ms, TE¼ 4.8 ms, flip angle¼ 6�, turbo

factor¼ 100 and one excitation (NEX).

The current protocol provides coverage that includes the

segment that is upstream from the femoral bifurcation. The

image quality at this segment is poor. Thus, we focused our

analysis on the superficial femoral artery starting from the

femoral bifurcation and proceeding to the end of the femur.

The entire length is approximately 300 mm. The region-of-

interest was then resliced with an interslice distance of 1mm,

resulting in approximately 300 axial images for each artery.

III.C. Metrics for comparison between two boundaries

Distance- and area-based metrics were used to compare

two closed boundaries. We used these two sets of metrics to

evaluate the lumen and outer wall boundaries separately.

III.C.1. Distance-based metrics

We measured distances of two contours on a point-by-

point basis by first establishing a symmetric correspondence

relationship23,24 between them. The relationship is a one-to-

one mapping between points on the two contours, which

gives us a distance measurement dj at Point j [Fig. 4(a)].

For each pair of contours, two parameters were computed

to summarize the distance set dj


 �N

j¼1
obtained, where N is

the total number of corresponding pairs: (a) mean absolute

difference (MAD) and (b) maximum difference (MAXD),

which are defined as follows:19

MAD ¼ 1

K

XN

i¼1

dj; (14)

MAXD ¼ max
i2½1;N�

dj: (15)

III.C.2. Area-based metrics

The area-based metrics compared the area enclosed by the

contour representing the ground truth, which we denote as

A1 here, and the area enclosed by another contour, which we

denote as A2 [Fig. 4(b)]. We used two parameters to summa-

rize the difference between the two contours: (a) the percent

area overlap (AO) and (b) area difference (AD), which are

defined as follows:19

AO ¼ A1 \ A2

A1 [ A2

� 100%; (16)

FIG. 4 Illustration of the distance- and area-based metrics for comparing two closed boundaries. (a) Distance-based metrics: The symmetric correspondence

relationship between two boundaries was first established. Each pair of corresponding points is associated with a distance measurement dj. Mean absolute

difference (MAD) and maximum difference (MAXD) are the mean and the maximum distances respectively, calculated over all corresponding pairs. (b) Area-

based metrics: Area overlap (AO) is the ratio of the overlapped area (black) to the total area enclosed by two boundaries expressed in percentage. Area differ-

ence (AD) is the percentage difference between the areas of two boundaries.
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AD ¼ jA1 � A2j
A1

� 100%: (17)

III.D. Validation study

The validation study consisted of two parts. First, the accura-

cies of the lumen and outer wall boundaries were evaluated

separately using the distance- and area-metrics described in

Sec. III C. The details of these comparisons are described in

Sec. III D 1 for the lumen and Sec. III D 2 for the wall. Sec-

ond, the ability of the segmentation approaches in extracting

vessel wall thickness and area was assessed in Sec. III D 3.

III.D.1. Lumen segmentation and assessment

In the proposed segmentation method, lumen segmenta-

tion propagation was continually guided by an expert ob-

server blinded from the manually segmented boundaries.

This user guidance guaranteed that the lumen segmentation

was reasonably accurate and further editing using the CPR

views was therefore not performed. The arterial lumen was

segmented by an expert observer on every tenth image. In

order to assess the reproducibility of the algorithm, we seg-

mented each image twice using different initial contours.

The two sets of lumen boundaries were evaluated against the

manual segmentation using the distance- and area-based

metrics in Sec. III C.

III.D.2. Wall segmentation and assessment

Because the vessel wall is sometimes in close proximity

to and difficult to be separated from neighbouring muscle tis-

sues, an expert observer segmented the vessel wall on every

tenth image two times in order to assess the reproducibility

of the manual segmentation. One segmentation was arbitra-

rily chosen as the gold standard (denoted by M1 hereafter).

The remaining segmentation (denoted by M2 hereafter) was

compared with M1 the same way as the semiautomatically

segmented boundaries using the distance- and area-based

metrics introduced in Sec. III C. Because even an expert ob-

server may have difficulty in accurately segmenting the ves-

sel wall in some locations, it is more reasonable to assess the

semiautomatic segmentation accuracy in relation to the ob-

server variability.

