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Abstract
Mood stabilizers that are approved for treating bipolar disorder (BD), when given chronically to
rats, decrease expression of markers of the brain arachidonic metabolic cascade, and reduce
excitotoxicity and neuroinflammation-induced upregulation of these markers. These observations,
plus evidence for neuroinflammation and excitotoxicity in BD, suggest that AA cascade markers
are upregulated in the BD brain. To test this hypothesis, these markers were measured in
postmortem frontal cortex from 10 BD patients and 10 age-matched controls. Mean protein and
mRNA levels of AA-selective cytosolic phospholipase A2 IVA (cPLA2), secretory (s)PLA2 IIA,
cyclooxygenase (COX)-2, and membrane prostaglandin E synthase (mPGES) were significantly
elevated in the BD cortex. Levels of COX-1 and cytosolic PGES (cPGES) were significantly
reduced in BD cortex relative to controls, whereas levels of Ca2+-independent iPLA2VIA, 5-, 12-,
and 15-lipoxygenase, thromboxane synthase and cytochrome p450 epoxygenase protein and
mRNA levels were not significantly different. These results confirm that the brain AA cascade is
disturbed in BD, and that certain enzymes associated with AA release from membrane
phospholipid and with its downstream metabolism are upregulated. Since mood stabilizers
downregulate many of these brain enzymes in animal models, their clinical efficacy may depend
on suppressing a pathologically upregulated cascade in BD. An upregulated brain AA cascade
should be considered as a target for future drug development and for neuroimaging in BD.
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Introduction
Bipolar disorder (BD) is characterized by recurrent depressive and manic episodes. It afflicts
about 1.5% of the United States population (1), increases the risk of suicide by
approximately 5–17 fold (2), and has multiple risk alleles consistent with a polygenic
inheritance (3). Recent studies suggest progressive brain atrophy and neuronal loss in BD
patients, with increased brain levels of proinflammatory cytokines, and evidence of
increased glutamatergic function and excitotoxicity (4–6). Some of these features are also
found in psychiatric and neurodegenerative diseases including schizophrenia (SZ) and
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Alzheimer disease (AD). However, patients with BD have many more features that overlap
with those of SZ patients (7,8), than with AD patients (9,10), such as an early onset, genetic
association and drug therapy.

Inflammation and excitotoxicity can activate many brain signaling pathways, including the
arachidonic acid (AA, 20:4n-6) metabolic cascade (11–13). For example, activation of the
cytokine interleukin (IL)-1 receptor cascade can increase expression of AA metabolizing
enzymes, including AA-selective cytosolic phospholipase A2 (cPLA2) (14-16), secretory
sPLA2 (16), and cyclooxygenase (COX)-2 (17), as well as transcription factors that regulate
gene transcription of these enzymes, particularly activator protein (AP)-2 and/or nuclear
kappa B (NF-κB). With regard to excitotoxicity, rats chronically administered a
subconvulsant dose of NMDAshowed an increase in brain AA turnover, protein and mRNA
levels of cPLA2 IVA, AP-2 DNA binding activity, AP-2α and AP-2β protein, and cytokine
levels (13,18).

AA is a nutritionally essential polyunsaturated fatty acid (PUFA) found mainly in the
stereospecifically numbered (sn)-2 position of membrane phospholipids, from which it can
be hydrolyzed by cPLA2 or sPLA2 (19). A portion of the AA released can be metabolized
into bioactive prostaglandin H2 (PGH2) by COX-1 or COX-2, to cytoprotective
epoxyeicosatrienoic acids by cytochrome p450 epoxygenase, or to cytotoxic leukotrienes by
lipoxygenase subtypes 5,12 and 15 (20). Bioactive PGH2 is converted to prostaglandin E2
(PGE2) by membrane prostaglandin synthase-1 (mPGES-1) or cytosolic prostaglandin
synthase (cPGES). PGH2 can also be converted to thromboxane A2 (TXA2) by thromboxane
synthase (TXS) (21) (Figure 1). Of the two COX isoenzymes, COX-1 is constitutively
expressed, whereas COX-2 is inducible (22,23). cPGES uses PGH2 produced by COX-1,
whereas mPGES-1 uses COX-2-derived endoperoxide (24). AA and its metabolites can
modulate signal transduction, transcription, neuronal activity, apoptosis, and many other
processes within the brain (25–27).

