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Abstract
Double-stranded RNA (dsRNA) plays a centrally important role in antiviral innate immunity, both
for the production of interferon (IFN) and also in the actions of IFN. Among the IFN inducible
gene products are the protein kinase regulated by RNA (PKR) and the adenosine deaminase acting
on RNA (ADAR1). PKR is an established key player in the antiviral actions of IFN, through
dsRNA-dependent activation and subsequent phosphorylation of protein synthesis initiation factor
eIF2α thereby altering the translational pattern in cells. In addition, PKR plays an important role as
a positive effector that amplifies the production of IFN. ADAR1 catalyzes the deamination of
adenosine in RNA with double-stranded character, leading to the destablization of RNA duplex
structures and genetic recoding. By contrast to the antiviral and proapoptotic functions associated
with PKR, the actions of ADAR1 in some instances are proviral and cell protective as ADAR1
functions as a suppressor of dsRNA-mediated antiviral responses including activation of PKR and
interferon regulatory factor 3.

Introduction
Interferon (IFN), the first cytokine discovered [1], derives its name from the robust
biological activity for which it was discovered: the ability to interfere with virus growth.
Interferon represents the founding cornerstone of antiviral innate immunity. Double-
stranded RNA (dsRNA) has a long history in the interferon field. DsRNAs, both naturally
occurring and synthetic, exemplified by reovirus genome RNA and poly rI: poly rC,
respectively, were identified decades ago as potent inducers of IFN [2–4]. We now have
significant understanding of the molecular mechanisms by which dsRNA produced during
viral infections is detected as foreign by cellular nucleic acid sensors, thereby triggering
signal transduction pathways that culminate in the transcriptional activation of IFN genes
[5–8]. As shown schematically (Fig. 1, left), sensors of dsRNA in pathogen infected cells
include the RIG-like family of receptors (RIG-I, MDA5) present in the cytosol [6,7] and the
Toll-like receptor TLR3 that is endosomal membrane-associated [5]. RNA polymerase III
also acts as a cytosolic sensor of DNA, leading to the production of dsRNA that is sensed by
the RIG pathway [8–10].
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The actions of IFNs are mediated by induced gene products and this too can involve dsRNA
[11,12]. Transcriptional activation of IFN-stimulated gene (ISG) expression by the canonical
JAK-STAT signaling pathway is illustrated in Figure 1 (right). Type I and III IFNs bind to
their cognate receptors and activate a trimeric factor complex composed of STAT1 and 2
and IRF9 that then translocates to the nucleus and binds the DNA enhancer known as the
interferon-stimulated response element (ISRE). Among the IFN inducible gene products are
the PKR protein kinase [13–16] and the ADAR1 RNA adenosine deaminase [17–19]. Both
PKR and ADAR1 are dsRNA binding proteins that possess multiple copies of a conserved
dsRNA binding motif (Fig. 2A). In the case of PKR, dsRNA is a regulatory effector that
either activates or antagonizes kinase activity; in the case of ADAR1, dsRNA is typically the
substrate of the deaminase. Recent evidence suggests that PKR and ADAR1 function not
only as mediators of the actions of IFN, but that they may also play roles in the production
of IFN.

Protein Organization and Genetic Regulation of ADAR1
ADAR1, adenosine deaminase acting on RNA 1, catalyzes the C6 deamination of adenosine
to produce inosine in RNA substrates with double-stranded (ds) character [14,18,20,21].
This reaction (Fig. 2B) is referred to as A-to-I RNA editing and is a form of nucleotide
substitution editing. The generated I is decoded as G instead of A by ribosomes during
translation and by viral polymerases during RNA-dependent RNA replication. A-to-I editing
also alters the stability of RNA duplex structures because I:U mismatch base pairs are less
stable than A:U base pairs [22–24]. Indeed, ADAR activity was first described as a dsRNA
duplex unwinding activity, but instead of unwinding dsRNA, the deamination of adenosine
in duplexes destabilized the dsRNA structure [18,25,26].

