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Summary
Vaccination is mankind’s greatest public health success story. By now vaccines to many of the
viruses that once caused fatal childhood diseases are routinely used throughout the world.
Traditional methods of vaccine development through inactivation or attenuation of viruses have
failed for some of the most deadly human pathogens, necessitating new approaches. Genetic
modification of viruses not only allows for their attenuation but also for incorporation of
sequences from other viruses, turning one pathogen into a vaccine carrier for another.
Recombinant viruses have pros and cons as vaccine carriers, as discussed below using vectors
based on adeno-, herpes-, flavi-, and rhabdoviruses as examples.

Introduction
About 200 different viruses can infect humans and, on average, two new species of virus are
discovered and added to this list each year. However, vaccines are currently only available
for 15 of those 200. Today’s successful vaccines are mainly based on attenuated or
inactivated virions that elicit neutralizing antibodies, which in turn prevent infections.
Vaccines for the remaining 180 or so viruses have not been successfully developed.
Vaccines for viruses that cause no or only minor disease, such as adeno-associated viruses or
rhinoviruses are not needed. Some viruses, such as human papilloma viruses, cannot be
grown in vitro and, thus, can neither be attenuated nor inactivated. Others, such as HIV-1,
express only a few copies of the envelope protein on their surface and are hence poor
inducers of neutralizing antibodies. Certain viruses, such as HIV-1 or hepatitis C virus,
mutate so rapidly that a single vaccine may not induce a broad enough antibody response to
neutralize all circulating subtypes. In some cases, antibodies can even exacerbate disease, as
exemplified by dengue virus, which in the presence of antibodies to a different yet cross-
reactive strain can cause hemorrhagic fever.

There are other issues with traditional vaccines. Vaccines based on inactivated viruses are
generally safe but protection is commonly fleeting or not that impressive, as exemplified by
Flu vaccines administered to the elderly [1]. Attenuated vaccines perform better, but they are
also more reactogenic and, in extreme cases, such as the live attenuated vaccine to
poliovirus, may convert back to virulence. Furthermore, speed of vaccine development can
be an issue. As opposed to 100 years ago, humans in the 21st century crisscross the globe
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rapidly and viruses travel with them. For instance, the 2009 pandemic influenza strain was
first detected in March of that year and by June had spread to every continent. A vaccine for
the pandemic strain did not become available to the general population until October. While
the strategy for generating influenza virus vaccines are well established, generating a new
vaccine to an emerging virus would take disproportionately longer – about 10 years or more.

Advances in molecular virology have enabled the genetic manipulation of viruses, which has
opened new opportunities for vaccine development. Not only can viruses be attenuated far
more rapidly by modifying parts of their genome but they can also be harnessed into vaccine
carriers that express bits and pieces of another virus. Poxviruses, which have large DNA
genomes, were first to be genetically altered [2] and one of which, a recombinant vaccinia
virus that expresses the rabies virus glycoprotein, has been used for nearly two decades for
immunization of wildlife animals [3]. Vectors based on other double-stranded DNA viruses,
such as adenoviruses [4] or herpesviruses [5], were next to be developed, followed by
vectors based on single, negative- or positive-stranded RNA viruses, such as myxoviruses
[6], rhabdoviruses [7], or flaviviruses [8]. By now techniques are available to genetically
modify just about any virus that is out there.

Recombinant viral vector vaccines have several advantages. First, they can be developed
rapidly. They induce a full spectrum of immune responses including antibodies and CD8+ T
cells. Additionally, the vaccine carrier rather than the pathogen against which the vaccine is
meant to protect will determine the flavor of the immune response through induction of the
initial inflammatory response and thereby largely dictate reactogenicity, furthermore, once a
prototype vector has been tested extensively, safety trials may be sped up. While some
vaccine carriers are very safe, such as vectors based on E1-deleted, and hence replication
defective, adenoviruses (Ad) or highly attenuated poxviruses, such as Modified Vaccinia
Ankara, others are currently viewed as potentially too risky for use in humans, such as those
based on lentiviruses that may integrate, or those based on replicating herpesviruses that
may persist at high levels.

The plethora of recombinant viruses that are undergoing preclinical testing precludes doing
justice to all of them in a single review. We will therefore focus on a few examples:
recombinant adenovirus and herpesvirus vectors for DNA virus-based vaccine carriers,
flaviviruses for positive-sense single-stranded RNA and rhabdoviruses for negative-sense
single-stranded RNA recombinants.