Lithium, valproic acid, carbamazepine and lamotrigine are approved by the FDA as “mood
stabilizers” for treating BD. Each of these agents, when given chronically to rats to produce
a therapeutically relevant plasma concentration, downregulate parts of the brain AA cascade,
including AA turnover in brain phospholipids (lithium, valproic acid, carbamazepine),
cPLA2 IVA and its transcription factor AP-2 (lithium and carbamazepine), acyl-CoA
synthetase (valproic acid), COX-1 (valproate), COX-2 (all four), and NF-κB (valproate)
(28–33). Chronic lithium and carbamazepine also prevent elevations of brain AA cascade
markers in rat models of neuroinflammation and excitotoxicity (34,35).

In view of the evidence linking excitotoxicity and neuroinflammation to BD (see above)
(11), and the inhibition rat brain AA metabolism by mood stabilizers, we hypothesized that
the AA cascade is upregulated in the BD brain. To test this hypothesis, protein and mRNA
levels of AA cascade enzymes (see above) were compared between postmortem frontal
cortex from 10 BD patients and 10 unaffected controls. We also compared expression of
Ca2+-independent iPLA2, which is selective for docosahexaenoic acid (DHA, 22:6n-3) in
membrane phospholipid (36), and of neuron-specific enolase (NSE), a marker of
postmortem tissue integrity in the absence of acute injury (37,38). The frontal cortex
(Brodmann area 9) was chosen for this study because functional and structural abnormalities
have been reported in this region in BD patients (5), and because relevant data on this region
have been published previously (11,38). Preliminary data on the subjects have been
published in abstract form (39).
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Materials and Methods
Post-mortem brain samples

The protocol was approved by the Institutional Review Board of McLean Hospital, and by
the Office of Human Subjects Research (OHSR) of the NIH (# 4380). Frozen postmortem
human frontal cortex from 10 BD patients and 10 age-matched controls was provided by the
Harvard Brain Tissue Resource Center (McLean Hospital, Belmont, MA) under PHS grant
number R24MH068855 to JS Rao. Age (years, control: 43 ± 3.5 vs. BD: 49 ± 7.2),
postmortem interval (hours, control: 27 ± 1.5 vs. BD: 21 ± 3.0), and brain pH (control: 6.6 ±
0.16 vs. BD: 6.7 ± 0.09) did not differ significantly between the two groups, whereas the BD
patients were exposed to various psychotropic medications as reported previously (Table 1)
(38).

Preparation of cytosolic and membrane fraction
Cytosolic and membrane extracts were prepared from postmortem frontal cortex of BD and
control subjects as previously reported (40). Frontal cortex tissue was homogenized in a
homogenizing buffer containing 20 mM Tris-HCl (pH 7.4), 2 mM EGTA, 5 mM EDTA,1.5
mM pepstatin, 2 mM leupeptin, 0.5 mM phenylmethylsulfonyl fluoride, 0.2 U/ml aprotinin,
and 2 mM dithiothreitol, using a Teflon homogenizer. The homogenate was centrifuged at
100,000g for 60 minat 4°C. The resulting supernatant-1 (S1) was the cytosolic fraction,
andthe pellet was resuspended in the homogenizing buffer containing 0.2% (w/v) Triton
X-100. The suspension was kept at 4°C for 60min with occasional stirring and then
centrifuged at 100,000g for 60 min at 4°C. The resulting supernatant-2 (S2) was the
membrane fraction. Protein concentrations in membrane and cytosolic fractions were
determined with Bio-Rad Protein Reagent (Bio-Rad, Hercules, CA). The membrane and
cytosolic fractions were confirmed using the specific markers, cadherin and tubulin,
respectively.