In order to assess the reproducibility of the vessel wall

segmentation using the proposed algorithm, two semiauto-

matic segmentation trials were carried out. We denote the

two repeated segmented wall boundaries as SB1 and SB2

hereafter. As described in Sec. II C 2, the vessel wall seg-

mentation depends on the geometry of the previously seg-

mented lumen boundary. Therefore, there are two sources of

variability in outer wall segmentation: (1) The difference

between the initial contours used to initialize the forward

and backward propagations and (2) the difference between

the two repeatedly segmented lumen boundaries produced in

Sec. III D 1. The overall effect of these two sources of vari-

ability was quantified in Sec. IV.

After the slice-based propagation was completed, the

CPR-based editing was done by a user who did not have a

knowledge about the manually segmented boundaries. We

compared the semiautomatically segmented vessel wall pro-

duced with CPR-based editing (denoted by SA0) and SB1.

Comparing the distance- and area-based metrics associated

with these two methods allowed us to assess the degree to

which the CPR-based editing tool improved segmentation

accuracy. For SA0, the control points on the CPR views

were located on slices where manual segmentation was per-

formed [Fig. 5(a)]. Therefore, only contours edited by an

expert observer were evaluated. In order to evaluate the seg-

mentation accuracy at slices between control points, we also

set the control points at the midpoint between two manually

segmented slices [Fig. 5(b)]. The axial slices evaluated in

this case were at least 5 slices away from any control point.

The vessel wall segmentation produced in this way is

denoted by SA5.

In summary, six vessel wall boundaries were produced –

two manually segmented and four semiautomatically seg-

mented boundaries:

M1, M2—Two repeated manual segmentations. M1 was ar-

bitrary chosen as the gold standard. Comparing these two

segmentations gives an assessment of variability of man-

ual segmentation.

FIG. 5 Control points in the CPR views were set at (a) axial slices where

manual segmentation was performed in SA0 and (b) the midpoint between

two adjacent manually segmented axial slices in SA5. Manual segmentation

was performed on every tenth axial slice. White lines represent the location

of axial slices where manual segmentation was performed. The purpose of

editing at the midpoints was to evaluate segmentation accuracy at slices that

were not directly edited.

TABLE I. The average and the standard deviation of the distance- and area-

based metrics associated with two repeated lumen segmentations with

registration applied (Reg 1 and 2) and the lumen segmentation without

registration (No Reg).

MAD (mm) MAXD (mm) AO (%) AD (%)

Reg 1 0.20 (0.17) 0.55 (0.48) 85.60 (9.36) 9.77 (9.78)

Reg 2 0.22 (0.19) 0.56 (0.49) 84.96 (10.88) 10.55 (11.27)

No Reg 0.23 (0.20) 0.59 (0.51) 84.46 (11.48) 11.38 (15.85)
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SB1, SB2—Two repeated segmentations produced by our

proposed slice-based propagation. No CPR-based editing

was performed.

SA0, SA5—Two different methods of editing the results

produced by SB1 using the CPR views. In SA0, the edit-

able control points are located on slices where manual

segmentation was performed. In SA5, the control points

are located at the midpoint between two manually seg-

mented slices (Fig. 5).

III.D.3. Evaluation of vessel wall thickness and area

The main purpose of the development of a semiautomated

segmentation technique for the peripheral arteries is to assess

plaque burden. Therefore, in addition to evaluating the

lumen and the outer wall boundaries independently, arterial

wall area and wall thickness produced using different meth-

ods were also compared.

TABLE II. The average and the standard deviation of the distance- and area-

based metrics associated with wall boundaries produced by four methods

(i.e., M2, SB, SA0, and SA5), as compared to the gold standard (i.e., first

manual segmentation, M1). M2 represents the second manual segmentation.

