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Abstract: Generating stable antibodies is an important goal in the development of antibody-based

drugs. Often, thermal stability is assumed predictive of overall stability. To test this, we used

different internally created antibodies and first studied changes in antibody structure as a function
of pH, using the dye ANS. Comparison of the pH50 values, the midpoint of the transition from the

high-pH to the low-pH conformation, allowed us for the first time to rank antibodies based on their

pH stability. Next, thermal stability was probed by heating the protein in the presence of the dye
Sypro Orange. A new data analysis method allowed extraction of all three antibody unfolding

transitions and showed close correspondence to values obtained by differential scanning

calorimetry. T1%, the temperature at which 1% of the protein is unfolded, was also determined.
Importantly, no correlations could be found between thermal stability and pH50, suggesting that to

accurately quantify antibody stability, different measures of protein stability are necessary. The

experimental data were further analyzed using a machine-learning approach with a trained model
that allowed the prediction of biophysical stability using primary sequence alone. The pH stability

predictions proved most successful and were accurate to within pH 60.2.
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Introduction

Antibodies and antibody-based drugs are a relatively

novel class of therapeutics gaining in popularity

given their high specificity, long half-life, and the

more recent ‘‘modular’’ approach to their design.1,2

During the development process, antibody-based

drugs encounter a wide range of conditions: the

crowded intracellular environment during expres-

sion; harsh measures to disrupt the cell membrane;

flow through tubing and several solution conditions

during purification; freeze-drying or formulation;

and potentially less than optimal storage conditions.

Upon administration, potentially after resolubiliza-

tion, the drug is exposed to the crowded and hostile

environment of subcutaneous tissue and/or blood. To

ensure accurate dosage, highest effectiveness, and

fewest side effects to the patient, it is critical that

the drug is not modified by any of these conditions.3

At the research and development stage, it is impossi-

ble to anticipate all conditions that may affect the
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drug. By judiciously measuring and improving the

biophysical stability of a candidate drug, however, it

is hoped that its expression is maximized, purification

and formulation are straightforward, patient adminis-

tration is easier, and, most importantly, side effects or

an immune response in the patient are minimized.

Thermal stability is a common method used to

study protein stability, usually by measuring the

midpoint of the unfolding transition, the melting

temperature, Tm.
4–9 Differential scanning calorime-

try (DSC) is often used as it gives a quantitative

view of the process and can be used to assign the

multiple transitions often seen in the unfolding of

antibodies.8,10 A plate-based fluorescence assay

using Sypro Orange, a dye that binds to hydrophobic

regions of a protein, is often used as it allows for

higher throughput using less protein.5,9 A similar

method can also be used to characterize the ability

of different ligands in stabilizing the protein under

investigation.11 The analysis of the unfolding curves,

however, has not been well established, and gener-

ally only the first unfolding transition of an antibody

is studied.5,9 Even then, the analysis was found to

systematically underestimate the midpoint of this

transition when compared with DSC.9

It is often thought that thermal stability is a

good predictor of overall stability.12–14 In published

experiments, proteins were incubated in different

formulations at elevated temperatures. After several

weeks, the level of aggregation was found to corre-

late well with the protein melting point, Tm.
12–14 A

close study of the unfolding curves, however, shows

that the incubation temperatures were sufficiently

high that the protein was starting to unfold. Conse-

quently, a formulation-induced Tm shift of only a few

degrees would change dramatically the extent of

unfolding, influencing the amount of aggregation. It

is therefore unclear if these experiments truly reveal

a link between thermal stability and inherent long-

term storage stability, or simply that more unfolded

protein solutions will aggregate more. Indeed, a dif-

ferent study has shown that not the thermal stabil-

ity per se, but the reversibility of unfolding may be

the important factor,15 whereas other biophysical

measurements suggest there may be a link to

expression levels.16,17 Overall, therefore, the link

between Tm and overall stability does not seem very

well established.

This observation suggests that it is important to

probe aspects of stability, for example, stability to

denaturants,4 pH,7,18 salt or buffer components,7,19

and aggregation tendency.6,18–20 The effect of pH

seems particularly relevant, since antibodies are af-

finity chromatography purified at low pH and low

pH is used to inactive viruses. At low pH, antibodies

adopt a non-native conformation that is quite stable

and not a ‘‘molten globule’’ but may be more aggre-

gation prone.4,18,21

Having measured stability, different approaches

have been used to predict stability based on

sequence alone.22,23 Data sets used to ‘‘train’’ differ-

ent models often incorporated more than 100 clearly

defined pairs of stable and less-stable molecules.

Even so, simulations appear better at predicting

trends than absolute values.22

In this article, we set out to test whether differ-

ent stability measurements are correlated. We

developed an assay to study the range of pH values

at which the conformational change to the low pH

structure occurred. We devised a more accurate anal-

ysis method to extract individual unfolding transi-

tions from Sypro Orange-monitored thermal denatu-

ration data and compared the data to that obtained

from DSC experiments. We show that thermal and

pH stabilities appear not to be strongly correlated,

highlighting for the first time the importance of

measuring many different aspects of stability. Finally,

we developed a machine-learning model to predict

the stability of antibodies based on their sequence

alone. The results are encouraging, although further

work is necessary, in particular for the thermal

stability.

Results
The ANS fluorescence intensity in the pH stability

assay was constant from pH 9 down to pH 4, at

which point it started to increase. Below pH 2, no

more change was observed [Fig. 1(A)]. Increasing

protein concentration was found to increase the ratio

of the fluorescence intensity at low pH to that at

neutral pH, without affecting the pH50, the halfway

point in the transition [Fig. 1(B), Table I). Increasing

the ANS concentration had a similar effect (data not

shown). The same protein incubated at different pH

values was also followed by intrinsic fluorescence

and CD. Overlaying the rescaled data sets, the sig-

nals could easily be compared and were found to

overlay well [Fig. 1(C)]: the fitted pH50 values were

2.76 6 0.07 (ANS), 2.67 6 0.04 (intrinsic fluores-

cence), and 2.66 6 0.22 (CD). The pH50 values from

53 antibodies were plotted as a histogram, showing

a range from pH 1.8 to pH 3.2 [Fig. 1(D)].