Western blot analysis
Proteins (50 μg) from the cytoplasmic and membrane extracts were separated on 4–20%
SDS-polyacrylamide gels (PAGE) (Bio-Rad). Following electrophoresis, the proteins were
transferred to a PVDF membrane (Bio-Rad). Cytoplasmic protein blots were incubated
overnight in Tris-buffered-Saline buffer, containing 5% nonfat dried milk and 0.1%
Tween-20, with specific primary antibodies (1:200 dilution) for the group IVA cPLA2,,
group IIA sPLA2, group VIA iPLA2, COX-1 (1:1000), COX-2 (1:500), cytochrome P450
epoxygenase, TXS, 5-, 12-, and 15-LOX (Cell Signaling, Beverly, MA) and NSE (1:10,000)
(Abcam, Cambridge, MA). mPGES-1 was determined using a specific (1:200) primary
antibody (Abcam). Cytoplasmic and membrane protein blots were incubated with
appropriate HRP-conjugated secondary antibodies (Bio-Rad) and visualized (Kodak,
Rochester, NY). Optical densities of immunoblot bands were measured using Alpha
Innotech Software (Alpha Innotech, San Leandro, CA) and were normalized to β–actin
(Sigma-Aldrich, St. Louis, MO) to correct for unequal loading. All experiments were carried
out twice with 10 controls and 10 post-mortem brain samples from BD patients. Values were
expressed as percent of control.

Total RNA isolation and real time RT-PCR
Total RNA was isolated from the frontal cortex using an RNeasy mini kit (Qiagen, Valencia,
CA). RNA integrity number (RIN) was measured using Bioanalyzer (Agilent 2100
Bioanalyzer, Santa Clara, CA). RIN values for control and BD were 6.9 ± 0.4 and 7.1 ± 0.5,
respectively (Mean + SEM). Complementary DNA (cDNA) was prepared from total RNA
using a high-capacity cDNA Archive kit (Applied Biosystems, Foster City, CA). mRNA
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levels of cPLA2, sPLA2, iPLA2, COX-1, COX-2, mPGES-1, cPGES, LOX-5, 12, 15, TXS,
cytochrome P450 epoxygenase and NSE were measured by quantitative RT-PCR, using an
ABI PRISM 7000 sequence detection system (Applied Biosystems). Specific primers and
probes for cPLA2, sPLA2, iPLA2, COX-1, COX-2, mPGES-1, cPGES, LOX-5, 12, 15, TXS,
and cytochrome P450 epoxygenase were purchased from TaqManR gene expression assays
(Applied Biosystems), and consisted of a 20X mix of unlabeled PCR primers and Taqman
minor groove binder (MGB) probe (FAM dye-labeled). The fold-change in gene expression
was determined by the ΔΔCT method (41). Data were expressed as the relative level of the
target gene (cPLA2, sPLA2, iPLA2, COX-1, COX-2, mPGES-1, cPGES, LOX-5, 12, 15,
TXS, cytochrome P450 epoxygenase and NSE) in the post-mortem BD patients normalized
to the endogenous control (β-globulin) and relative to the control (calibrator), as previously
described (42). All experiments were carried out twice in triplicates with 10 controls and 10
post-mortem brain samples from BD patients. The data were expressed as relative
expression of control.

Statistical Analysis
The data are presented as mean ± SEM. Statistical significance of means was calculated
using a two-tailed unpaired t-test. Power analysis was carried out according to Mitulsky
(1995). We have set α, the threshold for significance for two-tailed distribution, to 0.05 and
β, the power index to 20%. Pearson correlations were made between age, post-mortem
interval and pH of the frontal cortex, and mRNA levels of cPLAB2B, sPLAB2B, iPLAB2B,
COX-1, COX-2, mPGES-1 and cPGES in post-mortem brain from controls and BD patients
combined. A subgroup statistical comparison was performed on control, all BD subjects and
BD subjects that were on lithium medication using Bonferroni’s multiple comparison test, to
assess the effects of lithium on the molecular markers analyzed. A separate Bonferroni’s
multiple comparison test was made between control, all BD and BD subjects who died by
suicide, to determine whether suicide was a factor affecting gene and protein expression.
Statistical significance was set at p < 0.05.

