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Abstract: The extent of enthalpy–entropy compensation in protein–ligand interactions has long been

disputed because negatively correlated enthalpy (DH) and entropy (TDS) changes can arise from
constraints imposed by experimental and analytical procedures as well as through a physical

compensation mechanism. To distinguish these possibilities, we have created quantitative models of

the effects of experimental constraints on isothermal titration calorimetry (ITC) measurements.
These constraints are found to obscure any compensation that may be present in common data

representations and regression analyses (e.g., in DH vs. –TDS plots). However, transforming the

thermodynamic data into DD-plots of the differences between all pairs of ligands that bind each
protein diminishes the influence of experimental constraints and representational bias. Statistical

analysis of data from 32 diverse proteins shows a significant and widespread tendency to

compensation. DDH versus DDG plots reveal a wide variation in the extent of compensation for
different ligand modifications. While strong compensation (DDH and 2TDDS opposed and differing by

< 20% in magnitude) is observed for 22% of modifications (twice that expected without

compensation), 15% of modifications result in reinforcement (DDH and 2TDDS of the same sign).
Because both enthalpy and entropy changes arise from changes to the distribution of energy states

on binding, there is a general theoretical expectation of compensated behavior. However, prior

theoretical studies have focussed on explaining a stronger tendency to compensation than actually
found here. These results, showing strong but imperfect compensation, will act as a benchmark for

future theoretical models of the thermodynamic consequences of ligand modification.

Keywords: enthalpy–entropy compensation; free energy; binding thermodynamics; protein–ligand

interactions; protein complexes

Introduction
The interactions between proteins and their ligands

can be characterized by the free energy, enthalpy,

and entropy changes associated with the binding

reaction. The Gibb’s free energy (DG) for a reaction

carried out at a temperature T is related to the

change in enthalpy (DH) and the change in entropy

(DS) of that reaction by

DG ¼ DH � TDS (1)

It is often observed that the range of DG values

for groups of related reactions is much smaller than

the ranges of their associated changes in DH and
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TDS. This has led to the idea that the differences in

the enthalpic and entropic contributions are nega-

tively correlated or ‘‘compensated’’ as a result of

some shared features of the physical reaction mecha-

nism.1 However, it is also known that negative cor-

relations of enthalpy and entropy changes arise from

experiment design, random measurement errors, or

from the methods of analysis of measurements.1–3

Claims for enthalpy–entropy compensation in pro-

tein–ligand interactions often fail to examine other

possible source of correlation and in cases where sta-

tistical analyses have been performed, the observ-

ability of compensation has remained in doubt.4–6 In

addition to being an issue of fundamental interest, it

remains important to establish the presence (and

extent if present) of compensation in experimental

studies of protein–ligand binding because such data

would impinge on the assessment of models of mo-

lecular interaction and may affect how thermody-

namic information is used in rational drug design.7

Consequently, here we revaluate the evidence for en-

thalpy–entropy compensation in protein–ligand

interactions using the large quantity of isothermal

titration calorimetry (ITC) data that has been pro-

duced in recent years.

Much of the historical difficulty in investigating,

and consequent controversy with respect to the exis-

tence/extent of, compensation in protein reactions

has its origin in the dominant early role played by

van’t Hoff (and Arrhenius) analyses. Until relatively

recently, the simplest way to find the enthalpy and

entropy changes of a reaction was via a plot of the

logarithm of the equilibrium constant K (¼ e�DG/RT)

against the reciprocal of the temperature. Rearrang-

ing (1) gives the van’t Hoff equation describing such

a plot.

ln K ¼ �DH=RT þ DS=R (2)

The slope of the line is �DH and the intercept is

DS (divided by the gas constant). However, this

approach introduces relatively large errors in DH
compared to the magnitude of DG. Because errors in