We next looked at the thermal stability of the

antibodies using a modified fluorescence-based

method with dye Sypro Orange. Plotting fluores-

cence intensity against temperature, a decrease in

fluorescence was observed from 20�C to around 50�C

[Fig. 2(A)]. At higher temperatures, this baseline

decrease was less pronounced and easily corrected

by subtracting a linear baseline. Above about 50�C,

the protein starts to unfold, and an increase in fluo-

rescence intensity was observed, reaching a maxi-

mum around 75�C and then decreasing [Fig. 2(A)].

The unfolding data were fitted to three Gaus-

sians (see Materials and Methods for a detailed pro-

cedure) to extract the three unfolding transitions10
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expected for an antibody [Fig. 2(B)]. Unfolding data

for the same antibody were also collected by DSC

[Fig. 2(C)]. The unfolding transitions from the Gaus-

sian fits (Sypro Orange fluorescence data) and those

from a thermodynamic analysis (DSC data) of 16 dif-

ferent proteins were plotted against each other [Fig.

2(D)]. A straight line fit through all the data had a

slope of 1.12, with correlation coefficient R ¼ 0.92

(P < 0.0001). The coefficient of determination, R2,

which indicates how much variance in one variable

can be predicted from the other, was high at 0.85. A

further statistical analysis24 was also performed (see

Supporting Information).

Similar to the pH50 values, histograms of the Tm

values and the widths of the three thermal transitions

were plotted [Fig. 3(A,B)]. A spread of about 16�C is

observed for the Tm values [Fig. 3(A)]. The T1%, the

temperature at which 1% of the protein is unfolded

(see Materials and Methods), was calculated, and this

is shown as a histogram in Figure 3(C).

To look for correlations between the measured

biophysical factors, the pH50 values were plotted

against the different thermal indicators (Fig. 4). The

correlation factor R and the coefficient of determina-

tion R2 were low, and the linear regression slopes

were below 0.04 for all plots (Fig. 4, Table II).

As part of the model building for predicting sta-

bility based on sequence alone, cross validation was

used in the model selection process. Figure 5 shows

the performance of the pH50 models built in cross val-

idation with the support vector machine (SVM) pa-

rameters listed in Table III, where for each number

Figure 1. Antibody pH stability. A: A representative antibody, incubated at 0.1 mg mL�1 and different pH values overnight

before adding 100-fold molar excess ANS over protein and reading the fluorescence, exciting at 360 nm and measuring

emission at 500 nm. B: A second antibody, incubated at different concentrations: (h) 0.05 mg mL�1, (*) 0.1 mg mL�1,

(~) 0.2 mg mL�1, and (!) 0.4 mg mL�1. At each concentration, ANS was present in 1:100 protein:ANS molar ratio. C: pH

stability using ANS fluorescence (h), intrinsic fluorescence (*), and CD signal at 205 nm (~). Lines are fitted sigmoidals with

pH50 values of pH 2.76 6 0.07 (ANS), pH 2.67 6 0.04 (intrinsic fluorescence), and pH 2.66 6 0.22 (CD). D: Histogram

showing the frequency of all pH50 values measured.

Table I. Relation Between Protein Concentration, Fluo-
rescence at pH 2 and at pH 7, and the pH50 Obtained

Concentration
(mg mL�1)

Fluorescence
ratio pH 2/pH 7 pH50

0.05 5 2.75 6 0.04
0.1 10 2.67 6 0.04
0.2 17 2.67 6 0.03
0.4 29 2.71 6 0.04

As a function of protein concentration, the ratio of ANS flu-
orescence intensities at pH 2 and pH 7 increases, whereas
the pH50 remains within error.

1548 PROTEINSCIENCE.ORG Correlations in Antibody Stability



of selected features ranging from 1 to 100, the me-

dian of the 25 � 5 ¼ 125 models is shown.

Predictions for pH50 are shown in Figure 6. The

accuracy of those predictions, as well as for the ther-

mal measures, is shown in Table III. When the prob-

lem is converted to a two-class classification problem

by dichotomizing the stability measures into those

above and below the training set median, the

Figure 2. Sypro Orange thermal stability data. A: Representative data showing Sypro Orange fluorescence intensity as a

function of temperature. The data have been baseline corrected. B: The same data fitted to three Gaussians. The original

data are shown in symbols (h), the three Gaussians are shown as gray lines, and the sum of the Gaussians is the black line.

C: Comparing Sypro Orange data with DSC data. Both curves have been normalized to an area under the curve of one.

D: For 16 proteins, both Sypro Orange and DSC data were collected; the individual data for Tm1 (h), Tm2 (*), and Tm3 (~)

are shown here. The gray line shows the case where DSC and Sypro Orange data would be identical. The black line is a

straight line fit to the actual data points. The slope is 1.12, R ¼ 0.92, and R2 ¼ 0.85.

Figure 3. Histograms of thermal unfolding data. A: Histogram showing the distribution of the thermal transition midpoints,

Tm1 (open bars), Tm2 (dashed bars), and Tm3 (solid bars). B: Histogram of the widths (standard deviations) of the Gaussians

used to fit the Sypro Orange data, width for Tm1 (open bars), Tm2 (dashed bars), and Tm3 (solid bars). C: Histogram of T1%
data, the temperature at which 1% of the protein is unfolded.
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accuracy of the predictions improves as indicated by

the area under the curve (AUC) values being above 0.5

(fully random), except for the T1% (Fig. 6, Table III).

Discussion
The antibodies used were taken from our internal

database, representing different species (mouse, rat,

and human), isotypes, and germlines. Raised against

a variety of antigens, including clinically relevant

and ‘‘dummy’’ targets, these antibodies’ sequences

differed significantly. A total of 77 antibodies were

analyzed for thermal stability; of those 53 were also

analyzed in the pH stability assay.

