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Abstract
The contributions of prolactin (PRL) to breast cancer are becoming increasingly recognized. To
better understand the role for PRL in this disease, its interactions with other oncogenic growth
factors and hormones must be characterized. Here, we review our current understanding of PRL
crosstalk with other mammary oncogenic factors, including estrogen, epidermal growth factor
(EGF) family members, and insulin-like growth factor-I (IGF-I). The ability of PRL to potentiate
the actions of these targets of highly successful endocrine and molecular therapies suggests that
PRL and/or its receptor (PRLR) may be an attractive therapeutic target(s). We discuss the
potential benefit of PRL/PRLR-targeted therapy in combination with established therapies and
implications for de novo and acquired resistance to treatment.
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1. Introduction
The concept that prolactin (PRL) significantly contributes to the pathogenesis and
progression of breast cancer was brought to the forefront in the 1970s, although it remained
controversial for many years (Clevenger et al., 2003). Through numerous experimental,
clinical, and epidemiological studies, a striking body of evidence implicating a role for PRL
in mammary carcinogenesis has gained increasing acceptance (Arendt and Schuler, 2008a;
Trott et al., 2008; Tworoger and Hankinson, 2008; Wagner and Rui, 2008). However, PRL
is just one component of a highly integrated signaling network. To further define the role of
PRL in disease, interactions with other critical regulators of mammary growth and
differentiation must be characterized. This review will focus on recent data elucidating PRL
crosstalk, its contributions to tumor pathogenesis and progression, and therapeutic
implications.
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2. PRL and breast cancer
Because of its crucial role in mammary proliferation and differentiation, it was speculated
that PRL was involved in carcinogenesis, but conflicting outcomes of hypophysectomy or
bromocriptine treatment to remove pituitary PRL fed a prolonged debate (Vonderhaar, 1998;
Goffin et al., 1999). More recently, large prospective epidemiological studies have
correlated circulating PRL levels with risk for estrogen receptor-alpha (ERα)-positive breast
cancer in both pre-and post-menopausal women (Tworoger and Hankinson, 2008). These
findings are strengthened by the discovery that PRL is produced locally within the
mammary epithelium and adjacent adipose tissue, further increasing PRL exposure
(Ginsburg and Vonderhaar, 1995; Clevenger and Plank, 1997; Zinger et al., 2003). These
reports incited new interest in PRL as a potential modulator of mammary carcinogenesis.
Recently, it was shown that PRL expression in tumors is higher than in normal or
hyperplastic epithelium (McHale et al., 2008). Moreover, PRL receptor (PRLR) is expressed
in 70–95% of primary breast tumors and at a higher level within tumors compared to normal
adjacent tissue (Ormandy et al., 1997a; Reynolds et al., 1997; Touraine et al., 1998; Gill et
al., 2001; Meng et al., 2004). In mouse models, targeted mammary overexpression of PRL
or activated PRLR is oncogenic (Arendt and Schuler, 2008a), and conversely, inhibition of
PRLR with a ligand antagonist (Tomblyn et al., 2005) or gene ablation (Oakes et al., 2007)
delays tumor development. Together, these data point to an important role for PRL in breast
cancer, and suggest that PRL signaling may be a target for therapeutic exploitation.

3. PRL-initiated signals
PRL exerts its biological effects via binding to PRLR and initiation of signals to
downstream mediators, including Janus kinases (JAKs), STATs, mitogen-activated protein
kinases (MAPKs), phosphatidylinositol 3′-kinase (PI3K), AKT, src family kinases, the
protein kinase C family, Rho GTPases, and RUSH (Clevenger et al., 2003; Chilton and
Hewetson, 2005). These pathways can contribute to key features of neoplastic progression,
including proliferation, survival, and invasion (Vivanco and Sawyers, 2002; Sebolt-Leopold
and Herrera, 2004;Wagner and Rui, 2008), as well as resistance to current breast cancer
therapies (Schiff et al., 2004; McCubrey et al., 2006).

