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Abstract
Background—Mammographic breast density is an important and widely accepted risk factor for
breast cancer. A statement about breast density in the mammographic report is becoming a
requirement in many States. However, there is significant inter-observer variation between
radiologists in their interpretation of breast density. A properly designed automated system could
provide benefits in maintaining consistency and reproducibility. We have developed a new
automated and calibrated measure of breast density using full field digital mammography
(FFDM). This new measure assesses spatial variation within a mammogram and produced
significant associations with breast cancer in a small study. The costs of this automation are delays
from advanced image and data analyses before the study can be processed.

Objectives—We evaluated this new calibrated variation measure using a larger dataset than
previously. We also explored the possibility of developing an automated measure from
unprocessed (raw data) mammograms as an approximation for this calibrated breast density
measure.

Methods—A case-control study comprised of 160 cases and 160 controls matched by age,
screening history, and hormone replacement therapy was used to compare the calibrated variation
measure of breast density with three variants of a non-calibrated measure of spatial variation. The
operator-assisted percentage of breast density measure (PD) was used as a standard reference for
comparison. Odds ratio (OR) quartile analysis was used to compare these measures. Linear
regression analysis was applied to assess the calibration’s impact on the raw pixel distribution.

Results—All breast density measures showed significant breast cancer associations. The
calibrated spatial variation measure produced the strongest associations [OR: 1.0 (ref.), 4.6, 4.3,
7.4]. The associations for PD were diminished in comparison [OR: 1.0 (ref.), 2.7, 2.9, 5.2]. Two
additional non-calibrated measures restricted in region size also showed significant associations
[OR: 1.0 (ref.), 2.9, 4.4, 5.4], and [OR: 1.0 (ref.), 3.5, 3.1, 4.9]. Regression analyses indicated the
raw image mean is influenced by the calibration more so than its standard deviation.

Conclusion—Breast density measures can be automated. The associated calibration produced
risk information not retrievable from the raw data representation. Although the calibrated measure
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produced the stronger association, the non-calibrated measures may offer an alternative to PD and
other operator based methods after further evaluation, because they can be implemented
automatically with a simple processing algorithm.
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1. Introduction
Mammographic breast density is a significant factor for breast cancer risk that has been
studied for many years (1, 2). A statement about breast density is a part of the radiological
report according to the 4th edition of the Breast Imaging Reporting and Data System (BI-
RADS) (3). BI-RADS breaks down the estimate of breast density into quartiles: from almost
entirely fat (0–25% glandular tissue) to extremely dense (75–100% glandular tissue). The
breast density part of this report is meant to guide referring physicians to the risk of a cancer
being obscured by the background tissue. The downside is that there is significant variation
in the way breast density is reported from the 2D examination read by the radiologist (4).
BI-RADS breast density is also used as a measure of risk in research (2) as a coarse
approximation for the percentage of breast density measure. Breast density as a breast
cancer risk factor is not currently used in clinical practice due to the lack of standardization
and automation of its measurement (5).The attributes of an automated breast density
measure for clinical applications should have a high degree of replication and translate
across imaging platforms without extensive modification.

There are various methods used to assess breast density, as reviewed previously (6). For the
most part, the breast density and breast cancer associations have been developed with
measurements that did not consider the inter-image acquisition technique differences. In
particular, the operator-assisted percentage of breast density approach (or PD) has shown
repeatedly to correlate well with breast cancer (2) without considering the acquisition
technique. Methods for automating PD are not widely used (6). An alternative method of
assessing breast density is to calibrate, or adjust, for the acquisition technique differences
(7–11).

Calibration should reduce unwanted measurement variation and produce a measure of
mammographic density that shows stronger associations with breast cancer than non-
calibrated methods such as PD. However, measurements based on calibration with digitized
film mammography have produced mixed findings. Some work shows that calibration does
not produce anything beyond PD (12, 13). Other researchers found that calibration
strengthens the breast density associations with film mammography (14). Using full field
digital mammography (FFDM), we have shown that calibration can be used to both describe
PD (15) and to develop a new measure of breast density (16). This new measure is
calculated as the standard deviation (SD) of the calibrated pixels within the breast area,
which captures spatial variation. This measure provided stronger associations with breast
cancer than PD in a small study (16).