Results
Upregulated protein and mRNA levels of cPLA 2, sPLA2 and COX-2

Mean protein levels of cPLA2 IVA and sPLA2 IIA were increased significantly (p < 0.01),
by 87% and 92% respectively (Fig. 2A and 2B), in BD compared with control frontal cortex,
whereas the mean iPLA2 protein level did not differ significantly between the groups (Fig.
2C). Mean mRNA levels of cPLA2 and sPLA2 were increased significantly in BD compared
with control brain by three-fold (p < 0.001) and six-fold (p < 0.01), respectively (Figs. 2D
and E), but iPLA2 mRNA was not significantly different (Fig. 2F). COX-2 protein and
mRNA levels were increased significantly by 82% (Fig. 3A, p < 0.01) and 3.4-fold (Fig. 3B,
p < 0.01), respectively, whereas COX-1 protein and mRNA were significantly decreased in
the BD cortex by 40% (p < 0.01, Fig. 3C) and 0.6 fold (p < 0.05, Fig. 3D), respectively.

Increased protein and mRNA levels of mPGES-1
Statistically significant increases were found in mPGES-1 protein (by 71%, p < 0.01, Fig.
4A) and mRNA (by 3.6 fold, p < 0.01, Fig. 4C) in samples from BD patients relative to
controls. cPGES was significantly decreased with regard to the levels of its protein (by 54%,
p < 0.01, Fig. 4B) and mRNA (by 0.76 fold, p < 0.01, Fig. 4C). There was no significant
difference in either the protein (Fig. 5A, B and C) or mRNA (Fig. 5D) level for LOX 5, 12,
15, TXS (Fig. 6A and D), or cytochrome P450 (Fig. 6B and E) between groups.

Mean protein and mRNA levels of NSE did not differ significantly between BD and control
brains (Fig. 6C and E).
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Power analysis and correlations with brain variables
Power analysis revealed that a sample size of 10 in each group is sufficient to detect a
difference of 20% between the two groups, based on our estimated mean and SD values (as
described in the material and methods). Pearson correlations between variables (age, PMI
and pH) and the mRNA levels from across all 20 brain samples (control and BD patients
combined) were not statistically significant (Table 2).

Bonferroni’s multiple comparison tests showed a significant decrease in AA cascade
markers (protein and mRNA) between controls and BD subjects, and controls and BD
subjects on lithium medication (p < 0.05). However, no significant changes in AA cascade
markers were observed between all BD subjects and the subgroup of BD subjects treated
with lithium medication. Similarly, both BD subjects and BD subjects who committed
suicide showed reduced AA cascade markers (protein and mRNA) relative to controls (p <
0.05). No significant differences were found between all BD subjects and the subgroup of
BD subjects who committed suicide, in AA cascade markers levels.

Discussion
In this study, mean protein and mRNA levels of cPLA2 IVA, sPLA2 IIA, COX-2, and
mPGES were significantly elevated in postmortem frontal cortex of BD patients compared
with controls. Protein and mRNA levels of COX-1 and of cPGES were significantly
reduced, whereas protein and mRNA levels of iPLA2, 5-, 12-, and 15-lipoxygenase,
thromboxane synthase, cytochrome p450 epoxygenase were not significantly altered. These
results are consistent with the hypothesis that the brain AA cascade is disturbed in BD. The
hypothesis is based on the observation that each of the four mood stabilizers approved for
treating BD, when given chronically to rats, downregulate AA turnover in brain
phospholipids and other markers of brain AA metabolism, and on evidence of
neuroinflammation and excitotoxicity associated with disease progression in BD, including
brain atrophy and cell loss, cognitive decline and symptom worsening (5,43–46), in BD.