We first developed an assay to determine at

which pH the structure of an antibody changed. To

our knowledge, this is the first systematic study of

the transition, rather than the low pH state per se.

To measure the pH stability, protein A purification

conditions were mimicked: mixtures of protein A

loading and elution buffers were used to incubate

antibodies at pH values from pH 9.0 to 1.5. ANS

was used as an indicator for changes in conforma-

tion as it is known to bind specifically to partially

folded protein conformations, resulting in increased

and blue-shifted fluorescence emission.25,26 The

observed increase in ANS fluorescence [Fig. 1(A)],

suggested binding of the dye and, therefore, a loss of

structure. Different protein and ANS concentrations

were found to give rise to different fluorescence

intensities [Fig. 1(B), Table I). Balancing the limited

amount of protein available and the possibility that

large excesses of ANS might induce conformational

change, an antibody concentration of 0.1 mg mL�1

(or �0.67 lM) and a 100-fold molar excess of ANS

over protein were chosen.

To confirm that the observed change in fluores-

cence corresponded to a change in structure, the

same protein at the same concentration was studied

Figure 4. Thermal and pH stability plots. Shown are plots of pH50 against Tm1 (A), Tm2 (B), Tm3 (C), and T1% (D).

Table II. pH50 and Thermal Transitions Correlations
and Slopes

pH50 plot against. . . R factor R2 factor Slope

Tm1 �0.260 0.068 �0.026
Tm2 �0.389 0.151 �0.038
Tm3 �0.087 0.076 �0.008
T1% �0.248 0.061 �0.019

Correlation coefficient R, coefficient of determination R2,
and slope for linear fits to the plots shown in Figure 4, of
pH50 against Tm1, Tm2, Tm3, and T1%.
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by intrinsic protein fluorescence and circular dichro-

ism (CD) spectroscopy [Fig. 1(C)]. The intrinsic fluo-

rescence data were found to overlay the ANS curve

well. When compared with far UV CD studies, the

detailed shape of the CD curve was somewhat differ-

ent to that observed for ANS binding, potentially

due to far UV CD spectroscopy measuring secondary

structure, rather than a combination of both second-

ary and tertiary structures. The relatively similar

curves and closely similar fitted pH50 values sug-

gested that the ANS assay accurately reflects the

change in secondary and tertiary structures.

A histogram of pH50 values [Fig. 1(D)] showed a

spread of values. It should be noted that these val-

ues are likely specific to the buffer system used.

Lower pH50 values correspond to antibodies whose

structures change at a lower pH values than those

with higher pH50, suggesting they are more stable to

pH-induced structural changes. Without signifi-

cantly more data, it is neither possible to define the

‘‘best’’ pH50 nor possible to define a meaningful pH50

cutoff value above which antibodies become ‘‘too

unstable’’ to be deemed successful drug candidates.

The pH50 is an indicator of protein stability and may

have a bearing on formulation studies, but by itself

it is unlikely to be indicative of overall drug behav-

ior. A more powerful approach would be to treat the

pH50 as one data point to be considered alongside

other stability measurements to come to decisions

about which is the better candidate.

In light of this, the thermal stability of these

antibodies was studied. To minimize protein usage

and increase throughput, a Sypro Orange dye-based

assay was developed based on previous work.5,9,27

The dye binds to unfolding proteins, resulting in

increased fluorescence.5,9,27 The dye is delivered as a

5000� solution; structure and concentration are not

given by the manufacturer. We found the best condi-

tions to be 0.1 mg mL�1 protein and 2.5� dye.

The fluorescence intensity decrease seen from

20�C to about 50�C [Fig. 2(A)] is due to a tempera-

ture-induced lowering of the quantum yield of the

dye.28 In the region where the antibody unfolded,

above 50�C, the unfolding curve often contained a

shoulder on either side of the maximum, suggesting

the presence of more than one transition. We devel-

oped a method to extract the expected antibody

unfolding transitions, corresponding to the CH2, Fab,

and CH3 domains10 by postulating that Sypro Or-

ange, similar to ANS, binds to hydrophobic pockets

but has decreased affinity for folded or completely

unfolded protein. Thus, low fluorescence intensity

would be expected at low temperature, while the

protein is in a native state; higher fluorescence at

intermediate temperatures, where the protein is par-

tially unfolded; and low fluorescence again at high

temperatures when the protein is completely

unfolded. The CH2, Fab, and CH3 domains in an anti-

body do not unfold at the same temperature,10 giv-

ing rise to more complicated curve profiles.

The thermal data were fitted to three Gaussian

curves, one for each unfolding domain: CH2, Fab, and

CH3. A Gaussian curve, and therefore each unfold-

ing transition, is defined by the midpoint (the Tm),

the width (the standard deviation), and the

Figure 5. pH50 cross-validation curve for model selection.

Model selection is performed across internal SVM

parameters gamma, cost, and epsilon, as well as the number

of features used to construct the model. Median SVM cross-

validation performance with the selected parameter values is

shown as a function of the number of features.