SB1 and SB2 represent two repeated semiautomatic segmentation bounda-

ries without editing. SA0 and SA5 represent the semiautomatically seg-

mented boundaries with editing. The difference between SA0 and SA5 was

on the placement of control points on the CPR views (see Fig. 5).

MAD (mm) MAXD (mm) AO (%) AD (%)

M2 0.21 (0.15) 0.50 (0.39) 89.39 (7.53) 11.07 (12.25)

SB1 0.32 (0.23) 0.77 (0.52) 84.75 (9.46) 12.90 (12.95)

SB2 0.32 (0.25) 0.76 (0.55) 84.65 (10.20) 13.11 (13.22)

SA0 0.25 (0.14) 0.60 (0.33) 87.48 (6.51) 9.69 (9.22)

SA5 0.30 (0.16) 0.66 (0.34) 85.44 (7.38) 11.02 (10.08)

FIG. 6 Segmentation results for three sample slices.

The first, second, and third row show examples with

good, average and lower than average segmentation ac-

curacy respectively. (a), (c) and (e) show the original

images. (b), (d) and (f) are the corresponding images

with segmented contours superimposed. Yellow con-

tours represent manual segmentation. Blue and red con-

tours represent semiautomatically segmented wall and

lumen boundaries, respectively, using Method SA0.
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As described in Sec. III D 2, manual segmentation of the

outer wall boundaries was performed twice (i.e., M1 and M2),

one of which was considered gold standard (i.e., M1). To

fairly capture the observer variability of vessel wall thickness

and area measurements, lumen boundaries were manually

segmented once more. Three parameters were computed for

the six boundaries described in Sec. III D 2 on a slice-by-slice

basis: (a) mean thickness (tmean), (b) maximum thickness

(tmax), and (c) area (WA) of the wall. tmean and tmax were

obtained in the same way as MAD and MAXD, except that,

here, the symmetric correspondence relationship was estab-

lished between the lumen and outer wall boundaries. WA is

the area enclosed by the lumen and outer wall boundaries.

Then, two different analyses were performed. First, for

each of the five nongold-standard boundaries (i.e., M2, SB1,

SB2, SA0, and SA5), (a) mean thickness difference (Dtmean),

(b) maximum thickness difference (Dtmax) and (c) wall area

difference (DWA), were computed on a slice-by-slice basis

by subtracting the measurement associated with M1 from the

corresponding measurement for these five boundaries. Mean

and the standard deviation of these differences were

reported. These differences were also assessed by the Bland-

Altman analysis.25 Another important metric to consider is

the root-mean-square error (RMSE), which can be computed

by taking the root of the sum of the square of the standard

deviation and the square of the bias. Second, the measure-

ments associated each of the four nongold-standard methods

were compared with those of M1 using the correlation coef-

ficient (r).

IV. RESULTS

IV.A. Evaluation of wall and lumen boundaries

Table I shows the distance- and area-based metrics asso-

ciated with the two semiautomatically segmented lumen

boundaries. Table II shows the distance- and area-based met-

rics associated with the five nongold-standard outer wall

boundaries. Figure 6 shows the segmentation results for

three sample slices. The first, second, and third row show

TABLE III. The average, standard deviation (in parenthesis in the first col-

umn) and root-mean-square error of the mean thickness difference (Dtmean),

maximum thickness difference (Dtmax) and wall area difference (DWA)

associated with four methods as compared to the gold standard (i.e., first

manual segmentation, M1). M2 represents the second manual segmentation.

SB1, SB2, SA0, and SA5 boundaries generated by semiautomatic segmenta-

tion methods (see caption of Table II). tmean and tmax are expressed in mm

and WA is expressed in mm2.