An upregulated AA cascade may contribute to disease progression in BD in many ways
(47). For example, excess unesterified AA and lysophospholipids formed following AA
hydrolysis can induce apoptosis by damaging mitochondria (48), activating caspases-3 and
-9, releasing cytochrome C (49), decreasing expression of brain derived neurotrophic factor
(BDNF) (50), and reducing neuronal viability (51).

The increased expression of cPLA2 IVA, sPLA2 IIA and COX-2 in the BD brain may be
related to underlying excitotoxicity and/or neuroinflammation. An elevated brain glutamate/
glutamine ratio, increased glutamate concentration, and decreased levels of the NMDA
receptor subunits NR1, NR2A and NR3A, have been reported in the BD brain (41,42,52,53).
In this regard, studies have demonstrated that chronic subconvulsive NMDA administration
to rats reduced brain levels of NR1 and NR3A, increased AA turnover in brain membrane
phospholipids and increased protein and mRNA levels of cPLA2 IVA and sPLA2 IIA in the
brain (42). Increased Ca2+ entry into a cell via the glutamatergic NMDA receptor may
directly activate Ca2+-dependent AA-selective cPLA2 to release AA from membrane
phospholipids (34,54); chronic lithium, carbamazepine or valproate can inhibit this process
(34,35).

Neuroinflammation has been reported to activate AA cascade markers. For instance, the
exposure of rat astrocytes to bacterial lipopolysaccharide (LPS) was reported to increase
cPLA2 transcription via an AP-2 and NF-κB dependent manner (41,55). A rat model of
inflammation, caused by chronic LPS infusion into the cerebroventricular system showed an
increase AA incorporation and turnover within brain phospholipids, elevated concentrations
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of unesterified AA, PGE2 and other AA metabolites, and increased cPLA2 and sPLA2
activities (35,56). LPS infusion was also shown to increase IL-1β, TNFα, and beta-amyloid
precursor protein in activated microglia and astrocytes, resulting in degeneration of
hippocampal CA3 pyramidal neurons, and altered behavior (56–58). Cytokines formed
during inflammation have been reported to activate both cPLA2 and sPLA2 at astrocytic
cytokine receptors (19,59–61).

Excitotoxicity and neuroinflammation have been associated with upregulation of mPGES-1,
which is functionally coupled to COX-2 (24,62). Coupling is consistent with our finding of
increased expression of both mPGES-1 and COX-2 in the BD frontal cortex. On the other
hand, cPGES is coupled to COX-1, and the expression of both these enzymes was
significantly reduced in the BD brain. This is consistent with evidence showing that
products of COX-1 are selectively metabolized by cPGES (24,62). Decreased expression of
COX-1 and cPGES might be a compensatory response for increased expression of COX-2
and mPGES.

Consistent with an elevated AA metabolism in BD, studies have reported increased
hydrolysis of serum phospholipids (63–65) and increased levels of AA-derived
prostaglandins in saliva (66), cerebrospinal fluid (67) and serum (64) from BD patients. An
increase in AA cascade markers, including cPLA2 IVA, sPLA2 IIA and COX-2 protein and
mRNA were elevated in frontal cortex of n-3 PUFA deprived rats (42), which were shown
to exhibit BD-like behavioral symptoms (68). Expression of BDNF and cyclic AMP
response element binding (CREB) protein was also reduced in the n-3 PUFA deprived
animals (42).

The absence of a significant difference in iPLA2 expression in the frontal cortex between
BD patients and controls is consistent with unaltered iPLA2 activity in BD serum (69,70).
iPLA2 is thought to hydrolyze DHA from membrane phospholipids (71), and its expression
was not elevated in rat brain following either chronic NMDA administration or
cerebroventricular LPS infusion (35,42,56). There was no significant difference in other AA
and prostaglandin metabolism enzymes, such as P450 expoxygenease, 5-, 12-, and 15-LOX,
as well as TXS, between BD and control frontal cortex. These results suggest that increased
AA signaling is channeled into prostanoid synthesis, and is selective only to parts of the
brain AA cascade.