Table III. Cross Validation and Test Set Performance, and Parameter Values of the Selected Models

Cross validation Test set Selected parameters

Correlation, median Correlation, MAD Correlation AUC Number of features Gamma Cost Epsilon

Tm1 0.376 0.193 0.267 0.738 100 0.25 1 0.01
Tm2 0.36 0.209 0.0741 0.786 45 0.0156 0.5 0.001
Tm3 0.562 0.144 0.211 0.725 45 0.0625 4 0.01
T1% 0.471 0.13 0.0938 0.306 100 0.0625 1 0.001
pH50 0.676 0.226 0.639 0.762 20 0.125 4 0.01

The cross-validation performance is given by the Pearson correlation coefficient between the predicted and actual values of
the stability measures. Models yielding a high median and a low median absolute deviation (MAD) correlation coefficient
are favored in the model selection. Performance on the test set is measured by the correlation of the predicted and actual
stability measures, as well as the AUC (area under the receiver operating characteristic (ROC) curve) found by dichotomiz-
ing the stability measures into the two classes above and below the training set median.
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amplitude (fluorescence intensity in this case). No

quantitative relationship exists between dye binding

and intensity: a high intensity could be the result of

many dye molecules bound weakly or a few mole-

cules bound strongly. We therefore focused on the

Tm values and widths of each transition in our anal-

ysis. To determine the accuracy of this fitting proce-

dure, we compared our fluorescence data to data

obtained from DSC experiments [Fig. 2(C)]: although

the intensities varied, the main peak and its should-

ers occurred at very similar temperatures, suggest-

ing the data are very similar. In a plot of the Tm val-

ues from the fluorescence against those from DSC

experiments [Fig. 2(D)], the R and R2 factors indi-

cate a good correlation between the two data sets,

but these factors do not indicate whether the two

methods agreed and a further statistical analysis24

was performed. This showed that there is good over-

all agreement with little bias between the two tech-

niques, but for individual data points the variation

can be quite significant (Supporting Information Fig.

S1). Therefore, the high throughput and small quan-

tities of protein required make the Sypro Orange

assay a powerful approach to screen the thermal sta-

bility of a large number of early drug candidates,

but for a detailed characterization of promising late-

stage drug candidates, DSC would be preferred.

Looking at the histogram of Tm values [Fig.

3(A)], even the lowest Tm1 was 62�C, a temperature

an antibody is extremely unlikely to encounter dur-

ing production, formulation, storage, or following

administration. In the absence of evidence that Tm

directly corresponds to overall stability, it is not

clear that this antibody is necessarily ‘‘worse’’ than

one with a Tm1 of 77�C. Furthermore, if two proteins

have the same Tm, the protein with the wider, less

cooperative unfolding transition will start to unfold

earlier and, therefore, be effectively less stable. The

onset of unfolding, therefore, might help better

interpret this data. This requires consideration of

the transition width, a factor not usually taken into

account. A widespread of values was observed, espe-

cially for Tm3, the third transition [Fig. 3(B)]. In

some cases, the width for Tm3 was such that the cor-

responding CH3 domain started to unfold at the

same temperature as the CH2 or Fab domain [Fig.

2(B)]. Combining the Tm and width values, the T1%,

temperature at which the protein was 1% unfolded

or the onset of unfolding, was calculated (see Materi-

als and Methods). The T1% values are distinctly

lower than those for the midpoints of the transitions

[Fig. 3(C)]. The lowest T1% observed, 36.7�C, was

around physiological temperature; in other words, in

vivo this protein would be 1% unfolded, with poten-

tially deleterious consequences. The individual Tm

transitions of this protein (70.5, 76.7, and 79.1�C)

did not suggest that the T1% would be low. This

example highlights that a careful consideration of

thermal stability is crucial and that the usual cita-

tion of just the Tm values is not enough to character-

ize the thermal stability of an antibody.

To determine if the pH50 and Tm were correlated

and, hence, whether one was predictive of the other,

they were plotted against each other (Fig. 4). No

obvious trends could be found, and these two meas-

ures of stability, therefore, are not well correlated.

Even though the thermal stability could be meas-

ured for individual domains in the antibody (Fab,

CH2, and CH3), while the pH stability was globally

measured, a correlation between the pH stability of

Figure 6. Model predictions on the pH50 test set. A: Predicted pH50 plotted against actual pH50 for test set antibodies. Error

bars show the variance in the predictions across leave-one-out training. B: ROC curve for two-class classification predictions

of pH50s. The two classes are defined as high (above the training set median) and low pH50s.
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one domain and its thermal stability would be

expected to be evident in the plots in Figure 4.

Given the interplay between the domains in an anti-

body, it is not clear if measuring the pH stability on

individual domains would yield results that were

predictive of antibodies as a whole. Similarly,

because of the limited sample set, subdividing the

data set, for example, by species or isotype, would

result in too few antibodies per class and so decrease

the predictive power. The lack of a correlation could

be expected because a thermal challenge is very dif-

ferent to a pH challenge. It also implies that there is

no single measure of stability and to fully under-

stand the stability of antibody candidate drugs,

therefore, several measures of stability ought to be

considered. We have highlighted two in this report

but others are of interest as well, for example, the

tendency to form aggregates, given their role in loss

of effectiveness and increased immunogenicity,29 or

protein dynamics.30,31

As all antibodies have nearly identical folds, we

wondered if our sequences and stability data could

be used to build an in silico model to predict stabil-

ity based on sequence alone. The data were used to

train epsilon regression support vector machines to

predict the antibody thermal and acidic stabilities as

continuous valued quantities using sequence data

alone. It is possible to use a classifier to predict

stability classes for the antibodies by dichotomizing

the stability measurements, but the more difficult

approach of predicting numerical values was chosen

because it provides a means for predicting both the

direction and magnitude of any stability changes

due to induced mutations.

A novel approach was used to select the proper-

ties to describe individual amino acids: instead of

principal component analysis,32 the different proper-

ties described in the AAindex database33 were clus-

tered into 100 groups, and one representative prop-

erty from each cluster was chosen (see Materials

and Methods). The resulting number of features

used to define each protein sequence was still rela-

tively large when compared with the number of sam-

ples. This situation is often referred to as the ‘‘curse

of dimensionality,’’ a phrase ascribed to Bellman34

referring to a situation where there are many varia-

bles but relatively few data points. To guard against

overfitting, 25 times repeated fivefold cross valida-

tion in the model selection process was used. The

performance of the pH50 models, shown in Figure 5,

shows that although there is some noise in the

curve, the general trend suggests that although the

chosen model is probably not the global optimum, it

is unlikely to suffer from severe overfitting. It may

be that in the context of a modestly sized dataset,

overfitting is most effectively avoided by models that

favor more predictions that tend toward the mean.

