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 Introduction 

 The goal of many genome-wide association (GWA) 
studies is to identify genetic markers that are associated 
with a disease of interest. When single-nucleotide poly-
morphisms (SNPs) are used as markers, statistical infer-
ence is often based on the Cochran-Armitage (CA) test 
for trend, which relies on an assumption about the way 
that disease frequency varies across genotypes. The as-
sumed model can be expressed as P(disease  �   j  alleles) = 
 H ( �  +  �  d  j ), where the gene doses  d  j  and the function  H  
reflect beliefs about the underlying relationship between 
the risk of disease and the number of alleles. The original 
formulations of the CA trend test  [1, 2]  permit the use of 
any gene doses  d  j , so we use the label ‘CA trend test’ to 
refer to any choice of gene doses. But most often the ad-
ditive gene doses  d  j  =  j  for  j  = {0, 1, 2} are used. For a giv-
en SNP, we do not necessarily know the true gene doses 
for the underlying genetic model, so assuming gene dos-
es  d  j  =  j  may lead to a loss in power  [3] .
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 Abstract 

  Background/Aims:  Genetic single-nucleotide polymor-

phism (SNP) data are often analyzed using trend tests that 

rely on a specific assumption about the way that disease fre-

quency varies across genotypes, but the validity of this as-

sumption is not typically known. We explore the relative ef-

ficiency of trend tests in which the assumed model may

or may not correspond to the true genetic model.  Methods:  
We derive formulae for the asymptotic relative efficiencies 

(AREs) comparing tests that assume different genetic mod-

els. We consider both unstratified and stratified tests, using 

both case-control and cohort data. We illustrate these for-

mulae using realistic parameters and compare the calculat-

ed AREs to simulated relative efficiencies in finite samples. 

 Results:  The AREs are identical for unstratified tests using 

case-control and cohort data, but differ for stratified tests. 

Loss of efficiency can be substantial, given specific combina-

tions of high-risk allele frequencies, disease frequencies, and 

assumed versus actual genetic models. Given reasonably 

large sample sizes, asymptotic calculations align well with 

finite sample simulations of relative efficiency.  Conclusions:  
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  The unstratified test, based on additive gene doses 
 d  j  =  j , has been shown to be locally most powerful for a 
broad class of alternatives with monotone and twice
differentiable  H  functions, including the additive model 
[ H  = identity], the multiplicative model [ H  = exponen-
tial], and the logistic model [ H  = antilogit], both in the 
cohort setting  [4]  and in the case-control setting  [5] . Thus 
using the test based on the additive gene doses will result 
in minimal losses in efficiency for alternatives that can be 
expressed as P(disease  �   j  alleles) =  H ( �  +  �  d  j ). However, 
efficiency loss can be high when the true genetic model is 
dominant or recessive  [3] . To obtain most powerful tests 
in these cases, the gene doses for  j  = {0, 1, 2} must be  d  j  = 
{0, 0, 1}, when the inheritance pattern is autosomal reces-
sive, and  d  j  = {0, 1, 1}, when the inheritance pattern is au-
tosomal dominant  [5] . For the recessive and dominant 
inheritance patterns, the tests based on these specified 
gene doses are not only locally most powerful, but also 
minimize the sample size required to achieve prespeci-
fied type I and type II errors for any alternative  [5] .

  Analysis of GWA studies is further complicated by the 
confounding effects of population stratification. Recent 
methods to control for this confounding have included 
both continuously adjusted CA trend tests  [6]  and strati-
fied CA trend tests  [7] . If we consider a single stratifica-
tion variable as the categorization of individuals with 
similar risk due to a host of factors, then the stratified CA 
trend test can be viewed as an approximate version of the 
test that makes more complicated continuous adjust-
ments. Tarone and Gart  [4]  investigated stratified CA 
trend tests for the class of alternatives using additive gene 
doses  d  j  =  j  and variable  H  functions. Their work was mo-
tivated by designed experiments, but it can also be ap-
plied to epidemiological cohort data. Once data are strat-
ified, Tarone and Gart showed that the test based on the 
additive gene doses and identity  H  function, which to-
gether comprise the ‘additive model’, is no longer guar-
anteed to provide a locally most powerful test against the 
class of alternatives using the additive gene doses with 
other  H  functions. It is unknown how stratification af-
fects efficiency when case-control data are used and/or 
when the true genetic model is dominant or recessive.