the slope are correlated with errors in the intercept,

errors alone can produce highly correlated changes

in DH and DS for a series of reactions.2,3 Statistical

tests have been proposed to discriminate cases of

compensation from these artefactual correlations.4,8,9

Using such tests, it was found that many reported

instances of high correlation between DH and DS for

a variety of chemical reactions are indistinguishable

from experimental artefacts,8 including several

examples of the interactions of individual proteins

with series of ligands.4–6

ITC measures the DH of a binding reaction

directly through the heat output or input associated

with a titrated reaction at constant temperature and

DG is found from a nonlinear regression analysis of

the titration curve.10 Unlike a van’t Hoff analysis,

these measurements are essentially independent

and usually precise (e.g., mean reported errors for

DH and DG are 1.5 and 0.5 kJ mol�1, respectively, in

the SCORPIO database11 of ITC data, and 1.7 and

0.4 kJ mol�1 in a recent systematic analysis of repli-

cated experiments on many protein–ligand sys-

tems12). Consequently, enthalpy–entropy correlation

arising from measurement errors, which in the case

of ITC results from the use of Eq. (1) to determine

TDS, is much smaller than that for a van’t Hoff

analysis. Indeed, the precision of ITC measurements

is such that it has again become common to assume

that statistical testing is unnecessary and that a

high-degree correlation in a DH versus TDS plot

alone is sufficient evidence for compensation.13–15

Unfortunately, there are several sources of

potential correlation in ITC data, which must be

eliminated or accounted for in any analysis. In addi-

tion to the small correlation due to measurement

errors, Cooper et al.16 have pointed out that the

range of DG values that are accurately measurable

using the most common direct ITC method is limited

by the necessity to obtain an analyzable sigmoidal ti-

tration curve within the constraints of protein solu-

bility and instrument sensitivity. This ‘‘affinity win-

dow’’ is narrower for direct ITC measurements than

that for many other methods for monitoring binding

and thus poses a particular problem for rigorous

analysis of compensation. In addition, correlation

can arise from ‘‘extra-experimental’’ factors, that is,

biases in the nature of system that are selected for

study.4 For example, interactions with cognate

ligands are constrained in their affinity because

they are usually required to be reversible and have

a significant bound population at biological concen-

trations.4,16 Also, studies of protein with synthetic

ligands often involve a series of similar changes

being made to the ligand. These may each result in

similar changes to DH and TDS and introduce con-

founding correlations into the data.4,17 As a conse-

quence of these issues, careful data selection and

statistical analysis of the effects of errors and exper-

imental factors are required for analysis of en-

thalpy–entropy relationships in ITC data.

Here, we combine ITC data from many proteins

to investigate whether compensation is an observ-

able feature of protein–ligand interactions. In select-

ing data from a wide range of systems, we minimize

the potential for extra-experimental chemical biases

affecting our conclusions. To enable statistical test-

ing, we create models of the correlation expected to

arise as a result of errors and the ITC affinity win-

dow; putting previous qualitative arguments16 about

these factors on a quantitative footing. We show that

these experimental sources of correlation are so

large in traditional DH versus TDS plots as to

render them of no use in identifying compensation,
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reinforcing earlier analyses.6,18 However, we find

that a new approach based on analysis of the distri-

butions of the relative thermodynamic values (DDH,

TDDS, and DDG) of all pairs of ligands that bind to

each protein does allow the effects of enthalpy–en-

tropy compensation to be distinguished from other

sources of correlation. Our analysis shows that there

is significant, widespread and strong tendency to en-

thalpy–entropy compensation in protein–ligand

interactions. However, it is also clear that there is a

range of degrees of compensation observed within

protein–ligand systems. We reconsider previously

suggested theoretical models for compensation and

conclude that the prior theoretical emphasis on

explaining perfect compensation is unwarranted by/

inconsistent with the experimental data and that

improved theories are needed to explain the varied

extent of compensation actually observed.

Results

Overall correlation in DH versus 2TDS plots is

high but is dominated by experimental

constraints
The selected experimental thermodynamic data (see

Methods section) describe 171 protein–ligand inter-

actions involving 32 proteins. This dataset contains

a variety of protein–peptide, protein–carbohydrate,

and protein–nucleotide interactions in addition to

natural and synthetic inhibitors. These data have a

strong diagonal distribution in a DH versus �TDS
plot with a Pearson’s correlation coefficient of 0.97

(Fig. 1). Li et al.15 in surveying PDBcal data have

interpreted similar high correlation as evidence for

enthalpy–entropy compensation. However, it is perti-

nent to ask to what extent limitations of the ITC

method contribute to this appearance and degree of

correlation?16 To answer this question, a quantita-

tive model of these limitations is required.

A model of the effect of the affinity window can

be derived from the actual distribution of DG values

found for all direct titration ITC experiments in the

PDBcal and SCORPIO databases [Fig. 2(A)]. This

distribution arises from the joint effects of extra-ex-

perimental factors and the constraints of the affinity

window. Peaks in the distribution are attributable to

extra-experimental selection, for example, a subset

of compounds in these databases are from medicinal

chemistry series, which have a more limited range

of affinities.11 Underlying the distribution is a trend

whereby high or low DG values are progressively

less likely to be observed (high affinity titration

curves are difficult to interpret because there is an

abrupt transition to saturation; at low affinity,

higher concentrations are required and few com-

pounds are sufficiently soluble). At the centre of the

window, all investigated protein–ligand systems are

equally likely to yield results, and toward the

extremes, the probability of an interpretable experi-

mental result falls to zero. A probabilistic model for

the effects of the affinity window Paw(DG) can be

created [bold line in Fig. 2(A)] that approximates

this underlying behavior.

The hypothetical ‘‘constrained random’’ distribu-

tion of DH and �TDS changes that would be

observed in the presence of experimental con-

straints, but in the absence of any physical mecha-

nism of compensation, can then be created by inde-

pendent random resampling of the experimental

values for DH and –TDS [whose distributions are

shown in Fig. 2(B,C)], computing the corresponding

DG and accepting the pair of values with a probabil-

ity of Paw(DG) (see Methods section for details). An

exemplar constrained random distribution [Fig.

2(D)] appears very similar to the experiment (Fig.