The ADAR1 deaminase is encoded by a single gene [14,18]. The major transcript seen in
human cells is ~6.7-kb in size, is increased in steady-state amount by IFN treatment, and
includes 17 exons and possesses an open reading frame (ORF) of 1226 amino acids
[14,17,18]. Two differently sized ADAR1 proteins are expressed, an IFN inducible (p150)
protein that is found in both the cytoplasm and nucleus and a constitutively expressed (p110)
protein that is predominantly if not exclusively localized to the nucleus [17,18,27]. ADAR1
transcription is driven by multiple promoters: one is IFN inducible, and the others
constitutively active [18,28,29]. The IFN inducible promoter possesses a consensus ISRE
element; activation following type I IFN treatment is dependent upon the IFNAR receptor,
JAK1 kinase and STAT2 factor, but surprisingly not on STAT1 [28–30]. ADAR1 transcripts
undergo alternative splicing involving exons 1 and 7 to encode the inducible p150 protein
(1200 amino acids) or the constitutively expressed p110 protein (931 amino acids). p110 is
an N-terminally truncated version of p150 (Fig. 2A).

The domain structure of the ADAR1 proteins includes within the C-terminal region the
deaminase catalytic domain, and within the N-terminal region two kinds of nucleic acid
binding domains, for dsRNA and for Z-DNA (Fig. 2A). Three copies of the dsRNA binding
domain (RI, RII, RIII) are found in both p150 and p110; they are similar to the prototypical
dsRNA binding R-domain (dsRBM) first identified in PKR [31]. Two Z-DNA binding
domains (Zα, Zβ) are found in p150, but only Zβ is present in p110 [14,17,18,32]. p150 also
includes a nuclear export signal [33]. Mutational analyses have established the importance
of key residues in the ADAR1 functional domains, including the H910Q, E912A double
mutant that inactivates deaminase catalytic activity; mutations of a conserved lysine at
positions K554, K665 and K777 that affect RNA binding activity; the K418R mutation that
abolishes sumoylation; and, mutations including Y177F that affect Z-DNA binding activity
[14,34–36].
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A-to-I editing is of two general types [19,20,24,25]. Editing can be highly site-selective with
deamination occurring at one or very few specific A’s in the RNA substrate such as is seen
with the glutamate and serotonin receptor pre-mRNAs and the hepatitis delta virus (HDV)
antigenome RNA. These selective edits alter the genetic decoding of mRNA during
translation, as the I pairs with C, whereas A pairs with U. A-to-I editing can also occur at
multiple A’s in RNA substrates with near perfect duplex structure, such as observed when
ADAR activity was discovered [18,25,26] or with synthetic dsRNA or viral dsRNA [14,18].
Hence, RNA substrate selectivity for adenosine deamination ranges from highly site-
selective to non-selective, and is dependent in part on the duplex structure of the substrate
RNA and possibly also interacting protein partners [18]. Little information is available
regarding RNA as an effector rather than substrate, although adenovirus VAI RNA does
antagonize ADAR1 editing activity [18,26]. A-to-I editing can affect how viruses interact
with their hosts, either directly through genetic recoding, or indirectly through perturbations
of RNA structures qualitatively if not quantitatively [26]. The importance of ADAR1
proteins to mammals furthermore is revealed by the embryonic lethality seen following
genetic disruption of Adar1 expression. Independent Adar1 disruptions that knockout both
p150 and p110 expression [37–40] or only p150 expression [41] all display embryonic
lethality.