  The goal of this paper is to estimate the efficiency of the 
stratified CA trend test when the model is misspecified. 
In the Methods section, we present the CA trend test and 
the corresponding asymptotic relative efficiencies (AREs) 
for both unstratified and stratified genetic models. The 
AREs have been derived previously for cohort data with 
variable  H  functions  [4] , but we extend this calculation to 
allow variable gene doses. We also derive AREs for strati-

fied case-control data. We show that the unstratified tests 
and AREs are identical for case-control and cohort data. 
For  stratified  tests, the AREs for case-control and cohort 
data differ. We illustrate these AREs using parameter val-
ues that are realistic in applications. In ‘Simulations: Per-
formance of ARE Formulae in Finite Samples’, we illus-
trate how closely these asymptotic calculations align with 
finite sample relative efficiencies. In the Discussion sec-
tion, we summarize these results and suggest extensions.

  Methods 

 Notation 
  Table 1  provides the notation that we use for both case-control 

and cohort data. The total number of subjects with disease is  R , 
the number without disease is  S , and their sum is  N . The potential 
high-risk allele is ‘A’. The number of subjects with  j  ‘A’ alleles and 
disease is  r  j , the number with  j  ‘A’ alleles and no disease is  s  j , and 
their sum is  n  j . The population-level genotype frequency P( j  al-
leles) is denoted  g  j  and the population-level disease frequency is 
denoted K.

  Case-Control Data 
 The total numbers of diseased and non-diseased subjects ( R  

and  S ) are fixed, but the numbers of diseased and non-diseased 
subjects with specific genotypes are random. Using the probabil-
ities  p  j  = P( j  alleles  �  disease) and  q  j  = P( j  alleles  �  no disease), the 
distribution of ( r  0 ,  r  1 ,  r  2 ) is trinomial with parameters ( R ; ( p  0 ,  p  1 , 
 p  2 )), and the distribution of ( s  0 ,  s  1 ,  s  2 ) is trinomial with parameters 
( S ; ( q  0 ,  q  1 ,  q  2 )).

  Cohort Data 
  R  and  S  are no longer fixed; instead we condition on the col-

umn totals  n  j . Using the probability  p ̃  j  = P(disease  �   j  alleles), the 
distribution of  r  j  is now binomial with parameters ( n  j ;   p ̃  j  ), and  s  j  is 
the difference  n  j  –  r  j .

  Stratified Data 
 There is one such table for each stratum  i  of the  I  total strata. 

An additional subscript is added to each count to indicate stratum 
membership. The probability that a subject is in a given stratum 
is denoted  v  i .

  Model for Relationship between Disease and Genotype 
 Cohort Data, Population Model 
 We assume that the true model for the probability of disease in 

the population, given  j  alleles, is  p ̃  j    =  L ( �  +  �  d  jL ).  Table 2  provides 
functions and gene doses for models of interest. Only the identity 
function is considered for dominant, recessive, and heterozygous 
models because when other functions are used with the same gene 
doses  d  jL , they yield the same model. The co-dominant model, 
which allows arbitrary differences for heterozygotes, is not consid-
ered here because it represents a 2 degree-of-freedom alternative.

  Case-Control Data, Case-Control Sample Model 
 When case-control data are collected, investigators may some-

times assume that the true underlying model for the relationship 
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between disease and genotype has the same structure in the case-
control sample as it does in a cohort sample. Under the logistic 
regression model  [8] , the case-control sample model has the same 
 L  function, but a different intercept from the population model: 
 P (disease  �   j  alleles, sampled) =  p ̃  j  

(  cc  )    =  L ( �  +  �  d  jL ).