Dtmean RMSE(tmean)

M2 0.197 (0.260) 0.326

SB1 0.224 (0.339) 0.406

SB2 0.229 (0.363) 0.429

SA0 0.225 (0.261) 0.345

SA5 0.233 (0.256) 0.347

Dtmax RMSE(tmax)

M2 0.273 (0.555) 0.619

SB1 0.389 (0.623) 0.735

SB2 0.395 (0.670) 0.778

SA0 0.434 (0.541) 0.693

SA5 0.364 (0.491) 0.611

DWA RMSE(WA)

M2 4.40 (4.92) 6.60

SB1 4.58 (7.10) 8.45

SB2 4.50 (7.46) 8.71

SA0 4.74 (5.29) 7.11

SA5 4.76 (5.46) 7.25

FIG. 7 Bland-Altman plots of tmean comparing (a) M2, (b) SA0, and (c) SA5

with the gold standard M1. Difference values represent tmean of M1 sub-

tracted from that of nongold-standard methods. Lines denoting the mean dif-

ference and 61.96 SDs are also shown.
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examples with good, average and lower than average seg-

mentation accuracy respectively. The left column shows the

original images and the right column shows the correspond-

ing images with segmented contours superimposed. Yellow

contours represent manual segmentation. Blue and red con-

tours represent semiautomatically segmented wall and lumen

boundaries, respectively, using Method SA0.

Two lumen and outer wall segmentation trials gave

similar results, which are not statistically different in all cat-

egories. We have also investigated the effect of the

registration-based propagation in lumen segmentation. Table

I shows the accuracy of lumen boundaries segmented with-

out registration was only slightly lower than those produced

with registration. This result is not unexpected because an

expert observer was monitoring and revising the segmenta-

tion regardless of whether registration was applied. How-

ever, comparing to the algorithm with registration, the

algorithm without registration requires the observer to edit

the contours twice as many times, making the segmentation

more tedious considering the coverage of the image.

The comparison between SB1 and SA0 indicated that

editing on the CPR views has improved segmentation accu-

racy. In fact, although statistically significant, the results

associated with M2 are close to SA0. The wall boundaries

produced by SA5 were slightly less accurate than those pro-

duced by SA0.

IV.B. Evaluation of vessel wall thickness and area

Table III shows the difference between the vessel wall

measurements associated with the five nongold-standard

boundaries and those with the gold standard. The measure-

ment bias associated with M2 was slightly lower than

the semiautomated methods. The comparison between the

measurements associated with SB1 and SB2 shows that the

proposed semiautomated algorithm generated highly repro-

ducible contours. Among the semiautomated methods,

RMSEs of all measurements associated with SB1=SB2 were

higher than those produced by other methods. The reduction

of RMSEs associated with SA0 and SA5 comparing with

SB1=SB2 shows that the segmentation accuracy was greatly

improved after editing. The RMSEs of tmean and WA associ-

ated with SA0 and SA5 were similar, whereas RMSE(tmax)

associated with SA5 was smaller than that with SA0.

Because the outer wall contour produced by SA5 was inter-

polated from the two adjacent contours that user edited, it is

usually more circular or regular than the contour produced

by SA0. Even when the arterial shape was less continuous in

the longitudinal direction and SA5 could not estimate the

outer wall accurately, the inaccuracy did not have a signifi-

cant effect in Dtmax because the contour shape produced by

FIG. 8 Bland-Altman plots of tmax comparing (a) M2, (b) SA0, and (c) SA5

with the gold standard M1. Difference values represent tmax of M1 sub-

tracted from that of nongold-standard methods. Lines denoting the mean dif-

ference and 61.96 SDs are also shown.

TABLE IV. The correlation coefficients between the mean thickness (tmean),

maximum thickness (tmax), wall area (WA) associated with four methods

and the gold standard (i.e., corresponding measurements of the first manual

segmentation, M1). M2 represents the second manual segmentation. SB1,

SB2, SA0, and SA5 boundaries generated by semiautomatic segmentation

methods (see caption of Table II).

tmean tmax WA

M2 0.65 0.57 0.54

SB1 0.39 0.36 0.38

SB2 0.30 0.24 0.24

SA0 0.61 0.55 0.60

SA5 0.65 0.60 0.54
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SA5 was more circular. In the two examples shown in Fig.

10, both SA0 and SA5 overestimated the size of the vessel

wall and the overestimation was more severe in SA5 than in

SA0. However, the difference in tmax between SA0 and SA5

was small and the difference in tmean was much greater. This

explains why RMSE (tmax) associated with SA5 was smaller

than that with SA0.