Models with this property would be likely to exhibit

the relatively higher test set AUC than test set cor-

relations as seen for the thermal transition end-

points (Table III).

Predictions for the pH50 values worked the best,

with the average prediction being within 0.2 pH

units of the measured values (Fig. 6). The accuracy

of the prediction is significantly smaller than the

range of pH50 values observed (from pH 1.8 to 3.2)

and is comparable to the resolution in the pH experi-

ment, increasing confidence that this model is appro-

priate for the predictions. The results presented in

Table III show a range of predictive accuracies

among the five endpoints, pH50, Tm1, Tm2, Tm3, and

T1%. Converting the problem to a two-class, above/

below the training set median prediction problem,

the difference in performance between the pH50 pre-

dictions and the thermal transition predictions dis-

appears, as can be seen by the test set AUC mea-

sures (Fig. 6, Table III).

For some endpoints, for example, Tm2, there is

an apparent disparity between the two measures of

test set prediction performance. For these endpoints,

the low test set correlations (indeed for the Tm2 and

the T1% endpoints, the test set correlations are only

marginally above the chance value of zero) appear to

be caused by the majority of the tests set stability

measure predictions being tightly clustered around

the mean. The relatively high value of the test set

AUC (well above its chance value of 0.5) for these

same endpoints indicates that the classification of

the antibodies according to the dichotomized end-

points is relatively accurate. The combination of low

correlation and high AUC is therefore indicative of

accurate predictions of the direction of stability

change relative to the training set mean, but fre-

quent underestimation of the magnitude of the

change. This may be the result of avoiding overfit-

ting using models trained on a small data set.

Predicting protein stability is seen as a way of

predicting which molecules are more likely to form

better drugs. Ultimately, the goal of this work is to

predict which molecule will behave best under large-

scale GMP manufacturing conditions and in the

clinic—not which molecule has the better biophysical

properties such as pH50, Tm, aggregation propensity,

and so forth. Given sufficiently more data, it may be

possible to define threshold values. This may also

make the computational prediction more tractable.

Obtaining more data should be done ideally in an

industry-wide manner. If a public library of anoni-

mised sequences and stability measurements of anti-

bodies and antibody-based drug candidates across

the industry could be created, without legal and in-

tellectual property implications, that could be an

excellent way to determine these threshold stability

values for the thermal, pH, and other stability mea-

sures. Not only would this help cut development

costs by weeding out poor molecules earlier, it would
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greatly aid the development of better drugs for

patients.

In conclusion, we have studied a selection of

antibodies representing different species, isotypes,

and germlines. By incubating the antibodies in buf-

fers ranging from pH 9 to 1.5, we newly defined the

pH50 as the pH at which half the protein has under-

gone a structural change; the pH50 ranged from pH

1.8 to 3.2. A high-throughput dye fluorescence ther-

mal stability assay was developed with a new analy-

sis method that allowed extraction of the three ther-

mal transitions expected of an antibody as well as

T1%, the value at which the protein is 1% unfolded.

A range of values for the thermal transitions and

T1% was found. One protein had a T1% that was

within physiological range even though the unfold-

ing midpoints did not suggest that the protein would

start to unfold at such a low temperature.

No correlation could be found between the pH

and thermal stability data, suggesting that different

aspects of stability may not be correlated and that to

truly characterize the stability of a biological drug

candidate, several aspects of stability must be meas-

ured and considered together.

Machine-learning approaches could predict the

pH50 to pH 60.2, but the thermal stability could not

be accurately predicted. Recasting the problem into

whether a certain protein had a pH50 or thermal

transition above or below the median for that mea-

surement, predictions of all properties improved.

Materials and Methods

Antibodies

For these experiments, 77 antibodies chosen on

material availability from an internal database had

been expressed in mammalian cells in-house and

purified on a protein A column followed by prepara-

tive size exclusion chromatography (SEC). Samples

were 98% pure or better by SEC. Different glycosyla-

tion patterns due to the use of different cell lines

were not found to significantly affect the properties

measured. Most antibodies were in a phosphate-buf-

fered saline (PBS) solution, comprised of 137 mM

NaCl, 2.7 mM KCl, 8.1 mM Na2HPO4, and 1.47 mM

KH2PO4, pH 7.2, or in a His:sucrose buffer, consisting

of 10 mM histidine and 5% sucrose, pH 6. Protein

concentrations varied but were usually 1–5 mg mL�1.

pH stability solutions
By titrating a protein A loading buffer (650 mM so-

dium sulfate, 20 mM sodium citrate, 20 mM boric

acid, and 20 mM sodium phosphate, pH 9) and pro-

tein A elution buffer (20 mM citric acid and 150 mM

sodium chloride, pH 2.5), 24 solutions from pH 9 to

1.5 were prepared. For buffers with pH lower than

2.6, the protein A elution buffer was adjusted with

1 M HCl. For fluorescence experiments, 98 lL of

each of the pH buffers was placed in black, clear-bot-

tom 96-well plates (Corning, Lowell, MA). Antibody

solutions were concentrated to 5 mg mL�1 where

necessary, using MicroCon 30-kDa cutoff filters

(Millipore, Billerica, MA), and 2 lL aliquots were

added to the 96-well plate for a final protein concen-

tration of 0.1 mg mL�1 (�0.67 lM for an antibody).

For CD experiments, samples were made up in

Eppendorf tubes to a total volume of 200 lL (i.e.,

196 lL buffer and 4 lL antibody solution). Other-

wise, treatment was identical.