    Case-Control Data, Population Model 
 Another option for case-control data is to translate the true mod-
el relating disease and genotype in the population [ p ̃  j  =  L ( �  + 
 �  d  jL )] to the case-control sample. That is, we can write the disease 
probability in the case-control sample, conditional on number of 
alleles, in terms of the population-model parameters. This condi-
tional probability will depend on the sampling fractions that 
characterize the case-control sample. We define  �  1  =  P (sampled  � 
disease),  �  0  =  P (sampled  �  no disease), and  �  =  �  1/  �  0 . We also de-
fine the function  J   �   to be the function of  �  +  �  d  jL  that gives the 
true conditional probability of disease in the case-control sample 
using population parameters, i.e.  P (disease  �   j  alleles, sampled) =  
 p ̃  j  

(  cc  )    =  J   �  ( �  +  �  d  jL ). The function  J   �   can be written in terms of the 
sampling fractions and the model relating disease and genotype 
in the population: 
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1

jL

jL

jL jL

L d
J d

L d L d
�
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  If we have case-control data and think we have  L  in our data when 
in fact we have  J   �  , we may be misled, as we will see in the sections 
that follow. 

 CA Trend Test 
 In the context of genetic association studies, CA trend tests are 

used to determine whether the presence of an allele of interest is 
related to risk of disease. Therefore the null hypothesis ( H 0) of 
interest is  �  = 0. In the population,  �  = 0 implies that the risk of 

disease is the same regardless of the number of alleles present, i.e.   
 p ̃  j   =   p ̃     for all  j . In a case-control sample,  �  = 0 implies that the prob-
ability of having a given number of alleles is the same regardless 
of disease status, i.e.  p  j  =  q  j  for all  j . 

 To emphasize that the assumed statistical model may be mis-
specified, we denote the model ‘m’ that is assumed to underlie the 
statistic of interest using the function  H  m  and gene doses  d  jm .

  Unstratified Test 
 To test  H 0:  �  = 0, Tarone and Gart  [4]  studied the CA trend test 

statistic, which is the score test when the assumed model is  H ( �  + 
 �  d  j ) for differentiable function  H  and linear doses  d  j  =  j . For case-
control data, it is the score test under either a true population 
model or a true case-control sample model when  H  is the anti-
logit function. The CA trend test statistic is:
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  Note that statistic 1 does not depend on the function  H  m , as all 
terms containing  H  m  cancel out in its derivation as a score statis-
tic. The statistic has an asymptotic  �  2  (1)  distribution under  H 0 for 
cohort data  [2]  and case-control data  [9] . 

 Stratified Test 
 For an assumed population model denoted by  m  and strata 

indexed by  i , Tarone and Gart  [4]  showed that the stratified score 
test statistic that applies to epidemiological cohort data is:
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 where  �  ̂   i  =    H  m
   –1    ( R  i / N  i ). Unlike the unstratified statistic 1, statistic 

2 does depend on the assumed function  H  m . This function  H  m  will 
reflect our assumption about the true population function  L , 
when we have cohort data, or the related function  J   �  , when we 
have case-control data. 

 Using the case-control sample model described in ‘Model for 
Relationship between Disease and Genotype’, a comparable deri-
vation gives the same statistic because  �  ̂   i  and  �  ̂   i      are both estimat-
ed by    H  m

   –1    ( R  i / N  i ). Despite identical computations, the interpreta-
tion of these estimates differs due to the different sampling con-
texts. Both are estimates of disease risk under the assumption that 
disease does not vary with genotype ( H 0), but  H �   m (  �  ̂   i  ) estimates 
risk for the general population, whereas    H �   m (  �  ̂   i   ) estimates risk for 
a specific case-control sample that typically has a higher propor-
tion of cases than the general population.

  Examples of stratified trend tests assuming different genetic 
models are provided in the online supplementary materials (on-
line supplementary Section A and online supplementary table 1, 
www.karger.com/doi/10.1159/000328858).

  ARE of the Trend Test 
 Pitman ARE is the limiting ratio of the sample sizes that pro-

duces equal asymptotic power in relation to a sequence of alterna-
tive hypotheses that approach  H 0 as the sample sizes become 

Table 1. U nstratified data by genotype

aa aA AA Total

Disease r0 r1 r2 R
No disease s0 s1 s2 S

Total n0 n1 n2 N

Table 2.  Functions and gene doses used to denote genetic models 
of interest, where p̃j = P(disease � j alleles) = L(� + �djL)

L(x) djL

Additive x j
Multiplicative ex j
Logistic ex/(1 + ex) j
Dominant x I [j D {1, 2}]
Recessive x I [j D {2}]
Heterozygous x I [j D {1}]
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large. Using Noether’s theorem  [10] , we can calculate the Pitman 
ARE as a ratio of the efficacies of two different statistics. We de-
note the efficacy attained by the statistic corresponding to model 
 m  under true  L  as  e  mL . Tarone and Gart  [4]  calculated AREs under 
the assumption that one of the two statistics being compared used 
the true underlying  L  function as the function  H  m  in the statistic. 
We make three extensions to their calculations: (1) instead of us-
ing only  d  j  =  j  for all statistics, we consider statistics that use oth-
er gene doses; (2) we allow the model to be misspecified by both 
statistics, and (3) we compute the ARE for case-control data.