Our calibration methodology was described in detail previously (17–20) and is briefly
discussed here to put the various measurements in context. The calibration produces image
data normalized for the inter-image acquisition technique differences at the pixel level (or
more coarse scales) referred to as the percent glandular representation, which is a
normalized effective x-ray attenuation coefficient metric. Differences in the compressed
breast thickness, target-filter combination, x-ray tube voltage, and exposure are rectified by
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the calibration process. There are many technical problems (15, 18) that if not addressed will
introduce considerable error into the calibration output.

The calibration may not influence the moments of the raw pixel distribution uniformly. If
the calibration primarily operates on the central (or mean) value of the pixel distribution for
a given image, the standard deviation of the raw pixel values (derived from non-calibrated
images) may also be a measure of breast cancer risk. The objectives of this work were (a)
evaluate the new calibrated standard deviation measure (or PGSD) with a larger dataset than
used previously, (b) explore the possibility of developing a breast density measure without
calibration that shows a similar association with breast cancer as PGSD, and (c) characterize
the calibration influence on the raw pixel distributions. To meet these objectives, we
performed a case-control study to evaluate PGSD and explored the standard deviation from
the raw FFDM images as the breast density metric. For one measure, the standard division
was calculated from the raw data using the same region as for PGSD. Two additional
standard deviation measures were considered from the raw data by restricting the region
sizes. These non-calibrated measures were compared with PGSD using their association with
breast cancer as the endpoint. PD was applied to raw mammograms and used as a common
reference for comparison. Regression analysis was used to compare calibrated and non-
calibration pixel distribution characteristics to understand the quantities most influenced by
calibration. Our previous work was performed at a more coarse calibration scale (15, 16). In
contrast, the calibration was performed at the pixel-level for this report.

2. Methods
2.1 Study Population

The patient accrual was part of an ongoing case-control study. The study population,
selection methods, and matching particulars have been discussed previously (15) and are not
discussed here in detail. In brief, the study accrual has been updated in this report to include
more participants. In this IRB approved study, women diagnosed with a primary breast
cancer (September 2007-March 2011) were included as cases (n=160) identified from those
attending the breast clinics at the H. Lee Moffitt Cancer Center. For the controls, three
groups of cases were considered based on their screening history. Group 1 was comprised of
women that had a negative screening mammogram within 30 months prior to their breast
cancer diagnosis (n1 = 141). Group 2 was comprised of women who had a negative
screening history that fell outside of the group 1 parameters, such as a woman who had a
screening in 2007 but not again until 2010 at which time she was diagnosed with cancer (n2
= 14). Group 3 was comprised of women who were just starting screening and were
diagnosed at their baseline mammogram (n3 = 5). Case data and images were either located
by retrospective records review (n = 52) for those women with images archived on the study
FFDM unit or recruited, consented, and imaged for the study (n = 108). Controls (n=160)
were identified retrospectively from the pool of women undergoing breast cancer screening
mammography at the H. Lee Moffitt Cancer Center with archived images acquired with the
study FFDM unit and were individual matched to their cases by age (±2 years) and hormone
replacement therapy usage and duration (± 1year).

2.2 Spatial Variation Breast Density
Various breast density measures and their association with breast cancer were compared
using a matched case-control design. To reduce anomalous spatial variation, the analysis
was contained to the portion of the image that was in contact with the compression paddle
during imaging. Using methods described previously (15, 19), the breast image area was
eroded by 25% along a radial direction. This area defined the effective breast area. The
degree of breast area reduction is an approximation that eliminates anomalous region where
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the compressed breast thickness is not well defined. Both PGSD and the standard deviation
calculated from the raw data (or RSD ) were derived from this modified breast area. The
measures RSDL and RSDX were derived from reducing the effective breast area further and
calculating the standard deviation. RSDL was derived with 35% erosion. Because
mammograms have a fractal characteristic (21–23), RSDX was considered by restricting the
measure to a 3 × 3 cm2 box within each image. The box was located by first segmenting the
breast region from the background and forming a binary mask, where the breast region
pixels equal 1 and the other pixels were set to zero. Parallel to the chest wall, the box was
centered on the centroid (determined with the binary segmented image) and extended from
the detector edge to 3 cm along the direction perpendicular to the chest. Examples of the box
location-size are shown in Figure 1. This measure was used to investigate (or control for)
two possible influences. First, in fractal noise fields such as mammograms, the variance is a
function of the region-size from which it is measured, where the larger the area, the larger
the variance. Secondly, PGSD is a decreasing function of increasing breast area (16). All
measures of breast density were compared with PD as means of standardized control.