Recombinant vaccines based on DNA viruses
DNA viruses in general have large genomes that accommodate insertion of one or more
complete genes from a different virus. Poxvirus vectors have been used successfully as
vaccine carriers for a number of pathogens. Although such vectors were found to be safe,
their immunogenicity was limited, which possibly reflects competition between immune
responses to the transgene and to the approximately 80 poxvirus proteins encoded by its
130–300 kilobasepair (kbp) genome. Herpesvirus’ genomes are also large with a size of up
to 235 kbp but they encode fewer proteins because they contain long repeat sequences. Ad
viruses in comparison are small with a genome of 26–45 kbp.

Ad virus-based vaccines
Of the family of adenoviridae, the genus mastadenoviruses is further divided into species
A–G, which contain the 54 human, as well as, the 7 simian Ad viruses. The Ad virus
genome is divided into immediate early (E1A), early (E1B, E2–4), and later transcription
units (L1–5) with the latter encoding the three major coat proteins hexon, fiber and penton
and minor coat proteins, such as protein IX (pIX). In order to attach to cells, most Ad
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viruses use the coxsackie adenovirus receptor, which is primarily expressed on epithelial
cells [9], but those of species B1 bind to CD46, a more ubiquitously expressed complement
component [10]. In general Ad vectors used as gene transfer vehicles are deleted in E1,
which renders them replication-defective, and hence safe, and reduces transcription of the
late genes, thus focusing immune responses onto the transgene product. Ad vectors are
commonly also deleted in E3, which allows for insertion of foreign sequences of up to 8.5
kb [11]. Pre-existing immunity to Ad viruses is problematic for vectors based on common
human serotypes, such as 5 or 26. Neutralizing antibodies, which depending on age and
geographic region, can be found in up to 90% of human adults [12], prevent transduction
and transgene product expression, which in turn reduces immune responses to the vaccine
antigen. This can be circumvented by the use of Ad viruses isolated from different species
such as chimpanzees [13]. Ad vectors induce potent inflammatory responses characterized
by production of cytokines, most notably IL-6 and type 1 interferons [14]. Pathogen
recognition receptors have not yet been conclusively identified for Ad viruses but studies
suggest that they engage a multitude of different receptors, some of which signal through
MyD88 or TRIF [15]. Ad vectors induce very potent CD8+ T and B cell responses and
modest Th1-like CD4+ T cell responses [4,13]. One of the most remarkable features of Ad
vector-induced immune responses is that they are very sustained with minimal contraction
of responding T cells, which for months largely remain at the effector/effector memory stage
[16]. This may reflect that Ad vectors, similar to wild-type viruses, persist mainly in T cells
and remain transcriptionally active. Another attractive feature of Ad vectors is that foreign
sequences can be incorporated into the capsid, which may facilitate induction of high
affinity B cell responses to antigens that are displayed in a repetitive and orderly fashion.
Small epitopes can be placed into the variable regions of hexon [17], the most abundant of
the capsid protein and the target of most Ad virus neutralizing antibodies; larger proteins can
be placed onto the C-terminus of the minor capsid pIX [18], which forms 4 trimers on each
of the 20 faces of the isocahedral Ad capsid.

Currently several Ad vectors are in clinical trials as vaccines for various infectious agents
and although efficacy has not yet been demonstrated, vectors have shown robust
immunogenicity in humans [19].

Herpesvirus vectors
Herpesviruses of both the alpha- and betaherpesvirenea subfamilies have been vectored. For
herpes simplex virus (HSV-1) recombinants, the DNA binding protein IPC8 was mutated or
ICP4, 27, 22, and 47 were deleted [20]. Either alteration renders the virus replication-
defective. For rhesus cytomegalovirus (rhCMV)-based vaccines, the transgene cassette was
inserted into an intergenic region between rh213–214 [21]. These vectors remained
replication-competent and established persistent infection in nonhuman primates. One would
expect the immunogenicity of either type of vaccine to be affected in humans by pre-
existing immunity to the wild-type virus [22,23]. The replication-defective HSV-1 vaccine
expressing antigens of SIV induced a robust T cell response in monkeys that rapidly
contracted into memory, while transgene product-specific B cell responses were modest.
When combined with a DNA vaccine, the HSV-1 vaccine lowered viral loads upon a high
dose challenge with SIV [24]. The rhCMV based vaccine in contrast induced a by far more
potent and sustained effector/effector memory CD8+ T cell response that provided partial
protection to SIV acquisition given repeated at low doses to the rectum [21]. Although these
results are very promising the use of replication-competent CMV vectors for mass
vaccination has to be viewed with caution. In humans CMV causes birth defects [25],
significant morbidity and mortality in immunocompromised individuals, and strong T cell
responses to CMV have been associated with immunosenescence and decreased life
expectancy [26].
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Recombinant vaccines based on RNA viruses
RNA viruses are in general small and less of their genome is devoted to evasion of immune
responses. In turn, they do not accommodate lengthy foreign sequences unless they are from
a related virus, and as such can replace an endogenous gene without loss of function. A
multitude of both negative and positive stranded RNA viruses have been vectored as
exemplified below for members of the Flaviviridea and Rhabdoviridea families, yellow
fever virus and vesicular stomatitis virus (VSV), respectively.