  Unstratified Test 
 For unstratified tests performed with cohort data, the ARE 

comparing assumed model  m  to assumed model  m̃   , when data are 
generated from the true model  L , is

22 2

2 2
2

,

,
j jm j j jm jj jm jL j j jm j j jL j
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ARE m m

d d g d g d g d g d g

  which reduces to the following when the true gene doses  d  jL  equal 
 d  j      m̃  : 
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  Note that if the gene doses  d  j  are equal in the two statistics being 
compared, and if they are correctly specified, then the ARE re-
duces to 1 regardless of the true  H  function. 

 The ARE of unstratified tests performed with case-control 
data is the same as the one given in equation 3. Note that under 
 H 0, the genotype frequency in the case-control sample  gj  

(  cc  )    is equal 
to the population genotype frequency  g  j . The disease risk, condi-
tional on number of alleles, cancels out under both the population 
model and the case-control sample model, so it does not matter 
which of these two models is the true one.

  Stratified Test, Cohort Data, Population Model 
 The AREs for stratified tests are also calculated with Noether’s 

theorem  [10] . However, the efficacies are now sums of stratum-
specific quantities. This procedure leads to the following expres-
sion for stratified ARE in cohort-study data:
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  where the  i  subscript indicates stratum-level quantities,  �  i  = 
P(stratum  i ) and  g  ij  = P( j  alleles  �  stratum  i ). If    H  m̃      is the true pop-
ulation function  L  and    d  j m̃       are the true gene doses  d  jL , then this 
reduces to a form that is comparable to Tarone and Gart’s re-
sult  [4] : 
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  Stratified Test, Case-Control Data, Case-Control Sample 
Model 
 When we assume that the true conditional probability of dis-

ease in the case-control sample can be written as a simple function 
 L  of the gene dosage score, the ARE formula for case-control strat-
ified data is the same as equation 4, except that  �  i  is replaced by  �  i  
and  g  ij  is replaced by  g  i

(  j 
cc  )    = P( j  alleles  �  stratum  i , sampled). Thus 

the ARE depends on the assumed function for the conditional 
probability of disease in the case-control sample  L , the true gene 
doses  d  jL , the sampling ratio  � , the population allele frequency  g  ij , 
and the probability of subjects’ being in each stratum  v  i . Note that 
under  H 0, the allele frequency in the case-control sample  g  i

(  j 
cc  )    is 

equal to the population allele frequency, so they can be used in-
terchangeably in formula 4.

  Stratified Test, Case-Control Data, Population Model 
 When we assume that the true conditional probability of dis-

ease in the case-control sample is a function  J   �   of the population 
parameters, then the modified ARE that is calculated under this 
population-level assumption, derived in online supplementary 
Section A, is:
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 The ARE depends on the true function for the conditional prob-
ability of disease in the population  L , the true gene doses  d  jL , the 
sampling ratio  � , the population allele frequency  g  ij , and the prob-
ability of subjects’ being in each stratum  v  i . The function for the 
conditional probability of disease in the case-control sample  J   �   
can be computed from these other quantities. Again the allele fre-
quency in the case-control sample  g  i

(  j 
cc  )    is interchangeable with the 

population allele frequency  g  ij  under  H 0. 
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 Because equations 4 and 5 differ, assumptions about the truth 
should be carefully considered before deciding which of these ex-
pressions to use.