3.1. JAK/STAT
JAK2/STAT5 is the most characterized PRL-initiated signaling cascade. This pathway
appears to mediate most PRL actions in lobuloalveolar development and lactation, as
demonstrated by mouse models with genetic ablations of these signaling components
(Horseman et al., 1997; Ormandy et al., 1997b; Liu et al., 1997; Teglund et al., 1998;
Shillingford et al., 2002). However, the role of this pathway in mammary oncogenesis is
more complex. STAT5-overexpressing mice develop mammary tumors (Iavnilovitch et al.,
2004), and loss of STAT5 significantly delays tumor onset in multiple mouse models of
breast cancer (Humphreys and Hennighausen, 1999; Ren et al., 2002). Nonetheless, STAT5
activation in primary tumors is associated with a favorable prognosis (Cotarla et al., 2004;
Nevalainen et al., 2004), and STAT5 suppresses invasion in vitro (Sultan et al., 2005; Nouhi
et al., 2006; Gutzman et al., 2007). This correlates well with findings that STAT5 expression
is lost in invasive carcinomas but retained in well-differentiated histo-types (Bratthauer et
al., 2006; Strauss et al., 2006). Thus, a dual role for this pathway has been proposed: one
that supports tumor-initiation, but fosters differentiation and suppresses invasion in
advanced disease (Wagner and Rui, 2008). Adding to this complexity, in one study, nuclear
STAT5 in primary tumors predicted a positive response to endocrine therapy (Yamashita et
al., 2006), yet in vitro models implicate several STAT family members, including STAT5,
in antiestrogen resistance (Silva and Shupnik, 2007).
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3.2. MAP kinases
PRL activates MAPKs, including ERK1/2, ERK5, p38 and JNK1/2 (Schwertfeger et al.,
2000; Gutzman et al., 2004a). ERK1/2 are activated in response to multiple growth factors
and cytokines, and elicit a myriad of effects associated with malignancy. Several
transcription factors are activated downstream of ERK1/2, including AP-1, which regulates
genes involved in proliferation, survival, and metastasis, such as cyclin D1 and MMPs
(Shaulian and Karin, 2002; Eferl and Wagner, 2003). ERK1/2 are hyperexpressed and
hyperactivated in human mammary neoplasias (Santen et al., 2002; Sivaraman et al., 1997),
and unlike STAT5, are associated with poor patient prognosis in some (Gee et al., 2001), but
not all (Milde-Langosch et al., 2005; Bergqvist et al., 2006) studies. Moreover, ERK1/2
activation has been reported to predict poor responses to endocrine therapy and contribute to
resistance to antiestrogens and EGFR/HER-2-targeted therapies (Vilora-Petit and Kerbel,
2004; Riggins et al., 2007).

3.3. PI3K/AKT
PRL also activates the PI3K/AKT cascade, which plays prominent roles in proliferation and
survival. Multiple effector proteins associated with tumorigenesis function downstream of
this pathway, including GSK-3β, cyclin D1, mTOR, BAD, procaspase-9, and Fork-head
transcription factors (Vivanco and Sawyers, 2002; Hennessy et al., 2005). Furthermore, this
pathway contributes to tumor invasion and the epithelial-mesenchymal transition (Shaw et
al., 1997; Grille et al., 2003; Zhou et al., 2004). Recent studies have shown that AKT
activity increases with tumor progression, correlating with increased relapse and decreased
survival for patients with metastatic disease (Kirkegaard et al., 2005; Liu et al., 2007).
Finally, like MAP kinases, AKT has been implicated in resistance to antiestrogens and
EGFR/HER-2-targeted therapies (Vilora-Petit and Kerbel, 2004; Riggins et al., 2007).

4. PRL crosstalk in breast cancer
Mammary development requires coordinated interactions of multiple growth factors and
hormones. Many of these normal developmental processes, such as proliferation and
morphogenesis, often become deregulated during tumorigenesis. Thus, it is critical to
understand growth factor and hormone interactions in the context of developing breast
pathology. The pathways described above are shared by many of these factors and represent
potential sites for crosstalk, as well as putative sites for therapeutic intervention.
Interestingly, pathways other than JAK2/STAT5 appear to be the most robust sites for PRL-
growth factor interaction. The association of these alternative pathways with neoplastic
progression and treatment resistance as discussed above suggests profound prognostic and
therapeutic implications for PRL actions in this disease. Accumulating evidence points to
synergistic interactions between PRL and estrogen, members of the EGF family, and IGFs
(Fig. 1).