ANS fluorescence

Following sealing and storage at 4�C for 24 h, the

plate with different pH solution and protein was

equilibrated at room temperature for 30 min. Ali-

quots of 5 lL 8-anilinonaphthalene-1-sulfonic acid

ammonium salt (ANS; Sigma-Aldrich, St. Louis,

MO) in RODI water were added to a final ANS con-

centration of 67 lM, 100-fold molar excess over anti-

body. In this plate-based assay, 240 lg of protein

was needed per experiment. Given the relatively

limited amounts of protein available, 53 antibodies

were analyzed in this assay. Fluorescence intensity

was read immediately on an Infinite M1000 plate

reader (Tecan Systems, San Jose, CA) exciting at

360 nm and reading the emission at 500 nm (20 nm

bandwidth). The fluorescence signal of ANS in the

various buffers was negligible and therefore not sub-

tracted from the protein samples. Plotting fluores-

cence intensity against pH, a Boltzman sigmoidal

curve was fitted to the data using Origin 7 SR2 (Ori-

ginLab, Northampton, MA). The pH50 value corre-

sponded to the pH value where the fluorescence was

at half maximum.

Attempts were made to find the onset of the

change in fluorescence. One attempt looked for the

intersection of straight lines fitted to the constant

high pH region and to the range of maximal fluores-

cence change (pH 3–4). Given the steep change in

fluorescence over a narrow pH range, this method

was overly sensitive to the inclusion or exclusion of

a single data point. In a different approach, the

onset of change was defined as the first datapoint to

fluoresce more brightly than median of the high pH

region plus 1.5 times the noise in that region. This

method was found to be overly sensitive to noisy sig-

nals. The sigmoidal analysis-based pH50 data were

therefore regarded as superior.

Intrinsic fluorescence

A plate with the protein incubated at different pH

was placed in the Infinite M1000 plate reader (Tecan

Systems, San Jose, CA) and the intrinsic fluorescence

measured, exciting at 280 nm (slit width 10 nm) and

scanning the emission from 300 to 400 nm. The in-

tensity at 340 nm was used for studying pH-induced

conformational changes.
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Circular dichroism spectroscopy
The centrifuge tubes with the buffered antibody sol-

utions were taken and in turn, each sample was

placed in a 1-mm path length quartz cuvette

(Starna, Atascadero, CA). The CD spectra were

recorded on a Jasco J-715 CD spectrometer (Jasco,

Easton, MD), scanning from 250 to 196 nm in 0.5-

nm steps, at 100 nm min�1 and averaging four

scans. Spectra were smoothed (Savitzky-Golay, 9

points width), baseline and concentration corrected,

and plotted. The signal was found to change most

with pH at 205 nm, and this value, following rescal-

ing from 0 (at pH 9) to 1 (at pH 1.5), was used to

compare the data to intrinsic fluorescence and ANS

binding data.

Sypro Orange experiment
Samples were tested in quadruplicate in a 96-well

plate format, using a volume of 50 lL per well. Anti-

bodies were diluted to 0.1 mg/mL in PBS, and Sypro

Orange dye (5000� stock solution in DMSO; Invitro-

gen, Carlsbad, CA) was added to a final concentra-

tion of 2.5�. Only 20 lg protein was needed to run

each protein in quadruplicate, and up to 24 samples

could be run on one 96-well plate, thereby making

this method remarkably more time and protein effi-

cient than DSC, where typically 100 lg protein is

needed per sample. The 96-well optical reaction

plate (Applied Biosystems, Foster City, CA) was

sealed with acetate plate sealers (Thermo Electron

Corporation, Waltham, MA) and transferred to an

ABI Prism 7000 Sequence Detection System

(Applied Biosystems, Foster City, CA). Parameters

included absolute quantification (standard curve),

96-well clear, detector name SYBR, and none for the

passive reference selections. Following equilibration

at 20�C, the temperature was raised to 22�C for 15 s

and then decreased to 21�C for 45 s. This was neces-

sary due to instrument and software limitations on

the methods that could be written. The fluorescence

measurement was collected at the end of this 45 s

timeframe. This cycle of temperature increase by

1�C was repeated up to 95�C. The data were trans-

ferred to Excel for fitting.

Sypro Orange data analysis
The raw data from the rtPCR instrument (fluores-

cence intensity in arbitrary units against cycle num-

ber) were baseline corrected, and three Gaussian

curves were fitted to the region of interest, from the

onset of the unfolding transition to the highest

recorded temperature. ‘‘Goodness of fit’’ was judged

by minimizing the sum of the squared differences

between each data point and each fitted point, akin

to v2. Subsequently, quality of the fit was judged vis-

ually and by assessing the residuals. Starting values

for midpoint, width, and amplitude were not found

to influence the final fit values. Based on the fluo-

rescence data, we cannot determine which transition

corresponds to the unfolding of which domain,. From

low to high temperature, therefore, the three transi-

tions were called Tm1, Tm2, and Tm3, with width 1,

width 2, and width 3, respectively. At each melting

temperature, the domain to which that Tm corre-

sponds is half unfolded; therefore, given the Tm and

width values, it was possible to find a numerical so-

lution to the sum of these three Gaussians to deter-

mine at which temperature each protein was 1%

unfolded. This temperature is referred to as the T1%.

All calculations were performed in Excel 2003 using

macros written in-house.

DSC

Protein samples were diluted to 250 lL at 0.3 mg

mL�1. A PBS buffer blank was used for the refer-

ence sample. Sample and blank were thoroughly

degassed using a MicroCal ThermoVac Sample

Degassing and Thermostat (Microcal, Northampton,

MA) at 8�C and dispensed into the appropriate cells

of a MicroCal VP-DSC Capillary Cell MicroCalorime-

ter (MicroCal, Northampton, MA). Following equili-

bration for 4 min at 15�C, samples were scanned up

to 100�C at a rate of 100�C h�1. A filtering period of

20 s was selected. Raw data were baseline and con-

centration corrected, and the data were fit to an

MN2-State Model with three transitions using the

Origin 7 RS2 (OriginLab Corporation, Northampton,

MA) software package.