  ARE Examples 
 Unstratified Tests 
 The unstratified ARE for either cohort or case-control data 

depends on the following parameters: the high-risk allele fre-
quency  g  j , the true gene doses  d  jL , and the gene doses  d  jm  and      d  j m̃      
  assumed by the statistics being compared.  Figure 1  plots ARE ver-
sus allele frequency for high-risk allele frequencies ranging from 
0 to 0.5. The corresponding relationships for high-risk allele fre-
quencies above 0.5 can be inferred by noting that a dominant ge-
netic dose effect with an allele frequency  g  j  above 0.5 can also be 
modeled by a recessive genetic dose effect with an allele frequen-
cy 1 –  g  j . For each model pair comparison, the plotted value is the 
ARE associated with using the statistic derived under one of the 
models when, in fact, the data arise under the other model, i.e. as-
suming that  d  jL  =     d  j m̃        or  d  jL  =  d  jm . The ARE formula 3 that applies 
to this scenario is symmetric so either of the pair of models can 
be the one that generates the observed data.

  The ARE is equal to 1 when comparing models that use identi-
cal gene doses to calculate the statistic (scenario not shown in 
 fig. 1 ). However, if the truth is dominant, recessive, or heterozy-
gous, then the ARE varies depending on which statistic is com-
pared to the truth  [5] . The ARE clearly depends on the high-risk 
allele frequency ( fig. 1 ). When the CA trend test based on the ad-
ditive model is used, the ARE under dominant truth is highest 
when allele frequency is low; the ARE under recessive truth is 
highest when allele frequency is high; and the ARE under hetero-
zygous truth is highest when allele frequency is near 0 or 1. On the 
other hand, if the statistic based on the recessive model is used but 
the true gene effect is dominant, or vice versa, then the ARE is low 

regardless of the allele frequency, but best at 0.5. Therefore, al-
though additive tests are most commonly used, they may have low 
power to detect associations when the true genetic effect is domi-
nant or recessive, especially if the high-risk allele frequency is 
extreme. This reinforces results reported previously  [3, 5] .

  Stratified Tests 
 When stratified analyses are conducted, the ARE depends not 

only on the gene doses and the high-risk allele frequencies in the 
different strata, but also on the stratum-specific disease frequen-
cies, the  H  functions that are used in different statistics, and the 
 L  or  J   �   functions that define the true underlying model.  Figures 
2–4  as well as online supplementary figures 1–6 plot ARE values 
assuming 6 strata of equal size, in each of which both the disease 
frequency and the high-risk allele frequency can vary. Each plot 
represents fixed disease frequencies across a range of high-risk 
allele frequencies. The stratum-specific disease frequencies rep-
resent both rare and common diseases. Each line in a figure rep-
resents the ARE comparing the statistic using the additive model 
to one using the true model underlying the data. In all of these 
figures, when ARE is illustrated using case-control data, a popu-
lation model, which induces a more complicated model for the 
way the probability of disease in the sample depends on genotype 
(see also ‘Model for Relationship between Disease and Genotype’ 
above), is assumed.

  In  figure 2 , high-risk allele frequencies are constant across 
strata. The top row ( fig. 2 a, b) represents a rare disease, and the 
bottom row ( fig. 2 c, d) represents a more common disease. The 
left column ( fig. 2 a, c) represents cohort data, and the right col-
umn ( fig.  2 b, d) represents case-control data. For case-control 
data, the sampling ratio  �  is 100, meaning that cases are 100 times 
more likely to be sampled than controls. Given the same underly-
ing population disease frequency, e.g.  figure 2 b versus  2 a, the dis-
ease frequency in the sample is higher in case-control data than 
in cohort data.

  When the high-risk allele frequencies are constant across stra-
ta, and interest lies in models with the same gene doses, e.g. addi-
tive and multiplicative, the ARE is the same regardless of the high-
risk allele frequency. However, for these models, ARE does vary 
with disease frequency and with type of data. Multiplicative and 
logistic models have efficiency more similar to each other than to 
the additive model for low sample disease frequencies. But as sam-
ple disease frequency increases, both their efficiencies become 
more similar to the additive model, until the logistic model di-
verges from both at very high sample disease frequencies.

   Figure 2  also shows that when the statistic based on the addi-
tive model is compared to a statistic with different gene doses, e.g. 
dominant, recessive, or heterozygous, and one of the statistics be-
ing compared reflects the true model, then the ARE varies with 
high-risk allele frequency as it does for unstratified data. Only two 
parameters are needed to describe these true models, so the choice 
of gene dose  d  j  makes ARE vary with allele frequency, but this re-
lationship does not change further with disease frequency.