1). The correlation coefficient of 20 resampled distri-

butions ranged from 0.82 to 0.93, that is, more than

95% of the experimentally observed correlation in

DH versus �TDS plots of data from multiple protein

systems is potentially explicable in terms of experi-

mental constraints. What of the slightly greater cor-

relation in the experimental data? Is this evidence of

a small compensation effect? In short, no. Combining

data from more than one protein in a DH versus

�TDS plot introduces an additional source of arte-

factual correlation.

Plots of the relative thermodynamics of ligands
binding to each protein are more appropriate

for consideration of the effects of ligand

modification
The relative thermodynamics of pairs of ligands (A

and B) binding to the same protein are DDGA!B ¼

Figure 1. Thermodynamic parameters derived from ITC

experiments for 171 protein–ligand interactions. The

limitations of experimental procedures constrain

measurements to the affinity window bounded by the

dashed lines.
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DGB � DGA, DDHA!B ¼ DHB � DHA, and TDDSA!B

¼ TDSB � TDSA. In our dataset, we find that the

ranges of the DDH and �TDDS values for such pairs

of ligands are approximately half those observed for

DH and �TDS [compare Figs. 2(B,C) and 3(B,C)].

Consequently, we see that the appearance of a DH
versus �TDS plot of multiple protein–ligand systems

(Fig. 1) not only reflects changes to the ligands but

also contains a large contribution from interprotein

variation that creates additional correlation. The

overall effect of experimental constraints and inter-

protein variation in DH versus �TDS plots is to

make it statistically impracticable to identify any

compensation that may be present.

However, if we instead plot the relative thermody-

namics of all pairs of ligands that bind the same pro-

tein, we both remove the interprotein variation and are

able to explicitly represent the thermodynamic conse-

quences of all ligand modifications. Further, because

the range of DDH variation is smaller than DH, the cor-

relation created by the affinity window is reduced and

there is a greater potential for statistically distinguish-

ing the effects of experimental constraints from any

underlying physical behavior. In a similar manner to

that above, models of the expected distributions of

DDH, �TDDS, and DDG values under a variety of hypo-

thetical scenarios can be created by resampling the ex-

perimental data (see Methods for details). Exemplar

model distributions (Fig. 3) clearly illustrate the effects

of the experimental constraints on the observed distri-

bution and that these are distinct from those antici-

pated for a mechanism which creates full (exact) en-

thalpy–entropy compensation.

Experimental DDH versus 2TDDS and DDH
versus DDG plots are distinct from the effects of

experimental constraints

The slope of the DDH versus �TDDS plot for data

drawn from the 32 proteins is very close to unity for

both the experimental data (1.01) and for the con-

strained random model (1.04 6 0.08 for same number

of data points) [Fig. 4(A)]. This means that there is no

statistical validity in using the slope of this plot (or

equivalently of DH vs. �TDS for single protein) for

ITC data as evidence for enthalpy–entropy compensa-

tion. However, it is also clear that experimental and

constrained random model DDH and �TDDS values

do not have the same distribution. The experimental

data are more narrowly distributed about the DDH ¼
�TDDS line (with a correlation coefficient for the

model of �0.5 and for the experimental data of �0.9).

It has been previously shown that DH versus

DG plots are intrinsically less prone to introduce

artefactual correlation that has the appearance of

compensation6,18 (direct use of the experimental

data avoids the correlated error between DH and

TDS). A plot of DDH versus DDG values [Fig. 4(B)]

makes variation between the ligand pairs more

Figure 2. The effect of the affinity window and other

experimental factors can be modeled using information from

experimental measurements. (A) The distribution of all direct

ITC measurements of DG reported in the PDBcal and

SCORPIO databases is used to estimate the underlying

probability of an experiment being successfully performed

(bold line). This probability forms a basis for modeling the

effects of the affinity window. (B) and (C) Experimental

distributions of DH and �TDS values found in the

experimental dataset in Figure 1. Values for DH and �TDS
from the experimental dataset can be independently randomly

sampled and then accepted with the probability defined in (A)

to create a model distribution illustrating the effect of

experimental constraints (D) on an otherwise random sample.
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visually apparent. Again, the experimental distribu-

tion of data appears to be different from a con-

strained random model. In this case, the average

slopes of the distributions are different (DDH/DDG ¼
7.79 experimentally and 1.02 6 0.03 for the con-

strained random model).

Can the above noted differences between experi-

ment and model data be regarded as significant evi-

dence for compensation being a general feature of

protein–ligand interactions? An issue in determining

this is that the plots (Fig. 4) are subject to potential

bias due to the dominance of those systems with the

most ligands (seven proteins provide 80% of the

ligand pairs). To draw a robust general conclusion

about enthalpy–entropy compensation, it is neces-

sary to draw a more even sample of data from

among the proteins and create a test for the statisti-

cal significance of differences from the constrained

random model.