Machine learning

To train a support vector machine to predict protein

properties from primary sequence information, all

protein sequences must be represented as vectors of

the same length, despite variations in sequence

lengths. A sliding window representation accom-

plishes this by measuring the frequencies of short

motifs in the sequences. Any amino acid property

may be used to generate a set of sliding window

motif frequencies. Over 500 amino acid physico-

chemical properties have been collected in the AAin-

dex database,33 but many are highly correlated pairs

(or triples, etc.). Including redundant properties

increases the computational cost of training and

may decrease predictive performance.35 Although

principal component analysis can be used to gener-

ate nonredundant features,32 these features lack the

direct interpretability of the physicochemical proper-

ties themselves. For this reason, we reduced the

AAindex properties to 100 prototypes by clustering

and choosing the most representative property from

each cluster. Clusters were formed such that each

member was correlated above a threshold value with

at least one other cluster member. The threshold

was fixed to produce exactly 100 clusters. Correla-

tion coefficients were calculated between properties
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within each cluster, and the property with the high-

est average was taken as the prototype. Each proto-

typical property was normalized to a range of [0,1].

For each property, the 20 amino acids were

ranked by the property value and assigned to one of

three bins: the lowest seven, the middle six, or the

highest seven. There are 34 ¼ 81 distinct windows

four residues wide for each property. Each window is

slid along the antibody sequence, and the number of

times four consecutive amino acids match the win-

dow is counted. The count is then normalized by the

number of positions the window slid through

(sequence length minus three), producing features in

the range of [0,1]. Each sequence is thereby repre-

sented in 81 � 100 ¼ 8100 dimensions, regardless of

sequence length.

Epsilon regression support vector machines with

radial basis function kernels (using the CRAN pack-

age e1071) were trained independently for each end-

point pH50, T1%, and thermal transitions Tm1, Tm2,

and Tm3, using 10 times repeated random stratified

fivefold cross-validation. The danger of overfitting is

greatly reduced by nesting model selection within

the cross-validation loop.36,37 Prediction quality was

measured with the Pearson correlation coefficient

(R) between the predicted and the true endpoint val-

ues for the antibodies in the 1/5 of the data used as

the test set.

Features were selected within the cross-valida-

tion loop by calculating the absolute value of the cor-

relation coefficient between each feature and the

endpoint using the 4/5ths of the data selected as the

training set for that loop. Models were generated

using the top feature, the top two features, and so

on to the top 100 features.

Model selection was used to find parameter val-

ues for the support vector machine: epsilon, gamma,

and cost, as well as the number of features to be

used for model construction. The models were

selected to maximize the selection criterion f(m) ¼
(Median(Rm) � 1.2�MAD(Rm)), where m is a collec-

tion of models with a specific number of features

and fixed SVM parameter values, Rm is the collec-

tion of correlation coefficients between the predic-

tions of m and the true endpoint values, and the

MAD is the median absolute deviation: a robust al-

ternative to the standard deviation. Inclusion of the

term �1.2�MAD(Rm) in the model selection criterion

penalizes models with highly variable performance,

further reducing the risk of overfitting by favoring

models that are both accurate and consistent.

Limited numbers of cross-validation repeats can

cause the selection of suboptimal model parameters.

Increasing the number of repeats improves the accu-

racy of the performance estimates and increases the

likelihood of selecting a near optimal model, albeit at

increased computational cost. By borrowing informa-

tion across feature numbers, the variance in the per-

formance estimates can be reduced without a large

increase in computational cost. This was accom-

plished by smoothing the selection criterion f(m)

curves (Fig. 5) over feature number through convolu-

tion with a discrete Gaussian kernel of width five.

After parameter value and feature number

selection, models were constructed using the com-

plete dataset. The performance of these models on

the independent test set is shown in Table III.

Acknowledgments
MRHK acknowledges Peter Lapan’s helpful sugges-

tions and discussions on the further statistical analy-

sis of the DSC and Sypro Orange fluorescence results.

References

1. Demarest SJ, Glaser SM (2008) Antibody therapeutics,
antibody engineering, and the merits of protein stabil-
ity. Curr Opin Drug Discov Dev 11:675–687.

2. Dimasi N, Gao C, Fleming R, Woods RM, Yao XT,
Shirinian L, Kiener PA, Wu H (2009) The design and
characterization of oligospecific antibodies for simulta-
neous targeting of multiple disease mediators. J Mol
Biol 393:672–692.

3. Mukovozov I, Sabljic T, Hortelano G, Ofosu FA (2008)
Factors that contribute to the immmunogenicity of
therapeutic recombinant human proteins. Thromb Hae-
most 99:874–882.

4. Welfle K, Misselwitz R, Hausdorf G, Hohne W, Welfle
H (1999) Conformation, pH-induced conformational
changes, and thermal unfolding of anti-p24 (HIV-1)
monoclonal antibody CB4-1 and its Fab and Fc frag-
ments. Biochim Biophys Acta 1431:120–131.

5. Yeh AP, McMillan A, Stowell MH (2006) Rapid and
simple protein-stability screens: application to mem-
brane proteins. Acta Crystallogr D Biol Crystallogr 62:
451–457.

6. Famm K, Hansen L, Christ D, Winter G (2008) Ther-
modynamically stable aggregation-resistant antibody
domains through directed evolution. J Mol Biol 376:
926–931.

7. Garidel P, Hegyi M, Bassarab S, Weichel M (2008) A
rapid, sensitive and economical assessment of monoclonal
antibody conformational stability by intrinsic tryptophan
fluorescence spectroscopy. Biotechnol J 3:1201–1211.

8. Ionescu RM, Vlasak J, Price C, Kirchmeier M (2008)
Contribution of variable domains to the stability of
humanized IgG1 monoclonal antibodies. J Pharm Sci
97:1414–1426.

9. He F, Hogan S, Latypov RF, Narhi LO, Razinkov VI
(2009) High throughput thermostability screening of
monoclonal antibody formulations. J Pharm Sci 99:
1707–1720.

10. Garber E, Demarest SJ (2007) A broad range of Fab
stabilities within a host of therapeutic IgGs. Biochem
Biophys Res Commun 355:751–757.