Protein Organization and Genetic Regulation of PKR
The IFN inducible, dsRNA-activated protein kinase (PKR, also known as eukaryotic
translation initiation factor 2-alpha kinase 2 [EIF2AK2], P1 kinase, or p68 kinase) is a
member of the eIF2α family of protein kinases that also include the PKR-like endoplasmic
reticulum kinase (PERK, or EIF2AK3); the general control non-derepressible 2 kinase
(GCN2, or EIF2AK4); and the hemin-regulated inhibitor (HRI, or EIF2AK1) of translation
[42,43]. These eIF2α kinases are activated under different conditions of cellular stress,
which is viral infection in the case of PKR, and catalyze the phosphorylation of serine 51 of
eIF2α [42]. PKR expression is inducible by IFN [13]; the Pkr gene promoter, like the
inducible ADAR1 promoter, possesses a consensus ISRE element [14,16]. The major PKR
gene transcript seen in human cells includes 17 exons and specifies an ORF of 551 amino
acids [14–16]. In contrast to the embryonic lethality observed by genetic disruption of
mouse Adar1, neither of the two differently targeted Pkr homozygous null disruptions is
lethal [44,45].

Two RNA binding motifs (RI, RII) are present within the N-terminal portion of PKR; the C-
terminal region includes the kinase catalytic domain [14,16,46] as shown by Figure 2A.
Mutational analyses established the importance of the PKR functional domains, including
the K296R mutation in the catalytic subdomain II that impairs kinase activity; mutations of
the highly conserved lysine of the RNA-binding domain (K64 in RI) that impair RNA
binding activity; and the T446A phosphorylation site mutant that impairs in vivo kinase
activity [12,14,15]. Binding of dsRNA leads to a PKR conformational change —which is
believed to dissociate the catalytic domain from the autoinhibitory N-terminal domain—
permitting dimerization and autophosphorylation [14,15,47]. RNA-mediated activation of
PKR involves phosphorylation of both serine and threonine sites [14], including the T446
residue within the catalytic region that is commonly used as a measure of activation.
Activation of PKR also has been described to include phosphorylation of tyrosine residues
[48]. In addition to synthetic and natural duplex RNAs that activate PKR, naturally
occurring viral RNAs with double-stranded character function either as PKR activators or
antagonists as illustrated by reovirus s1 mRNA and adenovirus VAI RNA, respectively
[12,14,49]. RNA binding is believed to occur in a non-sequence specific but RNA structure-
dependent manner [11,12,50].
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PKR Acts to Amplify Induction of Interferon following Virus Infection
PKR has long been known as a key player in the actions of IFNs [11,12]. Evidence is
accumulating that PKR also plays an important role in the induction of type I IFNs,
particularly IFNβ during viral infections [16,44,51–53]. The cytoplasmic RIG-I like
receptors (RLRs) are principal sensors of foreign or non-self viral RNAs (Fig. 1, left). A
complex forms involving the mitochondrial adaptor IPS-1 (also known as VISA, CARDIF,
or MAVS) and activated RLRs, and together with TRAFs and IKK-related kinases, signal
the activation of IRF3 and NFκB [5–7] to drive IFNβ gene expression [54].

Recent studies show that activation of PKR accompanies IRF3 activation, and that knock-
down of PKR reduces activated IRF3 levels and IFNβ induction by transfected dsRNA [55].
Furthermore, the effect of PKR on activation of IRF3 is dependent on the adaptor IPS-1;
siRNA mediated knock-down of either IPS-1 or PKR reduces IFNβ gene expression in
response to measles virus (MV) infection to similar levels [51]. It is not yet known whether
PKR directly phosphorylates IRF3, or indirectly contributes to the assembly or activation of
the RIG-I/IPS-1 dependent signaling complex. For several positive-stranded RNA viruses
including West Nile virus (WNV), encephalomyocarditis virus (EMCV), Theiler’s murine
encephalomyelitis virus and Semliki Forest virus, PKR also is required for production of
IFNβ [52, 53]. But for JFH1 hepatitis C virus (HCV), which likewise is a positive-stranded
RNA virus, phosphorylation of PKR and eIF2α leads to an inhibition of IFNβ induction at
the level of translation [56]. HCV, whose IRES-mediated protein synthesis initiation is
independent of eIF2α phosphorylation, thus utilizes PKR to inhibit both the production [56]
and action [57] of IFN. For bovine rotavirus UK, a double-stranded RNA virus, optimal
induction of IFNβ production also is dependent upon PKR as well as RLRs, IPS-1, and
IRF3; PKR deficiency leads to a defect in UK-infected cell secretion of IFNβ [58]. The
mechanisms are not yet resolved, but one possibility in EMCV-infected cells involves PKR-
mediated regulation of IFN mRNA stability [52].