Yellow Fever virus-based vaccines
Yellow fever virus is a mosquito-borne RNA virus causative for yellow fever. A live,
attenuated vaccine based on the YF-17D strain is available and has proven to be one of the
most successful vaccines developed to date. YF-17D induces a strong innate immune
response by signaling through TLRs 2, 7, 8, and 9 [27]. Protection is primarily related to the
induction of neutralizing antibodies, although the vaccine also induces CD8+ T cells [28].
The viral genome is initially transcribed into a single polyprotein, which is then processed.
The viral envelope genes, prM and E, can be replaced with those of other flaviviruses, such
as Japanese encephalitis virus [8], dengue virus [29] or West Nile virus [30] resulting in fit
viruses that induce neutralizing antibodies to the new membrane proteins. Ongoing clinical
trials have shown both safety and immunogenicity for such recombinant vaccines [8].

VSV-based vaccines
VSV causes disease in livestock but no or only minor symptoms in humans. It has a single
stranded RNA genome that encodes five viral proteins. The magnitude of transcription
follows a gradient: genes at the 5’ end are expressed more abundantly than those at the 3’
end of the viral genome. Incorporation of a foreign glycoprotein-encoding gene leads to
formation of mosaic virus particles that express both the endogenous and the foreign
antigens [7]. VSVs are attractive as vaccine carriers because they can be grown to high
titers, are generally stable upon insertion of foreign sequences, and can be applied through
various routes due to their broad tropism. Neutralizing antibodies to VSV are rare in
humans, although one would expect them to be induced upon vaccination with a VSV
vector. Notwithstanding, alternative serotypes are available for booster immunizations. VSV
vectors have shown preclinical efficacy for a number of viruses including SIV/HIV
chimeras [31], influenza virus [32], and hepatitis B virus [33]. The first generation VSV
vectors, which were replication competent and established persistent infection [34], were
introduced into the central nervous system following intranasal inoculation. This
necessitated further attenuation of VSV vectors, which was achieved either by truncation of
the cytoplasmic domain of glycoprotein or by complete deletion of this gene [35]. These
modifications render the virus replication-defective and, therefore, safe, but unfortunately
affect the vectors’ growth parameters and reduce their immunogenicity.

Conclusion
The main disadvantage for all viral vector-based vaccines is pre-existing immunity and the
induction of vector neutralizing antibodies upon their initial use, which impairs their ability
to elicit potent primary or secondary responses, respectively. This can be overcome by the
use of viruses that do not circulate in humans, such as viruses that preferentially infect other
species, and by switching serotypes for booster immunizations. Alternatively, nanoparticles
complemented to TLR agonists have been shown to induce T and B cell responses [36] that
may equal in potency those of viral vectors as has to be further investigated. The main
advantage of viral vector-based vaccines is their high versatility; almost any virus can be
turned into a vaccine carrier. Each virus, through interactions with pattern recognition
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receptors of the innate immune system, induces a signature inflammatory response, which in
turn shapes the ensuing adaptive immune response to the vaccine antigen. In theory, for each
virus, the most suitable viral vector to induce correlates of protection with minimal risk to
the vaccine recipient could be selected. Once we further our knowledge of basic principles
that govern induction of the exact immune responses that provide protection to specific
viruses, theory may turn into practice.

Highlights

• Ad vectors are safe, easy to construct, and versatile. They persist at low-levels
and induce potent and sustained immune responses.

• Safety of herpesvirus vectors has not been assessed. They induce sustained
effector and effector memory CD8+ T cell responses.

• YF-based vaccines induce a potent innate immune response. They are both safe
and immunogenic in the clinic.

• VSV-based vectors are versatile, and easily constructed. Modifications to
enhance safety lead to reduced growth and immunogenicity.
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