11. Niesen FH, Berglund H, Vedadi M (2007) The use of
differential scanning fluorimetry to detect ligand inter-
actions that promote protein stability. Nat Protoc 2:
2212–2221.

12. Gonzalez M, Murature DA, Fidelio GD (1995) Thermal
stability of human immunoglobulins with sorbitol. A
critical evaluation. Vox Sang 68:1–4.

13. Remmele RL,Jr, Nightlinger NS, Srinivasan S, Gom-
botz WR (1998) Interleukin-1 receptor (IL-1R) liquid

1556 PROTEINSCIENCE.ORG Correlations in Antibody Stability



formulation development using differential scanning
calorimetry. Pharm Res 15:200–208.

14. Kasraian K, Kuzniar A, Earley D, Kamicker BJ, Wil-
son G, Manion T, Hong J, Reiber C, Canning P (2001)
Sustained in vivo activity of recombinant bovine granu-
locyte colony stimulating factor (rbG-CSF) using
HEPES buffer. Pharm Dev Technol 6:441–447.

15. Remmele RL,Jr, Bhat SD, Phan DH, Gombotz WR
(1999) Minimization of recombinant human Flt3 ligand
aggregation at the Tm plateau: a matter of thermal
reversibility. Biochemistry 38:5241–5247.

16. Shusta EV, Kieke MC, Parke E, Kranz DM, Wittrup
KD (1999) Yeast polypeptide fusion surface display
levels predict thermal stability and soluble secretion
efficiency. J Mol Biol 292:949–956.

17. Tartaglia GG, Pechmann S, Dobson CM, Vendruscolo
M (2007) Life on the edge: a link between gene expres-
sion levels and aggregation rates of human proteins.
Trends Biochem Sci 32:204–206.

18. Ejima D, Tsumoto K, Fukada H, Yumioka R, Nagase
K, Arakawa T, Philo JS (2007) Effects of acid exposure
on the conformation, stability, and aggregation of
monoclonal antibodies. Proteins 66:954–962.

19. Kameoka D, Masuzaki E, Ueda T, Imoto T (2007)
Effect of buffer species on the unfolding and the aggre-
gation of humanized IgG. J Biochem 142:383–391.

20. Chennamsetty N, Voynov V, Kayser V, Helk B, Trout
BL (2009) Design of therapeutic proteins with
enhanced stability. Proc Natl Acad Sci USA 106:
11937–11942.

21. Jiskoot W, Bloemendal M, van Haeringen B, van Gron-
delle R, Beuvery EC, Herron JN, Crommelin DJ (1991)
Non-random conformation of a mouse IgG2a monoclo-
nal antibody at low pH. Eur J Biochem 201:223–232.

22. Potapov V, Cohen M, Schreiber G (2009) Assessing
computational methods for predicting protein stability
upon mutation: good on average but not in the details.
Protein Eng Des Sel 22:553–560.

23. Li Y, Middaugh CR, Fang J (2010) A novel scoring
function for discriminating hyperthermophilic and mes-
ophilic proteins with application to predicting relative
thermostability of protein mutants. BMC Bioinfor-
matics 11:62.

24. Bland JM, Altman DG (2010) Statistical methods for
assessing agreement between two methods of clinical
measurement. Int J Nurs Stud 47:931–936.

25. Semisotnov GV, Rodionova NA, Razgulyaev OI, Uversky
VN, Gripas AF, Gilmanshin RI (1991) Study of the ‘‘mol-
ten globule’’ intermediate state in protein folding by a
hydrophobic fluorescent probe. Biopolymers 31:119–128.

26. Hawe A, Sutter M, Jiskoot W (2008) Extrinsic fluores-
cent dyes as tools for protein characterization. Pharm
Res 25:1487–1499.

27. Lo MC, Aulabaugh A, Jin G, Cowling R, Bard J, Mala-
mas M, Ellestad G (2004) Evaluation of fluorescence-
based thermal shift assays for hit identification in drug
discovery. Anal Biochem 332:153–159.

28. Lakowicz JR (2006) Principles of fluorescence spectros-
copy. New York: Springer.

29. Rosenberg AS (2006) Effects of protein aggregates: an
immunologic perspective. AAPS J 8:E501–E507.

30. Dumoulin M, Canet D, Last AM, Pardon E, Archer DB,
Muyldermans S, Wyns L, Matagne A, Robinson CV,
Redfield C, Dobson CM (2005) Reduced global coopera-
tivity is a common feature underlying the amyloidoge-
nicity of pathogenic lysozyme mutations. J Mol Biol
346:773–788.

31. Rodriguez-Martinez JA, Sola RJ, Castillo B, Cintron-
Colon HR, Rivera-Rivera I, Barletta G, Griebenow K
(2008) Stabilization of alpha-chymotrypsin upon PEGy-
lation correlates with reduced structural dynamics.
Biotechnol Bioeng 101:1142–1149.

32. Rackovsky S (2009) Sequence physical properties
encode the global organization of protein structure
space. Proc Natl Acad Sci USA 106:14345–14348.

33. Kawashima S, Pokarowski P, Pokarowska M, Kolinski
A, Katayama T, Kanehisa M (2008) AAindex: amino
acid index database, progress report 2008. Nucleic
Acids Res 36:D202–D205.

34. Bellman RE (1961) Adaptive control processes: a
guided tour. Princeton, NJ: Princeton University Press.

35. Nicodemus KK, Malley JD (2009) Predictor correlation
impacts machine learning algorithms: implications for
genomic studies. Bioinformatics 25:1884–1890.

36. Kohavi R (1995) A study of cross-validation and
bootstrap for accuracy estimation and model selection.
Proceedings of the Fourteenth International Joint Con-
ference on Artificial Intelligence, Montreal, Quebec,
Canada, pp 1137–1143.

37. Hawkins DM, Subhash CB, Mills D (2003) Assessing
model fit by cross-validation. J Chem Inf Comput Sci
43:579–586.

King et al. PROTEIN SCIENCE VOL 20:1546—1557 1557