Figures 7–9 show the Bland-Altman plots of tmean, tmax

and WA comparing three methods, SA0, SA5, and M2

with the gold standard M1. It can be observed from Figs.

7 and 8 that the automated algorithms (i.e., SA0 and SA5)

tend to underestimate tmean and tmax if the average mea-

surement is larger than a threshold, which is about 1.7 mm

for tmean and about 2.5 mm for tmax. However, when the

average tmean and tmax were smaller than the respective

threshold, the automated algorithms tend to overestimate

the wall thickness slightly. The bias of tmean and tmax were

positive because in most cases, tmean and tmax were below

the threshold.

Table IV shows that correlation coefficients between

each of the three methods, M2, SA0 and SA5, and the

gold standard M1 were around 0.6 for all three parameters,

whereas the correlation between SB1=SB2 and M1 were

much weaker. These results suggested that (1) the accu-

racy of the contours produced by SB1=SB2 had been

greatly improved after editing, either by SA0 and SA5 and

(2) the contours produced using SA0 or SA5 were about

as close to those produced by the first manual segmenta-

tion (M1) as the contours produced by the second manual

segmentation (M2). The difference between the correlation

coefficients associated with SB1 and SB2 is greater than

expected. Figure 11 shows a plot of the wall area measure-

ments between SB1=SB2 and M1. The difference between

the correlation coefficients associated with SB1 and SB2

can be explained by the few points with M1 area greater

than 35 mm2. If these five data points were taken out, the

correlation coefficients associated with the two trials are

similar (0.36 for SB1 and 0.37 for SB2).

To compare the performance of SA0 and SA5, we per-

formed two-side paired t-tests for tmean, tmax and WA. We

found that the mean paired differences in tmean and WA

between the two methods were not statistically significant,

whereas the mean paired difference in tmax was statistically

significant with P¼ 0.005. This result is not unexpected

based on our previous analysis of the nature of the tmax met-

ric using the examples in Fig. 10.

IV.C. Time requirement and implementation details

Lumen segmentation for a femoral artery dataset with

300 slices took 2–3 min. The forward and backward propa-

gation performed to segment the arterial wall took 40 s each,

with the final boundary detection step taking another 30 s.

Editing the outer wall boundary on the CPR views took

about 3–4 min. The time required depends on the difficulty

in separating the vessel wall from the neighbouring muscles.

The algorithm was implemented in the Visual Studio Cþþ
environment and made use of the Microsoft Foundation

Class (MFC) library. The Visualization Toolkit (VTK)

library26 was used in the construction of CPR views. All

experiments were performed using an IntelVR XeonVR 2.0

GHz CPU with 2.0 GB memory. In contrast, manually seg-

menting the lumen and outer wall boundaries for a femoral

artery dataset on every tenth axial slice (i.e., a total of 30 sli-

ces per image) took about 70–80 min. Thus, segmenting the

entire image using the semiautomated algorithm took a

FIG. 9 Bland-Altman plots of WA comparing (a) M2, (b) SA0, and (c) SA5

with the gold standard M1. Difference values represent WA of M1 sub-

tracted from that of nongold-standard methods. Lines denoting the mean dif-

ference and 61.96 SDs are also shown.
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maximum of 10 min, whereas it would take a minimum of

700 min to segment the whole image manually.

V. DISCUSSION AND CONCLUSION

With the advent of fast 3D high-resolution MR imaging,

it is now possible to image the whole femoral artery with

submillimeter resolution in a few minutes. A semiauto-

mated technique for analyzing such huge image sets effi-

ciently is necessary for this 3D imaging technology to be

used in the management of PAD. To address this need, we

developed a semiautomated segmentation technique that

consists of two basic components: (1) 2D slice-based 3D

segmentation and (2) editing on the curved planar reformat-

ted (CPR) views.