Protein–ligand interactions exhibit statistically
significant greater correlation of enthalpy and

entropy changes than expected by chance and

constraint
Here we define two coefficients that describe the

degree of compensation of the thermodynamic

Figure 3. Illustrative models of the effect of experimental constraints and full/exact compensation on otherwise random

distributions of the thermodynamic differences between ligands. (A), (B), and (C) Experimental distributions of DG for ligands and

DDH and �TDDS for pairs of ligands that bind the same protein. These can be sampled (see Methods section) to generate a

model of unconstrained random changes in enthalpy and entropy (D and G), of the effect of experimental constraints of the affinity

window plus correlated error (E and H), and of full compensation with measurement errors in (F and I). The ellipses surround 75%

of the experimental datapoints ordered by the differences from the mean of their component coordinates.

Olsson et al. PROTEIN SCIENCE VOL 20:1607—1618 1611



differences between each ligand pair. First, y, the

angle of slope of a vector joining the origin to the

data point in a DDH versus �TDDS plot (which also

equals the angle of a vector joining a pair of ligands

in a DH versus �TDS plot) where

h ¼ atan2ðDDHA ! B=� TDDSA ! BÞ (3)

And, second, /, the angle of slope of a vector

joining the two ligands in a DDG versus DDH plot,

where

/ ¼ atan2ðDDHA ! B=DDGA ! BÞ (4)

These coefficients have advantages for statisti-

cal testing in that they vary smoothly with enthalpy

and entropy changes, unlike the slopes of the vectors

themselves. They are based on the two-variable ver-

sion of the inverse tan function (rather than the

more common single variable version) as this has

values on a full circle from �p to p, thus allowing

use of the robust statistical tests that exist for distri-

butions on a circle. The nature of the distributions

of y and / provided the bases for statistical examina-

tion of the effects of constraints and compensation,

for example, we see from Fig. 3(F,I) that a series of

reactions having perfect enthalpy–entropy compen-

sation y would be strongly peaked at �p/4 or 3p/4
radians and / at p/2 or �p/2.

Our null hypothesis is that the experimental

data are derived from a distribution in which en-

thalpy–entropy correlations arise solely from experi-

mental constraints and correlated errors, that is, the

constrained random model. Rejection of this null hy-

pothesis would lead to the conclusion that there are

observable effects of an unknown correlation modify-

ing mechanism. To test this hypothesis, small sam-

ples were drawn from the experimental dataset

including data from all proteins (but no more than

three from each protein) and the distributions of

their compensation coefficients compared to equal-

sized samples from the constrained random model.

Comparison of the y [Fig. 5(A)] and / [Fig. 5(C)]

distributions of the experimental samples and the

constrained random model via the Kuiper statistic

(see Methods section) allows us to reject the null hy-

pothesis that the experimental samples are drawn

from the constrained random model [Fig. 5(B,D)].

Further, the distribution of y for a sample of the ex-

perimental data is more strongly peaked around the

values of �p/4 or 3p/4 than the constrained random

model distribution and the peaks in the experimen-

tal / are displaced toward p/2 and -p/2. Protein–

ligand systems overall are thus seen to exhibit a sig-

nificantly greater degree of compensation that can

be simply attributed to experimental factors.

How robust is this test of significance to

assumptions about the experimental data that are

inherent in the constrained random model? Because

most features of the model are derived directly from

the experimental distributions, the chief area of

uncertainty is our assumed level of error in the ex-

perimental measurements. In particular, any greater

contribution of error to the observed enthalpy varia-

tion than to the free energy variation gives rise to

some additional appearance of compensation (nar-

rowing the peaks at �p/4 or 3p/4 in the y-plot or

shifting the peaks in the /-plot toward 6p/2). To

account for the effects of error in all the model dis-

tributions presented here, we have included statisti-

cal errors drawn from normal distributions with

Figure 4. The experimental relative thermodynamics of all pairs of ligands binding each protein have features consistent with

the presence of enthalpy–entropy compensation. (A) DDH versus �TDDS plot of all experimental differences for pairs of

ligands binding to each protein (open circles) superimposed on a sample drawn from a constrained random model (points).

The ellipses surrounds 75% of the experimental data ordered by difference from the mean (grey ¼ experimental data, black ¼
model). The experimental distribution is narrower than would be expected in the absence of compensation. (B) An alternative

DDH versus DDG plot of the same data. The experimental data are closer in average behavior to that expected for an

underlying compensation mechanism, but not equivalent to the fully compensated model (cf. Fig. 3I).
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widths derived from the average reported errors in

the SCORPIO database (see Methods section).11 For

the tests using the compensation coefficients, the

standard deviations of the model DDG and DDH
error distributions were 0.7 and 2.1 kJ/mol, respec-

tively. These values are very similar to the varia-

tions observed in a recent single laboratory study of

replicated experiments in several protein systems12

and thus appear to reasonably accurately reflect the

reproducibility of ITC measurements under a single

set of experimental conditions. Unfortunately, in

addition to ITC measurement error, other experi-

mental variables, for example, concentration meas-

urements, variation in temperature, pH or ionic

strength can affect the absolute accuracy or compa-

rability of reported DG and DH values. Certainly,

such systematic experimental differences do contrib-

ute to the overall variation of the experimental val-

ues (Fig. 1). However, the filters we have applied in

selecting data for analysis (see Methods section)

minimize the potential for variation of experimental

conditions to contribute to the DDG and DDH values.