In parallel with BD, studies in schizophrenic patients have indicated an increase in brain
calcium dependent and independent PLA2 activity, as well as PLA2 IVA protein level in red
blood cells (72,73). Similar AA cascade changes also have been reported in postmortem
brains from Alzheimer disease (AD) patients, where excitotoxicity and neuroinflammation
are considered to play a role (74,75). In AD post mortem brain tissue, cPLA2 (76), sPLA2
(59), and COX-2 expression (77) are upregulated. Reduced cPLA2 expression ameliorated
cognitive deficits in a mouse model of Alzheimer disease (78). Thus, the changes noted here
may not be specific to BD, but may be generally related to excitotoxic and inflammatory
processes that occur in multiple chronic and progressive neurodegenerative and
neuropsychiatric disorders, including Alzheimer disease, Parkinson disease, schizophrenia
and unipolar depression (52,69,79).

Many but not all of the differences between the BD and control brain were in an opposite
direction to brain changes in rats chronically administered mood stabilizers. For example,
chronic lithium and carbamazepine was shown to decrease mRNA and protein levels of
cPLA2 IVA in rat brain while this enzyme’s expression was upregulated in the BD brain.
sPLA2 expression also was upregulated in the BD brain; chronic lithium did not reduce
sPLA2 expression in the normal rat brain (18), but prevented the upregulation that was
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caused by cerebroventricular LPS infusion (Basselin et al., unpublished results). Increased
expression of sPLA2 IIA in BD is consistent with reports of increased risk associated with
alleles for pancreatic PLA2 (80,81) and for the sPLA2 receptor in BD (3). However, COX-1
was reduced in the BD brain as well as in the brain of rats given chronic valproate (32),
whereas COX-2 was elevated in the BD brain but reduced by lithium, carbamazepine,
valproate and lamotrigine (18). Opposite changes in AA cascade markers in the BD brain
compared with the brain of rats treated with mood stabilizers may be the basis, in part, for
their efficacy in BD.

Levels of mRNA in either BD or control brains did not correlate significantly with
postmortem interval, brain pH, or subject age, and mean values of these parameters did not
differ significantly between the two groups. Nevertheless, the BD patients were exposed to a
variety of drugs not taken by the control subjects, which may have affected the results, since
antipsychotics and mood stabilizers can have neurotoxic effects when given chronically
(82,83). No statistical differences were found in all AA cascade genes studied in the present
study when the BD subjects were compared to the subgroup of BD subjects treated with
lithium. Also, no statistical significance was found when the BD subjects were compared to
BD subjects that died by suicide. This suggests that lithium or suicide do not have profound
effects on the studied AA cascade markers.

The limitation of the present study is non-availability of medical diagnosis at the time of
death, whether patients are in manic or depressive conditions. However, since several BD
patients died by suicide, they may have been in a depressed phase of their illness. Future
studies should examine AA cascade markers in brains from patients with schizophrenia (to
control for comparable drug exposure), or with unipolar (primary major) depression or
Alzheimer disease to test for disease specificity (84)

In conclusion, many markers of the AA cascade were significantly upregulated in
postmortem frontal cortex from BD patients. These changes may reflect neuroinflammation
and excitotoxicity, associated with cell death or drug exposure, or may be intrinsic to the
disease independent of these pathological processes. Some of these AA cascade markers
were downregulated in rat brain by chronically administered mood stabilizers, which may
account for their efficacy in BD. Accordingly, new agents that are shown to downregulate
the brain AA cascade in animal models could be considered for treating BD.