The PKR dependency for optimal IFNβ induction by MV correlates with enhanced
activation of NFκB and ATF2, and with WNV the PKR effect also involves enhanced NFκB
activation [53]. The possibility that the PKR amplification of IFNβ expression is a
translational control effect through eIF2α phosphorylation cannot be excluded, for example
affecting the level of an activated transcription factor such as NFκB through control of
synthesis of a rapidly degraded inhibitor like IκBα. To the extent that RNA structural
features overlap for recognition by the RLRs and PKR also is not yet clear, but length of
dsRNA and presence of a 5′-triphosphate on ssRNA are important for RLR sensing [5,59].
However, studies with reovirus ssRNA transcripts and genome dsRNA indicate that a 5′-
triphospate is neither necessary nor sufficient for PKR activation [12,60], although 5′-
triphosphate dependent activation of PKR by synthetic RNAs with short stem loops has been
reported [61]. Interaction of PKR with members of the TRAF protein family has been
described, with TRAF2 and TRAF3 interacting sites located around RII [62]. These
interactions possibly stabilize the dsRNA-induced active (open) conformation of PKR by
preventing the autoinhibitory function of RII. Furthermore, TRAF5 and 6 have been shown
to interact with PKR, presumably indirectly and mediated by TRAF3 and 2, respectively
[63]. The assembly of a TRAF-platform might enable the formation of an alternative
signaling complex leading to phosphorylation of IRF3 or conceivably mediate an interaction
with the RIG-I/IPS-1 signaling complex, thereby enhancing NFκB activation. Activation of
NFκB by recruitment of the IKK complex [64], consisting of the inhibitor of kappaB kinases
IKKα, IKKβ and IKKγ (also known as NEMO), could also be mediated by TRAFs. The
IFNβ enhanceosome, besides NFκB and IRF3, also consists of ATF2/c-Jun activated by the
mitogen-activated protein kinase (MAPK) pathways, including p38 and Erk1/2. PKR has
been shown to be involved in the activation of p38 and Erk1/2 [51,65], but the biochemical
mechanisms underlying this activation are not yet fully resolved.
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ADAR1 Acts as a Suppressor of PKR and Displays Proviral Properties
Although ADAR1 is an IFN-inducible gene product, a growing body of evidence shows that
ADAR1 functions in a proviral manner during acute infection in cell culture, notably with
some RNA viruses [19,66]. These include HDV [67], MV [68], vesicular stomatitis virus
(VSV) [27,69] and human immunodeficiency virus (HIV-1) [70–73]. In the case of HDV,
site-selective A-to-I editing changes an amber UAG termination codon to a tryptophan UIG
codon that permits synthesis of large delta antigen [67]. In the case of MV acute infection,
depletion of ADAR1 in MEFs by genetic knockout of p150 and in human cells by
knockdown of both p110 and p150 results in enhanced apoptosis and virus-induced
cytotoxicity, and in the human ADAR1-deficient cells reduced MV growth [41,68]. In the
case of HIV-1, overexpression of either ADAR1 [70,71,73] or ADAR2 [72] increases viral
replication by both editing-dependent and-independent mechanisms.