   Figures 3  and  4  reflect high-risk allele frequencies that vary 
across strata, as would occur in the presence of confounding. 
They display the average allele frequency across the strata in place 
of the allele frequency that was assumed to be constant in  figure 
2 . We chose the stratum-specific allele frequencies to be additive 
on the logit scale. Sample high-risk allele frequencies are dis-
played in  table 3 .

0 0.1 0.2 0.3 0.4 0.5

High-risk allele frequency

A
R

E

Additive vs. dominant
Additive vs. recessive
Additive vs. hetero
Dominant vs. recessive
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  Fig. 1.  Asymptotic relative efficiency (ARE) for unstratified tests, 
comparing two different statistics, one of which reflects the true 
model underlying the data. Either one could be the true model 
because the ARE formula (equation 3) is symmetric. Note that 
ARE is equal to 1 when comparing any of additive, multiplicative, 
or logistic. 
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   Figures 3  and  4  display the ARE for a disease that is rare in the 
population, in the presence of several different types of confound-
ing for cohort data ( fig. 3 ) and for case-control data ( fig. 4 ). These 
figures assume highly variable high-risk allele frequencies. The 
top left plot in each ( 3 a,  4 a) is the one with constant high-risk al-
lele frequency. The other panels ( 3 b–d,  4 b–d) allow stratum-spe-
cific high-risk allele frequencies to vary, as specified in  table 3 . 
Plots for positive and negative associations are reflections of each 
other, with the exception of dominant and recessive curves, each 
of which is the reflection of the other.

  The ARE is more variable when there is greater variance in 
high-risk allele frequency across strata. Also the arbitrary asso-
ciations between high-risk allele frequency and stratum-specific 
disease frequency have ARE that is similar to the ARE for con-
stant high-risk allele frequency. The monotone associations have 
ARE that is less similar to the ARE for constant high-risk allele 
frequency.

  For cohort data collected in a rare disease setting, as in  figure 
3 , comparing a positive association to constant high-risk allele 
frequency, the efficiency of the additive statistic is generally clos-
er to that of the fully efficient true statistic for dominant, multi-

plicative, and logistic truths, while it is further for recessive truth. 
For case-control data collected in a rare disease setting, as in  fig-
ure 4 , assuming the underlying population follows the named 
model, the relationships among the individual panels are similar 
to those in cohort data. Online supplementary figures 1–6 exam-
ine different parameter values, but yield similar conclusions to 
 figures 3  and  4 . Online supplementary figures 7 and 8 examine 
scenarios in which the true underlying model is neither the addi-
tive model nor the model used for the specified statistic.

  Simulations: Performance of ARE Formulae in Finite 

Samples 

 Description of Scenarios 
 By definition, ARE is only guaranteed to apply to data 

collected on samples of infinite size. Therefore we con-
ducted a series of simulations to investigate its perfor-
mance in more realistic finite samples. For a range of sce-
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  Fig. 2.  Asymptotic relative efficiency (ARE) for stratified tests, 
comparing the statistic using the additive model to one using the 
true model underlying the data. ARE is calculated using equation 
4 for cohort data and equation 5 for case-control data. There are 
6 strata with equal distribution of subjects across strata and con-
stant high-risk allele frequencies across strata. Truth is assumed 
at the population level for both cohort and case-control data. For 

case-control data, the sampling ratio  �  is 100, meaning that cases 
are 100 times more likely to be sampled than controls.  a ,  c  Cohort 
data;  b ,  d  case-control data. In  a ,  b , stratum-specific population 
disease frequencies of 0.01, 0.025, 0.0375, 0.0625, 0.075, and 0.1 are 
used; in  c ,  d , stratum-specific population disease frequencies of 
0.25, 0.375, 0.5, 0.75, 0.875, and 0.95 are used. 
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  Fig. 3.  Asymptotic relative efficiency (ARE) for stratified tests us-
ing cohort data in the presence of confounding, comparing the 
statistic using the additive model to one using the true model un-
derlying the data (low disease frequency, high allele frequency 
variance). ARE is calculated using equation 4. There are 6 strata 
with equal distribution of subjects across strata, stratum-specific 
population disease frequencies of 0.01, 0.025, 0.0375, 0.0625, 

0.075, and 0.1, and stratum-specific high-risk allele frequencies as 
follows: in    a , constant high-risk allele frequencies across strata are 
used, while  b–d  use stratum-specific high-risk allele frequencies 
with the mean value displayed on the X-axis and variance across 
strata of 2.1. High-risk allele frequencies have arbitrary associa-
tion with disease frequencies ( b ), monotone positive association 
( c ), and monotone negative association ( d ).  