2.3 Percentage of Breast Density (PD)
The dataset consisting of all cases-control images (left and right CC view images) were first
de-identified and randomized. PD was generated with the Cumulus3 (CM) software
(University of Toronto) using the batch file procedure to process the raw (non-processed
images) FFDM images. The CM operator was blinded to the case-control status and original
image identifiers. To avoid operator fatigue, a single operator performed the PD labeling in
multiple reading sessions.

2.4 Breast Cancer Association Comparisons
To assess the breast density measure association with breast cancer, the non-cancer breast of
each case was matched with the ipsilateral breast of its control. All mammograms were
performed with a General Electric (Milwaukee, WI) Senographe 2000D FFDM
mammography unit (i.e. one unit) that is used for routine screening at our center. The
cranio-caudal (CC) views were used for all our analyses. A standard quartile analysis was
used for the odds ratio (OR) comparisons, where the control breast density distribution was
used to determine the cutoff values for each measure using conditional logistic regression.
The first quartile of breast density for each measure served as the reference group for the
second-fourth quartiles, providing a means for comparing the inter-measure OR
distributions. Body mass index (BMI) measured in kg/m2 and breast area (pixel units) were
used as continuous variable adjustments in the analyses, while menopausal status was
adjusted as a binary variable. The area under the receiver operating characteristic curve (or
Az) was also used for predictive capability comparisons. This analysis, (including the Az
estimations) was performed with the SAS software package (SAS Institute Inc., NC).

2.5 Calibration Assessment
One objective of this work was to investigate the nature of the calibration without
considering the case-control status as the endpoint comparison. Similar pixel distribution
measures were derived from calibrated and non-calibrated mammograms and compared. The
average (or PG) and standard deviation of the calibrated pixels values (i.e. PGSD) were used
as the two calibrated measures. The mean (RM) and standard deviation (i.e. RSD) of the raw
pixel values were used as two non-calibrated measures. The respective means and standard
deviations were investigated with linear regression analysis. For this analysis, we used the
combined image dataset (i.e. 320 study images derived from both cases and controls).
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3. Results
3.1 Breast Density Measurement Association

Demographic and risk factor distributions are presented for both breast cancer cases and
controls in Table 1. The two groups are similar in most measures. However, the cases have a
few more menopausal women and the majority of women overall all postmenopausal.
Associations between the five breast density measurements and breast cancer are
summarized in Table 2. In this table, the ORs and Az quantities were adjusted for BMI,
simultaneous adjustments for BMI and breast area, and the simultaneous adjustments for all
three factors. When controlling for all factors, PGSD provided the largest OR associations
with breast cancer [OR: 1.0 (ref.), 4.6, 4.3, 7.4; Az = 0.651] among the measures. In
comparison, the PD associations [OR: 1.0 (ref.), 2.7, 2.9, 5.2; Az=0.643] were somewhat
diminished. The RSDL associations [OR: 1.0 (ref.), 2.9, 4.4, 5.4; Az = 0.654 ] were slightly
greater than PD, and the RSDX associations [OR: 1.0 (ref.), 3.5, 3.1, 4.9; Az =0.650] were
similar to PD. In comparison with the other measures, RSD provided the weakest association
[OR: 1.0 (ref), 2.2, 2.9, 3.8; Az = 0.634]. The estimated standard error (SE) for all Az
quantities was SEAz ≈ 0.03 indicating the inter-measure Az differences are marginal for
most comparisons. To help explain the RSD and RSDL relative association, we also
investigated the calibrated standard deviation calculated from the 35% eroded breast region
(or PGSDL). In contrast, the PGSDL associations weakened when using the reduced breast
area but were similar to that of PD (data not shown).