Under a single set of experimental conditions most

effects cancel or are merely proportionate to the DD-
differences between ligands. Because the data points

are concentrated at small values, proportionate

errors affect the distributions in DD-plots only

slightly. For example, a survey of the reproducibility

of a single protein–ligand experiment19 showed that

variations in concentration measurements between

different laboratories created differences of �10% in

the reported molar DH change (contributing 64 kJ/

mol to reported DH in the test case), whereas DG
was only slightly affected due to its logarithmic rela-

tionship with concentration/affinity. Fortunately,

such concentration errors in a series of experiments

on one protein in one laboratory would normally be

consistent as the ‘‘apparent’’ protein concentration

would be standardized (and through the known stoi-

chiometry so would that of the ligands). Conse-

quently, concentration errors should only proportion-

ately increase or reduce all values in a series. A

hypothetical 10% error in the average DDH value in

our dataset amounts to only 0.8 kJ/mol, that is,

Figure 5. Samples of the experimental data are significantly different from an uncompensated constrained random model

and show a strong tendency toward compensation. (A) The compensation coefficient y relating DDH and �TDDS of pairs of

ligands is more strongly peaked for a sample drawn from the experimental data (histogram) around the values of �p/4 and

3p/4 radians, which correspond to exact enthalpy–entropy compensation, than the model (black line). (C) The experimental

values of the compensation coefficient / relating DDH and DDG are most likely to occur around the values of 6p/2 radians,

which correspond to exact enthalpy–entropy compensation, unlike the model. The probability distribution functions of the

Kuiper statistic for y (B) and / (D) generated from the constrained random model (histograms) with arrows indicating the

values for four samples of the experimental data (grey arrows are the values of the samples in (A) and (C)). All experimental

samples lie in the tails of the functions and are significantly different (e.g., the samples in (A) and (C) give P < 0.002 and P <

0.001, respectively).
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smaller than the statistical error already included.

Consequently, we believe that the error included in

the models illustrated here (Figs. 3–5) are reasonably

representative of our DD-dataset. Furthermore, addi-

tional statistical testing with an increased DDH error

of 5 kJ/mol (not shown) still gives significance for the

Kuiper statistic at the standard P ¼ 0.05 level, lead-

ing us to conclude that the evidence from ITC for an

overall tendency to compensation across a wide vari-

ety of protein–ligand interactions is robust.

The tendency to compensation is strong but a

complete range of compensation and
reinforcement is observed

The experimental distributions are not equivalent to

a model of full (100%) compensation within experi-

mental errors [compare Fig. 4(A,B) with Fig. 3(F,I)].

There is also no appearance of any other simple

(algebraic) relationship between enthalpy and en-

tropy change but a broad distribution of behaviors.

The variation in degree of compensation for individ-

ual interaction changes is best appreciated in the

DDH versus DDG plot, where as a result of the inter-

dependence of DDH, �TDDS, and DDG, compensated

changes are spread over a large region of the plot

[Fig. 6(A)]. The bulk of the experimental data [Fig.

6(B)] from ligand modifications (�69%) lie in the

region of greater than ‘‘10%’’ compensation (bounded

by the lines DDH ¼ 0.1 * TDDS and TDDS ¼ 0.1 *

DDH), compared to 45% in this region in the con-

strained random model. These include 22% of

changes which are ‘‘highly’’ compensated with DDH
and TDDS values differing by <20% (cf. 10% for the

constrained random model). For any given value of

DDH, the largest affinity changes occur in cases of

weak compensation (largely where DDH < 0.1 *

TDDS) or reinforcement (DDH and �TDDS have the

same sign) each of which occurs for approximately

15% of modifications (cf. 20% and 35%, respectively,

for the constrained random case).

One way to express the general properties of

this variation is as an intrinsic correlation between

Figure 6. The extent of compensation in protein–ligand interactions varies substantially within protein systems. (A) A

schematic relating different regions of the DDH versus DDG plot to different degrees of compensation (10% compensation

occurs where DDH ¼ 0.1 * TDDS and vice versa). Reinforcement occurs when DDH and �TDDS have the same sign. (B) The

experimental data from 674 ligand modifications in 32 protein systems (grey open circles) show an overall tendency toward

higher degrees of compensation (68% are compensated to better than 10%, 22% to better than 80% � more than twofold

greater than random). The experimental distribution is similar to a model created assuming an intrinsic correlation ¼ �0.91

between enthalpy and entropy changes (black points). (C) Normalized frequency distributions of the compensation coefficient

/ for all pairs of ligands for each of the 32 proteins illustrate the strong tendency to compensation compared to the

expectation of a constrained random model and also the wide variation of degree of compensation observed experimentally.

Each horizontal line represents a protein (or group of proteins in the bottom two cases), where black (100%) to white (0%)

shading represents the proportion of ligands in each interval.
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enthalpy and entropy changes. Through trial and

error, we find that a model distribution with an

intrinsic correlation of DDH and �TDDS of �0.91

subject to constraints and correlated errors has a

strong resemblance to the experimental dataset [Fig.