The results suggest that brain AA metabolism is elevated in BD, and this could be tested
directly with the help of positron emission tomography and [1-11AA] as a radioligand (85).
If correct, an increased AA image would be a biological marker of disease progression and
could be used to evaluate therapeutic efficacy. Increased brain AA metabolism has been
imaged in patients with Alzheimer disease using positron emission tomography (86), in
which cPLA2, sPLA2 and COX-2 were also found to be elevated in post-mortem tissue
(59,76,77).
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AP-2 activator protein-2

BD bipolar disorder

BDNF brain derived neurotrophic factor

cPLA2 cytosolic phospholipase A2

COX cyclooxygenase

DHA docosahexaenoic acid

iPLA2 calcium-independent phospholipase A2

LPS lipopolysaccharide

NF-κB nuclear factor kappa B

sPLA2 secretory phospholipase A2

NMDA N-methyl-D-aspartate

PGE2 prostaglandin E2

TXS thromboxane synthase

LOX lipoxygenase

NSE neuron-specific enolase
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Figure 1.
Schematic diagram of arachidonic acid cascade.
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Figure 2. Protein and mRNA levels of PLA2 enzymes
Mean cPLA2 (A), sPLA2 (B) and iPLA2 (C) protein (with representative immunoblots) as
percent of control in frontal cortex, from control (n = 10) and BD (n = 10) subjects. Data are
optical densities relative to that of β-actin. Mean mRNA as percent of control of cPLA2 (D),
sPLA2 (E) and iPLA2 (F) in frontal cortex from control (n = 10) and BD (n =10) subjects,
measured using RT-PCR. Data are normalized to the endogenous control (β-globulin) and
expressed relative to the control (calibrator), using the ΔΔCT method. Mean ± SEM, ** p <
0.01, ***p < 0.001.
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Figure 3. Protein and mRNA levels of COX enzymes
Mean COX-2 (A) and COX-1 (C) protein (with representative immunoblots) as percent of
control in frontal cortex, from control (n = 10) and BD (n = 10) subjects. Data are optical
densities relative to that of β-actin. COX-2 (B) and COX-1 (D) mRNA levels in the frontal
cortex from controls (n = 10) and BD patients (n = 10), measured using RT-PCR. Data are
normalized to the endogenous control (β-globulin) and expressed relative to the control
(calibrator), using the ΔΔCT method. Mean ± SEM, * p < 0.05, **p < 0.01.
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Figure 4. Protein and mRNA levels of PGES enzymes
Mean mPGES-1 (A) and cPGES- 2 (B) protein (with representative immunoblots) in control
(n = 10) and BD (n = 10) frontal cortex. Data are optical densities of PGES protein to β-
actin, expressed as percent of control. mRNA levels of mPGES-1 and cPGES-2 (C) in
postmortem control (n = 10) and BD (n =10) frontal cortex, measured using RT-PCR. Data
are levels of PGES in the BD patients normalized to the endogenous control (β-globulin)
and relative to control level (calibrator), using the ΔΔCT method. Mean ± SEM, ** p < 0.01.
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Figure 5. Protein and mRNA levels of lipoxygenases
Mean 5 LOX (A), 12 LOX (B) and 15 LOX (C) protein levels (with representative
immunoblots) in frontal cortex from control (n = 10) and BD (n = 10) subjects. Bar graphs
are ratios of optical densities of LOXs to that of β-actin, expressed as percent of control.
LOX mRNA (D) in postmortem frontal cortex from the control (n = 10) and BD (n = 10)
subjects, measured using RT-PCR. Data are levels of LOXs in BD normalized to the
endogenous control (β-globulin) and relative to the control (calibrator), using the ΔΔCT
method. Mean ± SEM.
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Figure 6. Protein and mRNA levels of thromboxane synthase, P450 epoxygenase and neuron
specific enolase
Mean TXS (A), P450 epoxygenase (B) and neuronal specific enolase (NSE) (C) protein in
postmortem frontal cortex from control and BD subjects. Bar graph is ratio of optical density
of each protein to that of β-actin, expressed as percent of control. TXS (D), P450
epoxygenase (E) and NSE mRNA (F) in postmortem frontal cortex from control (n = 10)
and BD (n = 10) subjects, measured using RT-PCR. Data are level in the BD brain
normalized to the endogenous control (β-globulin) and relative to control (calibrator), using
the ΔΔCT method. Mean ± SEM.
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