While multiple mechanisms may be responsible for the proviral activity of ADAR1, one
relates to the inhibition of PKR [74]. ADAR1 interferes with the activation of PKR and
reduces the phosphorylation of eIF2α [27,68,69,75]. Overexpression of ADAR1, either the
full-length p150 protein or the region with the RNA-binding and Z-DNA binding domains
alone, impairs both PKR autophosphorylation and eIF2α phosphorylation [69,73,75].
Perhaps more physiologically relevant than overexpression are loss of function studies,
where stable knockdown of ADAR1 leads to enhanced PKR autophosphorylation and eIF2α
phosphorylation following infection with Cko mutant MV or VSV [27,68]. That is, in
ADAR1 sufficient cells, PKR autophosphorylation is suppressed following infection, but in
ADAR1 deficient cells is enhanced possibly because of the lack of editing-mediated
destablization of dsRNA, lack of sequestration of dsRNA by ADAR1, or lack of formation
of inactive heterodimeric ADAR:PKR complexes.

By virtue of the ability to impair PKR activation, ADAR1 would be expected to suppress
PKR-mediated biological activities including antiviral, proapoptotic, and IFN induction
amplification activities. Some of these predictions have been tested, either by ADAR1 loss
of function or overexpression strategies. Depletion of ADAR1 by knockdown in human cells
or by genetic knockout in mouse MEFs leads to enhanced apoptosis and cell cytotoxicity
following infection with a number of different viruses of the Paramyxoviridae families and
the DNA virus, polyoma [41,68,76]. In the case of MV, growth of both wild-type and Vko

mutant virus are reduced in ADAR1 deficient cells compared to ADAR1 sufficient cells
[68]. Furthermore, the inhibition of VSV growth by IFN is about 1 log10 further reduced in
ADAR1 deficient compared to sufficient cells, and the reduced VSV yield correlates with
enhanced PKR activation [27]. Using an overexpression screening strategy in which more
than 380 human ISGs were tested for their antiviral activity against a number of medically
important viruses, different categories of ISGs were identified: some acted broadly with an
inhibitory effect, and a few enhanced viral replication [77]. Among the most potent proviral
ISGs was ADAR1 that significantly enhanced the replication of all viruses tested including
HIV-1, WNV, chikungunya virus, Venezuelan equine encephalitis virus and yellow fever
virus [77].

Finally, for some RNA viruses including human respiratory syncytial virus and lymphocytic
choriomeningitis virus, isolates have been obtained with A-to-G and U-to-C nucleotide
substitutions in viral glycoproteins, sequence changes consistent with editing by ADAR1
[19]. Conceivably, limited low level editing by ADAR1 might be proviral in an infected
animal if changes in a surface antigen occur in a manner that alters an epitope structure
sufficient to allow escape from immune surveillance and neutralization. By contrast, when
extensive editing occurs leading to hypermutations and inhibition of protein production,
whether the editing is by ADAR1, or APOBEC3G in the case of retroviruses, then the effect
could be antiviral.
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Inosine-containing RNA as an Effector of the Innate Immune Response: Activator or
Suppressor?

Poly rI:poly rC was one of the first dsRNA inducers of IFN discovered [3], and remains one
of the most potent and efficient inducers [5–7]. Poly rI: poly rC also is bound by PKR, and
dependent upon the concentration, either activates or inhibits of PKR autophosphorylation
as well as activation of the 2′,5′-oligoadenylate synthetases [11,12,42]. ADAR1 action on
dsRNA produces inosine (I) from adenosine (A) (Fig. 2B). Thus, A-to-I editing of dsRNA
would be expected to produce inosine-containing dsRNA with I:U pairs in place of A:U
pairs. Synthetic dsRNA with I:U base pairs unexpectedly did not induce, but rather
suppressed the IFN response [78]. Induction of IFN-stimulated gene expression and
apoptosis by poly rI: poly rC was suppressed by IU-dsRNA that contained multiple I:U pairs
[78]. Furthermore, the IRF3 activation was inhibited by IU-dsRNA, possibly by inhibition of
RIG-like receptor signaling, although the precise mechanism remains unresolved [78]. The
observation that synthetic IU-dsRNA inhibits IRF3 activation is consistent with prior studies
with virus-infected cells. Infection of ADAR1-deficient cells with MV results in an
enhanced activation of IRF3 compared to the activation seen in ADAR1-sufficent cells [68].