4.1. PRL and estrogen
Crosstalk between PRL and estrogen can occur at multiple levels and is bidirectional. PRL
increases ERα and ERβ transcription via STAT5 (Frasor and Gibori, 2003), and increases
mammary ERα expression in mouse models (Edery et al., 1985; Muldoon, 1987). By this
mechanism, PRL can enhance estrogen sensitivity, with implications for tumor
differentiation and treatment sensitivity (Webb et al., 1992; Sharma et al., 2006). In MCF-7
cells engineered to inducibly overexpress PRL, endogenous PRL increasesERα expression,
and also estrogen responsiveness as determined using several markers including
proliferation, ERE-luciferase activity, and increased expression of target genes such as
cyclin D1, progesterone receptor (PR), and Bcl-2 (Gutzman et al., 2004b).
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PRL can also enhance non-classical and unliganded estrogen signaling. In MCF-7 cells,
PRL and estrogen augment AP-1 activity through increased phosphorylation of p38,
ERK1/2, and c-Fos (Gutzman et al., 2005). Additionally, PRL induces phosphorylation of
ERα at S118 and S167, likely through MAPK and PI3K/AKT pathways (Glaros et al.,
2006;Arendt and Schuler, 2008b). Phosphorylation of multiple serine residues can enhance
ERα transcriptional activity even in the absence of estrogen, which may be further
augmented by phosphorylation of coactivators by these same kinases (Likhite et al., 2006;
Weigel and Moore, 2007; Gonzalez et al., 2009).

Conversely, estrogen also can alter PRL-induced signaling. Estrogen upregulates
transcription of PRL in breast cancer cells (Dong et al., 2006; Duan et al., 2008), as well as
pituitary lactotrophs (Ben-Jonathan et al., 2008), enhancing the mammary PRL autocrine/
paracrine loop. Estrogen can potentiate PRL-activated Stat5 activity in some mammary
cells, including some breast cancer cell lines (Bjornstrom et al., 2001; Wang and Cheng,
2004). However, the outcome of this crosstalk was inhibitory in some studies (Faulds et al.,
2004; Wang and Cheng, 2004), underscoring the importance of cell context.

4.2. PRL and EGF/TGF-α
Multiple lines of evidence point to cooperation between PRL and EGF family members in
breast cancer. PRL and EGF synergistically induce signals to ERK1/2 and AKT, but not
STAT5, and PRL also can activate HER2 (Yamauchi et al., 2000; Arendt et al., 2006, 2009;
Frank, 2008). Interestingly, PRL also reduces ligand-induced EGFR downregulation via
threonine phosphorylation (Frank, 2008). Functionally, PRL potentiates EGF-induced cell
motility in multiple breast cancer cell lines (Maus et al., 1999).

In genetically modified NRL-PRL/TGF-α mice, local mammary PRL and TGF-α in
combination significantly enhance proliferation in morphologically normal structures,
increase development of preneoplastic lesions, and dramatically reduce tumor latency in
nonparous females (Arendt et al., 2006). These effects are accompanied by enhanced
phosphorylation of mammary ERK1/2 and AKT, confirming that these kinases are points of
signaling crosstalk (Arendt et al., 2006, 2009). Interestingly, PR expression is dramatically
reduced in the bitransgenic mice. The literature suggests several mechanisms whereby these
kinases may reduce PR transcription (Petz et al., 2004; Cui et al., 2003), or increase
degradation of PR protein (Lange et al., 2007). Moreover, the combination of PRL with
TGF-α can also cause mammary tumors in male mice, in contrast to the lack of tumors in
single transgenic males (Arendt and Schuler, 2008b).

However, not all interactions between PRL and EGF family members are positive. Some
studies of murine cell lines in vitro demonstrate inhibitory interactions between PRL and
EGF (Fenton and Sheffield, 1993; Horsch et al., 2001). The relationship of these
observations to the other models is unclear.

4.3. PRL and IGFs
PRL requires local production of IGF-II to mediate upregulation of cyclin D1 and
subsequent mammary development in mouse models (Brisken et al., 2002; Hovey et al.,
2003). However, in MCF-7 breast cancer cells this requirement is bypassed, although PRL
retains its ability to increase IGF-II synthesis (Carver and Schuler, 2008). This demonstrates
that the effects of PRL can differ in normal and tumor cells.