In our 2D slice-based 3D segmentation approach, the first

contour on the series was manually segmented. Then, this

contour was propagated to its adjacent image slice to serve

FIG. 11 Wall area measurement comparison between SB1=SB2 and M1. The difference between the correlation coefficients associated with SB1 and SB2 can

be explained by the few points with M1 area greater than 35 mm2.

FIG. 10 These two examples demonstrate the different

properties of the maximum thickness (tmax) and the

mean thickness (tmean) metrics. (a) and (c) show the orig-

inal images of two image slices. (b) and (d) show the

corresponding images with boundaries superimposed.

The green contours in (b) and (d) represent the manual

segmentation. The light and dark blue contours represent

the outer wall boundaries produced using Methods SA0

and SA5 respectively. The semiautomated segmented

lumen boundary is represented by the red contours. In

these two examples, Method SA5 overestimated the ves-

sel wall size more than Method SA0, which was

reflected by the difference in tmean. However, tmax pro-

duced by the two methods were similar.
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as the initial contour, which was then refined using a deform-

able contour model previously described.14 In this paper, we

introduced three innovations to the existing 2D slice-based

segmentation approach: (1) In segmenting the lumen, we

used a registration module to transform the final contour of

the previous slice before it was used as the initial contour on

the next slice in order to improve the initial contour (Sec. II

B). (2) We developed a propagation mechanism in which

users can edit the lumen contour to prevent the algorithm

from running off course (Sec. II B). (3) To improve the accu-

racy of the wall boundary segmentation, we introduced a

two-pass process in which the 2D slice-based segmentation

propagated once forward and once backward, resulting in

two contours on each axial image. Then, on each axial

image, a gradient-based boundary decision process was used

to determine the final contour based on the two contours

(Sec. II C).

However, there are some disadvantages in using the 2D

slice-based segmentation approach to handle 3D datasets.

First, the 2D slice-based approach does not enforce continu-

ity of the contours in the longitudinal dimension. Second, it

does not allow efficient manual contour editing. To address

these drawbacks, we developed a manual editing mechanism

in which user interactions take place on multiple CPR views

(Fig. 3). Continuity along the longitudinal direction was

enforced by smoothing the contours on the CPR views with

the Gaussian kernel, except at control points (Sec. II D 2).

This exception does not only give users flexibility to move

control points; it also allows the continuity along the longitu-

dinal dimension to be readily inspected and assessed at con-

trol points. Attention is drawn to the discontinuous control

points and the user can choose whether and by how much

the control points should be changed.

We used a set of distance- and area-based metrics to eval-

uate the segmentation accuracy of the proposed algorithm.

First, we evaluated the lumen and outer wall boundaries

individually. Second, we assessed four semiautomatically

segmented boundaries (i.e., SB1, SB2, SA0, and SA5) by

comparing their associated mean, maximum thickness, and

the area of the vessel wall (i.e., the region enclosed by the

lumen and outer wall boundaries) with the gold standard.

We found that editing, either using SA0 or SA5, greatly

improved the accuracy of the vessel wall size estimation.

Although SA0 and SA5 overestimated the size of the vessel

wall size as compared to the gold standard, they produced

contours that were about as close to the first manual

segmentation (i.e., the gold standard M1) as those produced

by the second manual segmentation according to the

RMSE reported in Table III and the correlations reported in

Table IV.