The p150 isoform of ADAR1 has emerged as an important component in the host response
to infection by a number of RNA viruses that replicate either in the cytoplasm or nucleus
[27,41,68], whereas the p110 isoform plays a role for some DNA viruses that replicate in the
nucleus [76]. A common theme is that the presence of ADAR1 correlates with a cell
protective response, and in some cases even enhances virus replication. By contrast, under
conditions of ADAR1 deficiency either in genetically null MEFs or knockdown cells, PKR
activation is increased and the replication of VSV [27,69] and MV [68] are reduced. These
results further establish that ADAR1 can display antiapoptotic and even proviral behavior in
cell culture. Additionally, foreign DNA present in the cytosol, like foreign RNA, can trigger
an innate immune response [8,79]. Among the DNA sensors in addition to RNA polymerase
III [8] is DAI, DNA-dependent activator of IFN [79]. ADAR1 strongly suppresses the
activity of DAI and reduces IFNβ induction by herpes simplex virus infection, effects that
might enhance virus replication.

ADAR1 and Development of the Hematopoietic system
ADAR1 plays an important role in the development of the immune system. The presence of
ADAR1 protein is an obligate requirement in mice for development of the liver and bone
marrow hematopoietic system as established by knock-out studies. In mice homozygous for
the Adar1 null mutation, embryonic lethality occurs at day 11.5–12.5 with liver
disintegration and widespread apoptosis in many tissues [37]. MEFs from Adar1−/− embryos
deficient in both p110 and p150 are prone to apoptosis due to stress induced by serum
deprivation [39], and MEFs deficient in only p150 show enhanced cytotoxicity following
viral infection [41]. Furthermore, the absence of ADAR1 p110 and p150 proteins results in a
global upregulation of type I and II IFN-inducible transcripts and apoptosis [38], consistent
with analyses that show ADAR1 suppresses the IFN response [27,68,69]. Studies of
inducible Adar1 deficient mouse lines indicate that ADAR1 suppresses the deleterious
effects of a robust activation of the IFN response [38]. ADAR1 either protects hematopoietic
stem cells from apoptosis [38] or is necessary for differentiation of hematopoietic progenitor
cells [40]. The selective knockout of p150 [41], like the knockouts that disrupt both p110
and p150 [37–40], is embryonic lethal, suggesting that the IFN inducible p150 isoform of
ADAR1 is the form that regulates IFN production and protects against stress-induced
cytotoxicity, thereby facilitating cell survival and maintenance of the hematopoietic stem
cells.
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Stress, RNA Granules, PKR and ADAR
Stress granules (SG), a form of RNA granules found in the cytoplasm of cells, can be both a
cause and a consequence of stress-induced alteration in translation [80]. SG form within
cells during conditions of stress, including viral infection, and among the consequences are
the global downregulation of translation and the production of proteins necessary for cell
survival [81,82]. Multiple mechanisms may be involved in the SG-associated modulation of
translation, and among them is the phosphorylation of eIF2α. Formation of SG during viral
infection often, but not always, is associated with activation of PKR and phosphorylation of
eIF2 [80–82]. While some viruses mediate PKR activation and eIF2α phosphorylation, other
viruses encode gene products that antagonize these processes [12,83].