In addition to IGF-II, PRL also increases local IGF-I expression, creating a favorable
environment for crosstalk between PRL and IGF-IR ligands in breast cancer cells. Like
crosstalk downstream of PRLR and EGFR, PRL and IGF-I cooperatively activate ERK1/2
and AKT, but not STAT5 (Carver and Schuler, 2008). Together, PRL and IGF-I augment
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critical processes associated with neoplastic progression, including proliferation, survival,
and invasion, more than the sums of effects elicited by PRL or IGF-I alone. One mechanism
underlying this synergy is the ability of PRL to enhance IGF-I-induced phosphorylation of
Tyr1135/1136 within the kinase domain of IGF-IR. This augmentation is a result of
decreased IGF-IR dephosphorylation, caused by reduced association of IGF-IR with the
tyrosine phosphatase, SHP-2, and diminished IGF-IR internalization (Carver et al.,
submitted).

5. Therapeutic implications
The evidence described above reveals PRL as an important modulator of the actions of
estrogen, EGF family members, and IGF-I in breast cancer. These factors are the targets of
widely employed and highly successful endocrine and molecular therapies, and continue to
be the focus of pharmaceutical development. However, acquired resistance to existing
therapies after the initial patient response has proven a major obstacle in clinical oncology,
driving exploration of new targets. With the abundance of evidence implicating PRL in the
pathogenesis of breast cancer, PRL and/or PRLR are promising targets. The relatively
restricted distribution of PRLR and limited phenotype of the PRLR−/− mice apart from the
mammary gland (Goffin et al., 2002) suggest that therapeutics directed toward PRL/PRLR
will be well tolerated, increasing its appeal.

5.1. Inhibition of PRL signals
Due to the recent acceptance of a role for PRL in breast cancer, there is a relative dearth of
PRL/PRLR-specific therapeutics that also address local PRL production. Inhibitors of PRL-
associated kinases such as JAK2 and src family members have been developed, but these
kinases are shared by many receptors, and are critical for physiological activities of other
cytokines (Thomas and Brugge, 1997; Kisseleva et al., 2002). The production of antibodies
raised against PRLR has proven difficult; only one study (Sissom et al., 1988) has shown
anti-tumor efficacy in vivo, and these findings have yet to be reproduced (Clevenger et al.,
2008). PRL antagonists evolved over several generations (Walker, 2006; Tallet et al., 2008)
appear to be the most promising intervention to date, but these are in early stages of
development, and issues surrounding binding affinity and stability must be resolved before
they can enter the clinic.

Small molecule inhibitors represent an untapped class of potential PRL-specific
therapeutics. The majority of identified small molecule inhibitors are directed toward known
protein pockets, such as ATP binding sites in tyrosine kinase receptors, which have no
counterpart in PRLR. However, these molecules can also interact with so-called “hot spots”,
which may destabilize protein-protein interactions, such as PRLR-kinase or adaptor protein
interactions.

Our laboratory has begun to investigate this possibility via high-throughput screening
efforts. We have screened diverse “drug-like” libraries and discovered promising
compounds that are currently being characterized (Carver et al., in preparation). Completion
of these studies will enable future structural, functional, and pharmacological optimization.
Importantly, these compounds will complement the development of PRL antagonists and
will add to the meager repertoire of tools available to examine the contributions of PRL
signals to oncogenic processes in the breast.

5.2. Combinatorial therapy
With the increasing number of treatment options for breast cancer patients, therapeutic
regimens are becoming more individualized. Pre-clinical data strongly support the rationale
for combinatorial therapy (Johnston et al., 2007). However, while some clinical trials
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combining antiestrogens, EGFR/HER2 inhibitors, anti-angiogenics, and/or chemotherapies
have yielded encouraging results (Romond et al., 2005; Polychronis et al., 2005; Tabernero,
2007), others have shown no benefit compared to monotherapy (Leary et al., 2007). In some
cases, one subpopulation responds well, while another exhibits no effect (Marcom et al.,
2007). These results suggest that careful selection is required to identify the subset of
patients who will receive the most benefit. Expression of the target protein itself (e.g. HER2)
may not be sufficient, and additional predictive markers are needed.

Combining current treatment options with therapeutics targeting PRL/PRLR may be quite
beneficial. The PRLR antagonist, G129R-PRL, enhances the efficacy of trastuzumab in
xenograft models (Scotti et al., 2008), and potentiates the cytotoxic effects of doxorubicin
and paclitaxel in vitro (Howell et al., 2008). Moreover, a study of women with metastatic
breast cancer and concomitant hyperprolactinemia showed that reduction of pituitary PRL
with cabergoline, in combination with docetaxel, resulted in a higher rate of tumor
regression compared to docetaxel alone (Frontini et al., 2004). This is significant evidence
that PRL/PRLR could be a prime target in the large number of patients with tumors
expressing high levels of PRLR, particularly in patients with tumors demonstrating activated
growth factor-stimulated pathways and/or ERα expression.