To estimate the area loss due to the erosion process, we used a coarse approximation that
applies to CC views. If we assume the breast area (A) geometry is a half hemisphere, A~ r2 ,
where r is the radius. The differential area change approximation with respect to the erosion
is given by dA ~ 2R×ΔR, with ΔR = 0.25×R or 0.35×R for the 25% and 35% erosion,
respectively. The percentage area reduction is then ≈ 100% ×dA/A, which gives 50% and
70%, for the 25% and 35% erosion. Thus, the RSDL measure included roughly 30% of the
available pixels within the breast region, whereas RSD included 50% of the pixels. To put
the RSDX measurement in context, the box relative to various breast sizes is shown in Figure
1. From left to right we show the box relative to the larger breast, medium size breast, and
smallest breast in the dataset. The breast area histogram is shown in Figure 2. The
symmetric behavior (and central tendency) shown in Figure 2 indicates that many of the
images have breast areas similar to the medium size breast shown in Figure 1 (middle
illustration). For all measures, the ORs and Az quantities increased (increased magnitude of
association) when controlling for (a) BMI, (b) BMI and breast area, and (c) BMI, breast area
and menopausal status. However, the four variation measures were more strongly influenced
by the breast area than PD when considering the respective ORs. The ORs for the box-
restricted measure were also influenced by breast area. These findings also indicate that
menopausal status is captured by the breast density measures to varying degrees. For
example, we let x0 = the 4th quartile OR without controlling for menopausal status and x1=
4th quartile OR when controlling for menopausal status for a given measure. The percent
change (PC) is then given by PC = (x1-x0)/x0 × 100%. For the calibrated PGSD, PC =
20.2%, and for the RSDL, PC = 8.7%. In contrast for PD, PC=1.4% and for RSDX, PC =
2.7%. Because the calibrated measure was influenced the most by menopausal status, we
assessed its relationship further. PGSD was used to predict pre-menopausal status with
logistic regression, which gave OR = 1.9 (1.5–2.5) per standard deviation change in PGSD
and Az = 0.690.

3.2 Correlation Comparisons
To show the influence that the calibration has on the raw image mean (or RM ), the
calibrated mean (or PG) was modeled as a linear function of RM as shown in Figure 3. In
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this plot, we used both the entire dataset (the line with greater length) and a restricted dataset
determined by removing three outliers located to the right (the line with shorter length). The
respective slopes for each line were m = 0.026 (SE=0.004) and 0.047 (SE=0.005). In both
cases, the slopes were significantly different from zero (P <0.0001). However, the respective
coefficients of determination were R2 = 0.12 and 0.19, indicating the linear model does not
explain the relationships well. As shown in Figure 4, PGSD (calibrated standard deviation)
was modeled as a linear function of RSD (the raw image standard deviation), which gave m
= 0.042 (SE=0.002 and P <0.0001) with R2 = 0.73. Because of the RSDL significant OR
associations, we performed a similar regression with PGSD, which gave m = 0.048
(SE=0.001, P<0.0001) and R2 = 0.77 (plot not shown). Thus, the standard deviation
measures derived from the two different data representations are collinear.

4. Discussion
Our study investigated various automated methods of measuring breast density and made
comparisons with PD. All measures of breast density showed a significant association with
breast cancer to varying degrees. Among the measures, PGSD showed the strongest OR
associations with breast cancer, indicating calibration produced information not retrievable
or available from the raw data representation. Furthermore, the relationship between PG and
RM was not described well by a linear model. In contrast, the linear model reasonably
explained the relationship between the PGSD and RSD measures. This provided supporting
evidence for the significant association produced by the raw image breast density measures.
These findings suggest that much of the data within the breast area confounds the standard
deviation measures from the raw data. RSDL was based on the analysis of roughly 30% of
the breast area, while producing significant associations. Eliminating a significant portion of
the breast region improved the raw image standard deviation associations, whereas further
erosion diminished the PGSD associations. The RSDX findings are more difficult to interpret.
This measure produced significant association while considering a relatively small section of
the image in many situations. Moreover, the OR relationships were influenced by
controlling for breast area. Possible reasons for the elevated associations may be that this
box-region is likely to include the focal spot and the distance between the compression
paddle and detector is relatively more uniform in comparison with larger regions. Our work
also showed that standard deviation measures were more heavily influenced by both
menopausal status and breast area in comparison with PD. The relationships with
menopausal status, breast area, and the new breast density measures will require further
analyses to fully understand the underlying mechanisms. There are several limitations with
our study. The work was preformed with a relatively limited dataset. Cases were recruited
and selected retrospectively, whereas all controls were located retrospectively. We used both
25% and 35% erosion as static parameters to eliminate the portion the breast that may
interfere with the spatial variation measures. Further investigation is required to determine
the appropriate portion of the breast for the variation measures in both the raw and
calibration representations. A better approximation may be to let the amount of erosion
adjust according to image size. There is also uncertainty in the calibration due to the tissue
equivalent phantoms (15) used to develop the calibration system and the warp/tilt of the
compression paddle (19, 24, 25). We have developed approximate solutions addressing
these uncertainties, which will require further analyses with larger datasets. The PD
associations were within (upper range) the expected range found in the literature (2) . For
the new measures of variation breast density, we are unaware of other findings in the
literature at this time, precluding independent comparisons. The PGSD findings are in
agreement with our earlier related work (16). We might expect associations found from the
new measures to vary when analyzing other study populations and images acquired with
different detector technologies. However, the inter- measure comparisons in this report are
internally valid.