6(B)]. This is very close to the experimental correla-

tion for the DDH and �TDDS plot and thus consist-

ent with the idea that our modeling procedures are

reasonable and that in practise thermodynamic

changes in ligand series are sufficiently compen-

sated that experimental constraints have only a

small impact on the outcome of most experiments.

Histograms of the distributions of / values for

each protein show that there is a substantial varia-

tion in the degree of compensation within most pro-

tein–ligand series [Fig. 6(C)]. With the exception of

some of the smaller series, whose statistical signifi-

cance is doubtful, the variation between proteins

seems small with a consistent central tendency to

compensation.

Discussion

The analyses presented here have demonstrated that

there is a significant, widespread and strong tendency

for the enthalpy changes associated with chemical

variation of ligands that bind to a protein to be com-

pensated by opposite changes in entropy. Further, the

accuracy of ITC measurements is such that we can

see that within each protein–ligand series there are

many changes to enthalpy that are well compensated

by entropy change, others weakly compensated and

some reinforcing. On the one hand, these observations

are ‘‘intuitively’’ expected; the simple notion that

increased strength of interaction (more favorable en-

thalpy) will result in reduction in freedom (reduction

in entropy) implies that enthalpy and entropy changes

are in opposition,20 and we know from experience that

this opposition cannot be perfectly balanced in pro-

teins, because it is possible to alter the affinity of

ligands through chemical modification. On the other

hand, the extent of compensation that is actually pres-

ent and observable in proteins has been obscure,

because common methods of measurement and pre-

sentation of the thermodynamic data contain artefacts

which mimic compensation. By changing the way in

which data is represented, using a large amount of

precise ITC data and creating quantitative models of

the artefacts, we have been able to reveal the actual

extent of compensation.

We have created quantitative constrained ran-

dom models of the effects of correlated error and the

affinity window in ITC measurements that have

been previously discussed only qualitatively.7 Stud-

ies on individual proteins have often assumed that

ITC data is sufficiently accurate that a slope of a DH
versus �TDS plot near unity13–15 or closer to unity

than a random resampled dataset4 or high correla-

tion in multiprotein data15 can in principle provide

evidence for (or is explained by) compensation. Our

constrained random models show that this is not the

case; in the statistical limit of large numbers of data

points, the slope generated by experimental con-

straints is also unity with high correlation. These

models reinforce previous warnings of the danger of

misinterpreting features of DH vs. –TDS plots as evi-

dence of compensation.6,16,18 Exner6 has also pointed

out that variations of the extent of compensation

associated with individual chemical modifications of

a ligand are obscured by traditional regression anal-

ysis, which, in placing a least-squares fit line

through a DH versus �TDS or DH versus DG plot,

emphasizes the largest differences in the data.

We have overcome these problems by a new

approach to analysis using plots of DDH vs. –TDDS
and DDH vs. DDG for all pairs of ligands that bind

each protein. Plotting relative thermodynamics in

this way means that there is one explicit data point

corresponding to each chemical change to the ligand,

and that data can be combined from different pro-

teins while avoiding confounding effects of interpro-

tein variation. These DD-plots also diminish any

potential effect on the analysis from nonuniformity

in the distribution of DG and DH measurements,

such as those that arise from the difficulty of meas-

uring small heat changes and extra-experimental

influences on the affinity of investigated ligands

(Fig. 2). In another difference from previous analy-

ses, we find that it is necessary to use nonparamet-

ric statistical tests and representations of ITC data

because, unlike regression analyses, these are robust

to the non-normality of the experimental and model

distributions that arises from the truncation

imposed by the affinity window.

We introduced two ‘‘compensation coefficients’’, y
and /, that describe the angle of the (DDH, �TDDS)
and (DDG,DDH) vectors in their respective plots,

which have desirable properties for quantitative and

statistical comparison. Using these coefficients, we

find that it is possible to detect statistically significant

compensation in both DDH versus �TDDS and DDH
versus DDG plots of the experimental data. Although

experimental error in DDH tends to increase the

appearance of compensation in these plots, we find

that this significance is retained at more than twice

reported ITC error levels, suggesting that the observa-

tion of widespread compensation is robust even if

reported experimental errors are underestimated. Var-

iation within a dataset is more clearly visualized in

the DDH versus DDG plot or using the / coefficient.

Most proteins are found to have a broad distribution

of / with a strong central tendency to compensation

(Fig. 6). The overall distributions show a more than

twofold greater chance of high compensation (DDH
within 20% of TDDS) than the random case.