5.3. Resistance to treatment
Despite many successful responses to endocrine and molecular therapies, a significant
patient subpopulation either does not respond initially (de novo resistance) or becomes
refractory to such treatment (acquired resistance), often resulting in tumor relapse (Normano
et al., 2005). Many implicated factors or signals are sites of crosstalk with PRL. For
example, resistance to endocrine therapies is associated with increased MAPK and PI3K/
AKT signaling, overexpression of HER2, and/or increased activation of IGF-IR (Nicholson
et al., 2007; Massarweh et al., 2008). Resistance to EGFR- or HER2-targeted therapies is
associated with increased PI3K/AKT signaling and/or IGF-IR activation (Bianco et al.,
2005; Suzuki and Toi, 2007). Increased activation of IGF-IR and the PI3K/AKT cascade are
also common mechanisms of chemo- and radio-resistance (Casa et al., 2008).

Combinatorial therapy has thus become an attractive strategy to overcome the resistant
phenotype or to delay the onset of acquired resistance in some pre-clinical (du Manoir et al.,
2006) and clinical studies (Dowsett et al., 2005). Concomitant inhibition of PRL signals may
prove beneficial. High serum PRL levels before treatment are associated with endocrine
therapy failure, recurrent disease, and worse overall survival (Dowsett et al., 1983;
Bhatavdekar et al., 1994; Barni et al., 1998; Tworoger and Hankinson, 2008). The ability of
PRL to potently augment activation of growth factor receptors and downstream signals
associated with poor prognoses argues for inhibiting PRL action. Intriguingly, NRL-PRL/
TGF-α bitransgenic mice have significantly elevated ERα expression in preneoplastic
lesions, yet are non-responsive to estrogen, resembling an endocrine resistant state (Arendt
et al., 2009). Finally, PRL protects breast cancer cells from irradiation-induced cell death
(Chakravarti et al., 2005). These data support targeting PRL/PRLR in combination with
other therapies to reduce or delay acquired treatment resistance.

6. Perspectives and conclusions
An increasingly abundant body of evidence supports a significant role for PRL in breast
cancer. As described herein, PRL strongly interacts with oncogenic growth factors and
hormones, contributing to tumor development and progression. Understanding the
mechanism(s) underlying this crosstalk will further delineate the actions of PRL in breast
carcinogenesis. Interestingly, studies to date suggest that PRL/EGF and PRL/IGF-I
cooperation is selective, since the JAK2/STAT5 pathway is not affected. This is important to

Carver et al. Page 6

Mol Cell Endocrinol. Author manuscript; available in PMC 2011 October 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



note, as activation of the latter pathway may be favorable in human tumors. However, PRL-
growth factor crosstalk greatly increases the activation of the MAPK and PI3K/
AKTpathways, which are associated with a poor prognosis and therapeutic resistance. Thus,
combining therapeutics targeting PRL/PRLR with endocrine or EGFR/HER2-and IGF-IR-
targeted therapies may more effectively inhibit tumor growth and/or prevent or delay
acquired treatment resistance. Mixed results of several therapeutic combinations currently in
clinical trials have underscored the importance of patient selection. Identification of markers
that predict response will be extremely valuable as more targeted therapies are developed
and treatment regimens become even more individualized. However, in order to exploit the
role PRL plays in this disease, we must first develop PRL/PRLR-targeted therapies beyond
the pre-clinical stage.
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Fig. 1.
PRL crosstalk with estrogen, progesterone, EGF/TGF-α, and IGF-I. PRL can synergize with
IGF-I and EGF family ligands to activate MAPKs and AKT. These pathways contribute to
expression of genes involved in proliferation, survival, and invasion. Furthermore, activation
of these pathways is associated with resistance to endocrine, molecular, and chemo- and
radio-therapies. ERK1/2 and AKT can also phosphorylate ERα and PR, leading to enhanced
transcriptional activity and degradation. PRL signaling through the JAK2/STAT5 pathway
increases expression of ERα, potentially enhancing estrogen sensitivity and expression of
classical estrogen target genes, including PR. See text for further discussion.
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