Heine et al. Page 6

Acad Radiol. Author manuscript; available in PMC 2012 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



5. Conclusions
The calibrated measure provided the strongest OR associations among the measures
considered. The standard deviation measures from the raw mammograms also provided
significant associations with similar predictive capability as the calibrated measure (i.e. the
Az findings). Both the calibrated and non-calibrated variation measures are automated. We
note, the gains due to calibration result from considerable phantom imaging and data
analyses (18–20), required to maintain calibration accuracy. In contrast, RSDL results from a
relatively simple algorithm.

The lack of automated quantitative breast density measurements has so far limited the
clinical use of breast density for patient management (5). Understanding the best method for
estimating of breast density is still an unresolved problem. It may be too early to assess
whether calibration is useful or if it can be applied broadly across institutions, because it is a
newer approach that will require further investigation.

Both standardization and automation of breast density reporting would assist the radiologist
in providing a further measure of risk to the referring clinician and provide a means for
developing personalized screening frequency strategies. Realization of this potential is based
on an algorithm to accurately and reliably quantify breast density independent of a
subjective reader and in a manner that does not disrupt clinic throughput or patient
management. These new measures evaluated in this report may provide automated solutions
for the measurement of breast density after undergoing rigorous evaluations with different
datasets
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Figure 1.
Image examples. From left to right, this shows images with the largest box area / breast area
ratio, image with the medium ratio, and the image with the smallest ratio (right). The image
areas from left to right in pixel units are 2426894, 1324519 and 386023. The outlined box in
3 × 3 cm2 (300 ×300 pixels) and is vertically centered on the segmented image vertical
centroid coordinate. RSDX breast density was derived from this region. These images are
processed clinical display images. We use these as raw image surrogates for display
purposes because the raw images are not useful for display illustrations without
manipulation.
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Figure 2.
The breast area frequency histogram. This shows the frequency histogram for the breast area
measured in 105 pixel units (i.e. the bin-width used for the horizontal axis). The symmetric
behavior indicates most images are similar to the middle image in Figure 1.
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Figure 3.
Mean regression. This plot shows the calibrated mean values modeled as a linear function of
the raw image mean values (dashes). The regression fitted lines (solid) indicates the two
measures are not described well by this relationship, indicating the calibration has a strong
influence. The data was modeled with all the points (line with the longer length) and with
three outlines removed (line with the shorter length) from the right. The respective slope (m)
and standard errors for each plot were m = 0.026 ± 0.004 and 0. 047 ± 0.005 with R2 = 0.12
and 0.19.
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Figure 4.
Standard deviation regression. This plot shows the calibrated standard deviation modeled as
a linear function of the raw image standard devotion (dashes). The slope and standard error
were m= 0.042 ± 0.002. The regression fitted line (solid) shows the two measures are highly
correlated (R2 = 0.73) indicating that the calibration re-scales the standard deviation
quantities while approximately maintains the internal distances between the samples.
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Table 1

Patient characteristics

Characteristic Case n Case mean / SD or % Control n Control mean / SD or %

Age 160 58.5 / 10.6 160 58.5 / 10.5

HRT

 Never used 84 52.5% 88 55.0%

 1–5 yrs 26 16.3% 23 14.4%

 6–10 years 17 10.6% 17 10.6%

 11 – 15 yrs 12 7.5% 10 6.3%

 > 15 yrs 21 13.1% 22 13.8%

BMI (kg/m2) 1591 26.4 / 4.5 160 25.3 / 4.3

Breast area (pixels) 160 1392643 / 478251 160 1318957 / 407717

Menopausal (post) 123 76.9% 115 71.9%

This table provides the number (n) of cases and controls in the hormone replacement therapy (HRT) stratifications by years (yrs) and for the other
measures. The mean and standard deviation (SD) for the age, body mass index (BMI), and breast area distributions, and menopausal status
(postmenopausal or not) breakdown by case - control group are also provided.

1
BMI was missing for one case observation.
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