Table 3. E xamples of stratum-specific high-risk allele frequencies with specified variance

Variance Association with disease
frequency

S tratum

1 2 3 4 5 6

0.525 monotone positive 0.08 0.13 0.16 0.24 0.29 0.40
monotone negative 0.40 0.29 0.24 0.16 0.13 0.08
arbitrary 0.16 0.40 0.13 0.29 0.08 0.24

2.1 monotone positive 0.03 0.08 0.13 0.29 0.40 0.65
monotone negative 0.65 0.40 0.29 0.13 0.08 0.03
arbitrary 0.13 0.65 0.08 0.40 0.03 0.29

The  values displayed are centered around logit(0.2), with subtraction of (1, 0.5, 0.25, –0.25, –0.5, –1) when the variance on the log-
it scale is 0.525 and subtraction of (2, 1, 0.5, –0.5, –1, –2) when the variance on the logit scale is 2.1. For example, the first cell is anti-
logit (logit (0.2) –1) = 0.08.
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narios we generated data assuming that various alterna-
tives were true, simulating 1,000 samples and conducting 
a trend test on each sample. We conducted two sets of 
analyses, one using a significance cutoff of 5  !  10 –8 , 
which is typical of GWA studies, and one using a signifi-
cance cutoff of 0.01 which is representative of candidate 
gene studies that focus on testing a limited number of 
genes or tag SNPs within a gene. We repeated this process 
for each test of interest, varying the sample size until the 
test rejected approximately 80% of the time. After record-
ing the sample size with 80% power for each test, we then 
calculated relative efficiencies by taking the ratios of 
these sample sizes. We compared these simulated relative 
efficiencies to the relevant AREs developed in ‘ARE of the 
Trend Test’ above.

  We performed these simulations for a wide range of 
scenarios (see online suppl. table 1), using both unstrati-
fied and stratified tests. We varied the true relationship 
between genotype and disease frequency to reflect addi-
tive, multiplicative, logistic, dominant, recessive, and 
heterozygous models with varying effect sizes. For case-
control data, we used a sampling ratio  �  of 100, meaning 
that cases were 100 times more likely to be sampled than 
controls. We varied the disease frequency to reflect the 
cases considered in ‘ARE Examples’. We also considered 
a range of high-risk allele frequencies. As for stratified 
analyses in ‘ARE Examples’, we considered both cases 
where only the disease frequency varied across strata and 
cases where both the disease frequency and the high-risk 
allele frequency varied across strata, with the latter re-
flecting scenarios with confounding. For each of these 
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  Fig. 4.  Asymptotic relative efficiency (ARE) for stratified tests us-
ing case-control data in the presence of confounding, comparing 
the statistic using the additive model to one using the true model 
underlying the data (low disease frequency, high allele frequency 
variance). ARE is calculated using equation 5. The sampling ratio 
 �  is 100, meaning that cases are 100 times more likely to be sam-
pled than controls. There are 6 strata with equal distribution of 
subjects across strata, stratum-specific population disease fre-

quencies of 0.01, 0.025, 0.0375, 0.0625, 0.075, and 0.1, and stratum-
specific high-risk allele frequencies as follows: in  a , constant high-
risk allele frequencies across strata are used, while  b–d  use stra-
tum-specific high-risk allele frequencies with the mean value 
displayed on the X-axis and variance across strata of 2.1. High-
risk allele frequencies have arbitrary association with disease fre-
quencies ( b ), monotone positive association ( c ), and monotone 
negative association ( d ).       
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scenarios, we calculated efficiencies for each test relative 
to the test that reflected the true model. For example, 
when the truth was additive, we calculated efficiencies for 
each of multiplicative, logistic, dominant, recessive, and 
heterozygous tests relative to an additive test.

  Relative Efficiency Results 
 Depending on the scenario under investigation, 

achieving 80% power required anywhere from thousands 
of subjects to millions of subjects. All else being equal, the 
smaller the true effect, the greater the sample size that 
was needed to detect it at 80% power. Because greater 
sample sizes are closer to the infinite sample size required 
for the validity of the ARE, the simulated relative efficien-
cies for smaller effect sizes reflect more closely the calcu-
lated AREs.