What then is the physical origin of this tend-

ency to compensation? A significant strand of theory
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in this area is concerned to explain the almost com-

plete compensation inferred from regression lines of

unity slope through DH versus �TDS plots. General-

ized thermodynamic21 or statistical mechanical4

arguments, that do not consider details of molecular

structure, have been formulated that predict a high

degree of compensation. Expressions for the change

in DH and �TDS are linear and of opposite sign for

both small perturbations of interactions, of popula-

tions of energy levels and of the levels themselves

for a variety of hypothetical distributions of energy

states. Consequently, small changes to systems tend

to cancel out. Such approaches provide successful

models for understanding compensation with respect

to small changes in continuous variables, for exam-

ple, temperature. However, perturbation approaches

are not formally valid for the typical size of changes

arising from ligand modifications (typically > RT).

Sharp4 has suggested that ‘‘larger experimental DH
or TDS values presumably result from correlated

perturbations,’’ but this idea has not been developed

in detail. Further, as we have shown that there is a

broad spread of behavior for protein–ligand interac-

tions (with 31% either only weakly compensated or

actually reinforcing) and that experimental error

will tend to over, not under, estimate compensation,

the motivation and support for these generalized

theories seems weaker. In reporting a small number

of observations of reinforcement, Levy and col-

leagues20 show that in a narrow range of circum-

stances the thermodynamic theory21 can give rein-

forcement. Sharp4 has also made an argument for

such a possibility in the statistical mechanical

theory, where the Gaussian distribution of states

model could be ‘‘tuned’’ to give any desired distribu-

tion. Probably, there is room for further development

of these ideas, but in making such accommodations

for the experimental data these approaches lose

their predictive nature and become empirically para-

meterized explanations, whose underlying assump-

tions require additional support.

An alternative view, which predicts large

changes in both enthalpy and entropy as a result of

chemical modification, has been propounded by

Dunitz22 and Searle et al.23 This view is based on

consideration of the fundamental physics of the

energy of individual bonds between protein, ligand,

and water molecules. The basic idea is that heat

resides in the vibrational and librational motions of

atoms constrained by bonds. The depth and width

of the potential well describing each bond deter-

mines the energy states and thus enthalpy and en-

tropy of the bond. In his original exposition,

Dunitz22 chose a Morse potential together with pa-

rameters that illustrated the possibility of a high

degree of compensation for hydrogen bonding inter-

actions of water. However, Ford24 has pointed out

that differences in the curvature and depth of the

potential wells of bonds between the free and bound

forms can result in a wide variety of behaviors,

including reinforcement. The range of possibilities

arising from variation in interactions between

bound and free states for these bonding models is

at least in accord with the extent of variation seen

in experiment. However, at present such models are

merely illustrative and not able to make any spe-

cific predictions about particular protein–ligand

interactions. Many questions remain unanswered.

For example, why are many changes compensated

to a large extent? Is this due to the behavior of

water as has been frequently suggested?1,25 A

large-scale study of protein folding thermodynam-

ics26 shows a trend in a DH versus DG plot whereby

DHfold/DGfold � 11. This is quite similar to the aver-

age DDHbind/DDGbind � 8 that we see here. Is this a

coincidence or a result of the process of dehydration

that occurs both in folding and complex formation?

Certainly, the relatively low mass of a water mole-

cule means that variations in hydrogen bond

strength are associated with relatively large

changes to DH and DS. The Morse potential model

also implies that larger changes to DH for individ-

ual bonds should be less well compensated, but

there is no obvious trend for changes in the / dis-

tribution with DDH (data not shown). Does this sug-

gest some weakness in the theory or simply that

larger enthalpy changes are usually composites of

several small changes to individual bonds?

Our discovery of an imperfect but strong tendency

to enthalpy–entropy compensation in protein–ligand

interactions and the development of methods of data

representation and comparison that led to the discov-

ery (particularly the use of the compensation coeffi-

cient /) opens up new questions. In this regard, we

follow Cornish-Bowden’s maxim ‘‘that genuine but

imperfect correlations are biologically more interesting

than meaningless perfect ones.’’5 A key question for

the utility of the observations presented here is why

do some changes to ligands result in compensation

and others not? Are the differences seen between pro-

teins significant, that is, are some protein’s binding

sites better able to compensate than others or do the

differences simply reflect limitations in diversity of

ligands in current experiments? Are there types of

chemical changes to ligands, which are more or less

likely to be compensated in interactions with proteins?

Answers to these questions will have a significant

impact on our attempts to rationally develop thera-

peutically relevant molecules.

Methods

Creation of the isothermal titration

calorimetry dataset
All data on protein–ligand interactions were drawn

from the SCORPIO11 and PDBcal15 databases of ITC
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data. Some database entries were excluded to ensure

that the data form a coherent group subject to similar

experimental constraints and to minimize potential

extra-experimental biases in the thermodynamic val-

ues. Specifically, only data for each protein derived

from direct ITC titration measurements and a single

publication were selected. The heats of some binding

reactions may be sensitive to changes in solution con-

ditions (particularly ionic strength and pH) and are

proportionately affected by systematic errors such as

concentration measurement and instrument calibra-

tion. This restriction of data for each protein to a sin-

gle publication minimizes the possible contribution of

such variations to the DDG and DDH values in later

analyses. Data for each protein were recorded at a

single temperature. To isolate the effects of ligand var-

iation, proteins were included only if data were avail-

able from more than one ligand binding at the same

site. Data from studies in which a prior screen of ac-

tivity or affinity was used to select candidates for ITC

(i.e., almost all studies from pharmaceutical compa-

nies) were excluded as such selection biases distribu-

tion of DG.11 The final dataset may be found in Sup-

porting Information Table 1.