Vaccinia virus E3L protein antagonizes PKR activation and facilitates virus growth, but
mutant virus lacking E3L grows poorly, activates PKR and eIF2α phosphorylation and
induces the formation of cytoplasmic SG-like structures [84,85]. Effective PKR-mediated
restriction of E3L mutant virus growth requires SG-like complex formation subsequent to
eIF2α phosphorylation [84]. Mammalian reovirus also induces the formation of SG in an
eIF2α phosphorylation dependent manner early during infection, but at later times the SG
structures become disrupted which correlates with the release of viral, but not cellular,
mRNA from translation inhibition [86]. PKR activation and eIF2α phosphorylation also are
associated with induction of SG formation by respiratory syncytial virus, but in a manner
that facilitates virus replication [87]. In the case of WNV and dengue virus, the NS3 protein
and viral dsRNA co-localize with the SG components TIA-1 and TIAR, and interaction with
TIAR facilitates genome RNA synthesis and inhibits SG formation [88].

Among the SG-associated proteins is ADAR1 [80]. Furthermore, synthetic IU-dsRNA
associates with a SG-like complex and downregulates gene expression in cultured cells [89].
Over-expression of ADAR1 increases gene expression at the translational level by
decreasing PKR-dependent eIF2α phosphorylation [75]. What is not yet clear is whether the
overexpression of ADAR1 simply impairs PKR activation, or alternatively alters SG-
formation and function, to affect gene expression. It also is not yet known whether naturally
occurring I-containing RNAs, similar to the synthetic IU-dsRNAs, or cytosolic RNA sensor
components of the RIG-like receptor-IPS signaling complex, also associate with SG-like
complexes to modulate gene expression and the innate immune response.

Conclusions
PKR, an IFN-inducible protein, is firmly established as a regulator of translation in virus-
infected cells through phosphorylation of protein synthesis initiation factor eIF2α.
Increasing evidence further positions PKR as a positive effector of IFN production triggered
by infection and elicited via the RIG-like receptor pathway. PKR-mediated amplification of
IFNβ expression is described for several RNA viruses, although there is the counter
exception illustrated by HCV that displays a PKR-dependent impairment of IFNβ
production. For PKR-dependent IFNβ expression, increased phosphorylation of PKR
correlates with increased activation of IRF3, NFκB and ATF2, and enhanced IFN induction.

ADAR1, likewise is an IFN-inducible protein, is best known for its A-to-I RNA editing
activity, whereby adenosine in dsRNA structures is deaminated to produce inosine.
Increasing evidence implicates ADAR1 as an important modulator of the innate antiviral
response, down-regulating the IFN response. ADAR1 suppresses activation of both PKR
and IRF3, for example. In addition to the effects of A-to-I editing on RNA structure and
function, ADAR1 also may conceivably affect the innate immune response via mechanisms
that are dependent upon the RNA-binding or protein-interaction properties of ADAR1.
However, little is known about the catalytic-independent mechanisms of ADAR1 in
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mammalian cells. Likewise, the precise mechanism as to how ADAR1 impairs PKR and
IRF3 activation is not resolved. Among the possibilities are the destabilization of dsRNA
structures; dsRNA competition and sequestration; and altered protein-protein interactions.
Nor is the mechanism resolved as to how PKR affects signaling to amplify IFNβ production,
perhaps either by translational inhibition of suppressor proteins or by fulfilling an adaptor
function during signaling. These remain important questions.

There are an increasing number of cellular sensors of foreign nucleic acids that have been
identified which trigger the innate antiviral response, including RLRs and TLR3 for dsRNA.
PKR and ADAR1 also are sensors of dsRNA (Fig. 3). Although both are IFN inducible
proteins, constitutive levels of PKR and ADAR1 are typically present in most mammalian
cells. A considerable body of evidence characterizes PKR function as antiviral and
proapoptotic, whereas a growing body of evidence reveals ADAR1 function typically as
proviral and antiapoptotic. A model that emerges is characterized by the actions of ADAR
serving to balance those of PKR and other innate immune system responders (Fig. 3). Under
spatiotemporal cellular conditions of ADAR sufficiency and PKR deficiency, PKR and
IRF3 activities, for example, are minimized through functional inactivation of dsRNA by
editing or sequestration. By contrast, under conditions of ADAR deficiency and PKR
sufficiency, the activities of PKR and IRF3 are maximized. Future studies of the ADAR and
PKR will provide opportunities to further test these notions, and no doubt will continue to
provide us with surprises and new insights into biological functions of these IFN-inducible,
dsRNA-binding enzymes.
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ADAR adenosine deaminase acting on RNA

dsRNA double-stranded RNA

IFN interferon

PKR protein kinase regulated by RNA

ssRNA single-stranded RNA
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Highlights

• PKR and ADAR1 as dsRNA sensors.