  In unstratified scenarios, the finite sample relative ef-
ficiencies are shown only for cohort data because they 
also apply to case-control data. The unstratified relative 
efficiencies closely reflect the calculated AREs regardless 
of sample size and type of genetic study (see online suppl. 
tables 2, 6).

  However, some differences between simulated relative 
efficiencies and calculated AREs appear in the stratified 
analyses, especially with the smaller sample sizes typical 
of candidate gene studies (online suppl. tables 3–5). That 
said, the rank order of simulated relative efficiencies us-
ing various test statistics in a given scenario generally re-
flect the rank order of the calculated AREs. Online sup-
plementary tables 7 and 8 give sample results for larger 
GWA studies using cohort data. Online supplementary 
table 9 gives results for larger GWA studies using case-
control data, assuming the assumed model holds in the 
population.

  Discussion 

 The relative efficiency of trend tests using different as-
sumptions to evaluate associations between potential 
high-risk alleles and binary outcomes depends on wheth-
er design and/or analysis are stratified, the true underly-
ing genetic model, the population-level high-risk allele 
frequency, and the population-level disease frequency. 
Additionally, in case-control data, relative efficiency de-
pends on the proportion of the sample who are cases. Be-
cause several of these factors are not necessarily known, 
choosing the optimal test to use in a given scenario is not 
straightforward. However, by employing estimates of 
these factors based on previous data, concerns regarding 

loss of efficiency for a given trend test can be evaluated 
via the ARE formulae that we have developed.

  Loss of efficiency can be substantial, given specific 
combinations of high-risk allele frequencies, disease fre-
quencies, and assumed versus actual genetic models. 
Thus if there is prior evidence indicating that the under-
lying genetic model is something other than additive, 
then there is motivation to conduct trend tests assuming 
a non-additive model in order to avoid potentially large 
losses in power. Other approaches are also possible. Ex-
tending the maximin efficiency robust testing (MERT) 
procedure of Gastwirth for trend tests  [11]  to the strati-
fied setting might yield a test that is more robust to the 
choice of plausible alternatives for the genetic model. 
Similarly, extending the max test  [5, 12]  to stratified data 
might yield procedures with near-optimal power under 
plausible models. In addition, it would be interesting to 
see if an extension of the inequality constrained pene-
trance test (ICPT) of Song and Nicolae  [13]  to stratified 
data would enjoy good power under all plausible mono-
tone genetic models.

  When case-control data are collected, and a stratified 
trend test is used, but the underlying model for the trend 
test applies at the population level rather than in the case-
control sample, the statistic corresponding to the true 
population model (i.e. the one with  H  equal to  L  instead 
of  J   �  ) is not necessarily the most efficient one. The tables 
of simulated data in online supplementary Section B 
show that the logistic and sometimes the dominant sta-
tistics are more efficient than the additive one for an ad-
ditive population model, and the logistic statistic can be 
more efficient than the true statistic in any true popula-
tion model except the heterozygous one. Therefore with 
case-control data, consideration should be given to using 
the logistic stratified statistic.

  In general, when the true model is unknown, the 
choice of statistic influences power most when the high-
risk allele frequency is near 0 or 1. This is consistent with 
previous findings  [3] , and supports the recommendation 
to use tests not based on the additive model when allele 
frequency is very high or very low. Alternate tests should 
also be considered when allele frequency is moderate and 
it is biologically plausible that the heterozygote has the 
highest risk.

  The relative efficiencies that we have derived are only 
guaranteed to apply asymptotically. However, we have 
found that our ARE calculations generally reflect compa-
rable relative efficiencies to those found in finite sample 
simulations. There is more divergence from the asymp-
totic results with the smaller sample sizes that are typi-
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cally used for candidate gene studies, but the ARE ap-
proximations remain reasonable in most scenarios and 
the relative rankings of test power they give apply even 
more often.

  Useful extensions of the concepts in this paper would 
include discussion of relative efficiency for continuously 
adjusted tests, as opposed to stratified tests, as well as ex-
tensions of alternative testing procedures such as the 
MERT test  [11] , the max test  [12] , or the ICPT  [13]  to strat-
ified data.
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