Creation of model distributions of
thermodynamic values

Model datasets were created by random resampling

of the relevant experimental data and applying cor-

rections and acceptance criteria designed to mimic

experimental and other sources of correlation. The

ITC affinity window is modeled by a probability of

acceptance of DG values estimated from the

observed distribution of all 422 direct ITC measure-

ments of experimental affinities in SCORPIO11 and

PDBcal15 databases [Fig. 2(A)]. This probability,

Paw(DG), is estimated as 0.1 for DG ¼ �52 to �50 kJ

mol�1, 0.35 from �50 to �48 kJ mol�1, 0.5 from �48

to �44 kJ mol�1, 1 from �44 to �18 kJ mol�1, 0.5

from �18 to �14 kJ mol�1, 0.15 from �14 to �12 kJ

mol�1 and otherwise zero.

The constrained random distribution for DH ver-

sus �TDS [Fig. 2(D)] results from independent ran-

dom sampling of these two experimental quantities,

which are treated as ‘‘true’’ values. DGtrue is then

computed using (1). Experimental error is mimic by

addition to DGtrue and DHtrue of values drawn from

normal distributions of mean zero and r ¼ 0.5 and

1.5, respectively. These values are the ‘‘trial’’ values.

Computing �TDStrial ¼ DGtrial � DHtrial incorporates

the effects of correlated experimental error. This

group of trial values are then accepted as part of the

model with a probability given by Paw(DGtrial).

A constrained random model for the relative

thermodynamic quantities was created by first inde-

pendently randomly selecting values of DG from the

original experimental dataset and DDH and �TDDS
from the values for all ligand pairs that bind the

same protein; these are taken as the true values.

Then DDGtrue ¼ DDHtrue � TDDStrue addition of

errors (as above, but a factor of 21/2 larger) produces

DDGtrial and DDHtrial, �TDDStrial ¼ DDGtrial �DDHtrial

and the group of data are accepted with a probability

Paw(DGtrue þ DDGtrial). Approximately 281,000 groups

of values for DDH, �TDDS, and DDG were accepted

from 500,000 trials to construct the constrained ran-

dom model dataset used in statistical testing.

An approximate model of the effect of intrinsic

correlation (compensation) is achieved [Fig. 6(B)] by

instead drawing DDHtrue and �TDDStrue from a

binormal distribution, that is, with a probability pro-

portional to

e

� 1

2ð1� q2Þ
DDH2 þ TDDSð Þ2þ2q � DDH � TDDSð Þ

r2

" #

(5)

where r ¼ 17.5 kJ mol�1 [the width of a normal dis-

tribution that is a reasonable approximation to the

experimental distributions of both DDH and –TDDS
in Fig. 3(B,C)] and q is the desired correlation coeffi-

cient. The use of a normal distribution is sufficient

for illustrative purposes but does narrow the distri-

butions of DDH and �TDDS slightly compared to

experiment. In the case of a ‘‘fully compensated’’ dis-

tribution (Fig. 3), TDDStrue is set equal to the

resampled value of DDHtrue.

Statistical procedures
Samples of random pairs of ligands binding a single

protein were drawn from the experimental dataset

and compared to samples of the same size drawn

from the constrained random model. To minimize

potential sources of bias in the experimental sample,

no protein–ligand interaction was drawn twice and

no more than three pairs of ligands were included

for each protein, limiting samples to a maximum of

60 pairs. The model distributions of compensation

coefficients in the absence of intrinsic correlation

[Fig. 5(A,C)] are computed from all data in the con-

strained random model.

The Kuiper statistic,27 a variant of the widely

used Kolgomorov-Smirnov test for comparing two

sets of unbinned data via their cumulative distribu-

tion functions, is an appropriate measure of differ-

ence between any two distributions of circular data.

Importantly, the significance of a test based on the

Kuiper statistic is not dependent on the choice of

zero angle. Estimates of the population cumulative

distributions P(y) and P(/) were generated using all

of the �281,000 sets of values of DDGA!B, DDHA!B,

and TDDSA!B in the constrained random dataset.

These population cumulative distributions were then

used to compute the Kuiper statistic Vn for the ex-

perimental sample by comparing its cumulative
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distribution, Sn(y) or Sn(/), to that appropriate for

an experimental sample of size n,

Vn ¼ max½SnðhÞ � PðhÞ� þmax½PðhÞ � SnðhÞ�
for� p < h < p

(6)

and similarly for /. The appropriate probability dis-

tribution function for the Kuiper statistic (i.e., the

probability of observing a particular value of Vn by

chance) was generated by resampling the con-

strained random distribution drawing 1000 sets of

60 datapoints and computing V60 each time. All

analyses were performed using in-house Mathema-

tica (Wolfram Research) programs.
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