• ADAR1 and PKR as opposing modulators of the interferon response.

• ADAR1 suppresses PKR and IFNβ induction.

• Proviral and cell protective functions of ADAR1.

• Antiviral and Proapoptotic functions of PKR.
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Figure 1. Signaling pathways involved in the induction and action of interferon
(left) Nucleic acid sensors that respond to viral infection detect viral nucleic acids as foreign,
thereby leading to the production and action of IFN. Sensors include the RIG-I and MDA5
cytosolic helicases and their mitochondrial membrane-associated adaptor IPS-1; the Toll-
like receptor TLR3 that acts through the TRIF adaptor; TLRs 7, 8 and 9 that act through the
MyD88 adaptor; and, RNA polymerase III that acts through IPS-1. RIG-I, MDA5 and TLR3
sense dsRNA, and pol III senses cytosolic dsDNA to produce dsRNA. TLRs 7 and 8 sense
ssRNA, and TLR9 CpG-rich DNA. These nucleic acid sensors trigger antiviral innate
immunity through activation of factors that lead to transcriptional activation of IFN
production. (right) Signaling by types I, II and III interferons through the canonical JAK-
STAT pathway is illustrated, leading to the transcriptional activation of IFN-stimulated
genes. Among the IFN-induced gene products are ADAR1 and PKR, both of which bind
dsRNA and possess enzymatic activity, one (PKR) regulated by dsRNA and the other
(ADAR1) utilizing dsRNA as a substrate. Adapted from Samuel [26].
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Figure 2. Domain organization of ADAR1 and PKR proteins from human cells and the
enzymatic reactions catalyzed by them
(A) Domains. Alternative promoters and alternative splicing give rise to two size isoforms
of ADAR1, an IFN-inducible p150 protein and a constitutively expressed p110 protein. A
single-sized form of PKR is known that is inducible by IFN. The N-terminal regions of
ADAR1 and PKR include repeated nucleic acid binding domains and the C-terminal regions
the catalytic domains responsible for their enzymatic activities. Multiple dsRNA binding
domains (RI, RII, RIII), three present in both ADAR1 p110 and p150 and two in PKR, are
shown in red. RNA adenosine deaminase and protein kinase catalytic domains are shown in
yellow for ADAR1 and PKR, respectively. The N-terminal region of the p150 form of
ADAR1 also possesses two Z-DNA binding domains (Zα and Zβ, and p110 the Zβ copy, as
shown in pink. (B) dsRNA is the substrate of ADAR1. ADAR1 p110 and p150 catalyze the
C-6 deamination of adenosine (A) to yield inosine (I) in RNA with double-stranded
character. (C) dsRNA is an effector of PKR. RNA-dependent activation of eIF2α protein
kinase activity is mediated by autophosphorylation (green P) of PKR; phosphorylation of
serine 51 (red P) of eIF2α by PKR leads to an inhibition of protein synthesis.
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Figure 3. Modulation of innate immune responses mediated by the relative balance between
ADAR and PKR acting as RNA sensors
Deamination of adenosine (A) to produce inosine (I) in duplex RNA structures catalyzed by
ADAR leads to the nucleotide substitution of an I for an A in RNA. Because I base pairs
with C instead of U, dsRNA with I:U mismatch base-pairs are less stable than A:U pairs.
ADAR and PKR may also compete for dsRNA. ADAR, and A-to-I editing, may affect gene
expression and function in virus-infected cells by a number of mechanisms including
suppression of PKR and IRF3 activation.
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