The difference in the results produced by SA0 and SA5

was interesting. In the evaluation of vessel wall thickness

and area, paired t-tests showed that the mean paired differ-

ences in tmean and WA between SA0 and SA5 were not

statistically significant, whereas the mean paired differ-

ence in tmax was statistically significant. The significant

difference was largely due to the nature of the tmax metric

as demonstrated in Sec. IV B and Fig. 10. This result,

however, is in disagreement with Sec. IV A, where we

reported that the outer wall boundaries produced by SA5

were less accurate than those by SA0. We confirmed by

paired t-tests that the differences in the four distance- and

area-based metrics associated with SA0 and SA5 were all

statistically significant. This apparent paradox is resolved

by the fact that lower outer wall accuracy as measured by

the distance- and area-based metrics does not necessarily

imply less accurate vessel wall size estimation, even

though the same lumen boundary was used in vessel wall

size measurement. We observed that some outer wall

boundaries produced by SA5 were different from the cor-

responding boundaries produced by SA0 by only a small

shift. For SA5, the contours being evaluated were not

edited directly, and were only indirectly affected by the

move of the control points because of the continuity con-

straint in the longitudinal direction. When the longitudinal

position of the artery changes quickly between two control

points, our arterial model, which has its continuity

enforced by the constraint, may not change quickly

enough to align with the true boundary, resulting in a

small shift with respect to the true boundary. This small

shift, however, does not affect the vessel wall size meas-

urements. Although this small shift may be the main cause

of the statistically significant difference between the outer

wall segmentation accuracy between SA0 and SA5, as

measured by the four distance- and area-based metrics, the

difference is not likely to be clinically significant (with

mean difference �0.05mm in MAD and �2% in AO).

The evaluation results of SA0 and SA5 indicate that edit-

ing does not only improve accuracy of contours on axial sli-

ces that were directly edited on the CPR views, but also on

slices between adjacent control points, because continuity in

the longitudinal dimension was enforced by the CPR editing

tool. Thus, improvement in segmentation accuracy for the

whole 3D femoral artery dataset can be achieved by editing

a relatively few number of control points.

This study has shown that the vessel wall measurement

error associated with the proposed segmentation method, as

compared to the gold standard (i.e., M1), was about as large

as the difference between two repeated segmentations per-

formed by the same observer. However, the correlations

with the first segmentation (i.e., M1) either for the second

segmentation (i.e., M2) or semiautomated methods with

editing (i.e., SA0, SA5) shown in Table IV were relatively

low (	0.6 for all parameters). This can be attributed to two

factors. First, the correlation coefficient is sensitive to the

distribution of the measurement being made. A wider range

in a measurement will lead to a better correlation, even if

the RMSE is the same. The Bland-Altman plots of tmean,

tmax and WA (Figs. 7–9) all indicate that the measurements

are clustered in a small range. Second, the quality of the

femoral artery images with current sequence parameters

was suboptimal. Although good blood signal suppression

has been reported for the use of 3D MERGE technique in

carotid imaging,12 the flow velocity in femoral arteries is

much lower and the use of 3D MERGE technique has not

been optimized for peripheral artery imaging. Improvement
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in blood suppression in femoral artery images will make

the semiautomated segmentation of the lumen boundaries

faster and more accurate. Since the initialization of the

outer wall boundaries depends on the lumen boundaries,

improvement in blood suppression will also have an effect

in the segmentation accuracy of the wall boundaries and

the overall plaque burden estimation. In addition, the con-

trast of different tissue types was particularly low in the

middle of the image (see Fig. 12). This was due to the fact

that two separate stations were used to obtain the long cov-

erage necessary to assess the femoral artery, and the SNR

was lower at the overlapping regions between the two sta-

tions. Thus, improvements are warranted for the position-

ing of the two stations to minimize the SNR drop in the

overlapping region. Accuracy and reproducibility of both

manual segmentation and the proposed semiautomated

algorithm will improve with the improvement in image

quality. However, it should be emphasized that the goal of

the proposed algorithm is less about improving accuracy of

manual segmentation, but more about improving efficiency

of plaque burden analysis. The fact that the proposed algo-

rithm produced contours with similar accuracy comparing

to manual segmentation means that the improved efficiency

did not negatively impact the accuracy.

The motivation for the proposed semiautomated segmen-

tation algorithm stems from the need for an efficient quantifi-

cation tool to assess plaque burden in a large black-blood

femoral artery dataset. The proposed segmentation proce-

dure takes about 8–10 min to process a longitudinal coverage

of 300 mm of a 3D femoral artery dataset, which consider-

ably reduces the analysis time compared with manual

review. This tool allows for large cross-sectional analyses to

evaluate the risk associated with increased plaque burden in

the peripheral arteries and longitudinal studies to evaluate

the correlation between the size of plaque burden and symp-

toms of PAD.
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