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Summary
A bootstrap based methodology is introduced for analyzing repeated measures/longitudinal
microarray gene expression data over ordered categories. The proposed non-parametric procedure
uses order-restricted inference to compare gene expressions among ordered experimental
conditions. The null distribution for determining significance is derived by suitably bootstrapping
the residuals. The procedure addresses two potential sources of correlation in the data, namely, (a)
correlations among genes within a chip (“intra-chip” correlation), and (b) correlation within
subject due to repeated/longitudinal measurements (“temporal” correlation). To make the
procedure computationally efficient, the adaptive bootstrap methodology of Guo and Peddada
(2008) is implemented such that the resulting procedure controls the false discovery rate (FDR) at
the desired nominal level.
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1. INTRODUCTION
Microarray gene expression studies are routinely conducted by researchers to understand
changes in expression of thousands of genes under various experimental conditions. In fields
such as agriculture, toxicology, cancer research, etc. a common problem of interest is to
investigate changes in gene expression over ordered categories. Some examples of ordered
categories include dose groups, time points, cancer stages etc. For example, Tamoto et al.
(2004) studied the changes in gene expression at various stages of esophageal cancer, while
Hamadeh et al. (2004) investigated the effect of Furon on the gene expression of rat liver at
various doses of the compound. In a time-course study, Blanding et al. (2007) investigated
the changes in gene expression in corn when the plants were exposed to different levels of
ultraviolet radiation. Frequently, a goal of such ordered categorical experimental designs is
to select statistically significant genes and to cluster them according to their patterns of
expression over the ordered categories. As described by several authors (e.g. Blanding et al.,
2007) such clusters provide insight into possible co-regulation or functional relationships
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among genes. For convenience, throughout this article we shall use the terms “ordered
categories”, “dose groups” and “time points” interchangeably.

A typical experimental design consists of a sample of n independent microarrays obtained in
the ith ordered category and each array consists of M probes representing several thousands
of genes. Thus the data derived from microarray experiments are typically high dimensional
(in several thousands) with relatively small sample size. This makes data analysis a
challenge as the usual notion of Type I error needs modification and classical methods of
analyses need to be modified suitably. The focus of this paper is the case when C, the
number of ordered categories, is “small” unlike the usual “long series” time course
experiments conducted in the context of cell-cycle experiments. There is no clear definition
for what is considered to be “large” or “small” although many authors have used C > 10 to
denote “large” (Conesa et al., 2006).

For convenience, throughout this paper we shall use the term “probe” and “gene”
interchangeably. Also, for convenience we assume that all categories have the same number
of subjects or experimental units n (i.e. same sample size). As usually done in other
traditional experiments, two types of microarray experiments are commonly conducted:
Design I: the samples are independent across ordered categories, and Design II: the samples
are correlated across ordered categories as in the case of longitudinal or repeated
measurement studies. It is important to recognize that there are two potential sources of
correlations. The first source is due to “within chip/intra-chip” correlation among genes.
This may be due to some artifact of how each chip was handled or may be due to the natural
correlation among genes at a given experimental condition (or category). This intra-chip
correlation structure can potentially exist in both Design I and in Design II. The second
source of correlation is the temporal correlation in the expression of a gene which arises in
Design II.

Due to the underlying correlation structures, statistical methods used for analyzing data from
the two designs are different. Numerous statistical and computational methods have been
proposed in the literature for analyzing time course gene expression data obtained under
Design I. Although some of these methods account for the intra-chip correlation, many do
not. Some popular methods of analyses for Design I include, the classical regression based
methodology (Liu et al., 2005, Conesa et al., 2006), splines based methods (Luan and Li
2003, 2004, Storey et al., 2005), order-restricted inference based methods (Peddada et al.,
2003, 2005, Hu et al., 2005, Simmons and Peddada, 2007, Liu et al. 2009), and Bayesian
methods (Ishwaran and Rao, 2003, 2005a, 2005b, Jensen et al., 2009).

As with any longitudinal study, the longitudinal microarray experiments provide an
opportunity for researchers to understand the changes in expression over time while
accounting for any subject effect. Also, such experiments allow the investigator to estimate
inter and intra individual variability in the gene expression. Recently Karlovich et al. (2009)
conducted a longitudinal microarray study of normal healthy men and women of different
ages to evaluate the changes in the gene expression in venous blood over a period of six
months. Their study confirmed that the expression of most of the important genes remained
stable during the six month period. In Ferre et al. (2007), the authors conducted a
longitudinal study to investigate the changes in gene expression over time in piglets that
were given intramuscular injections. Using the resulting gene expression data they identified
several pathways involved in post-injection muscle injury. Other interesting longitudinal
gene expression data sets may be found at the NCBI’s website:
http:/www.ncbi.nlm.nih.gov/projects/geo/.

Peddada et al. Page 2

J Indian Soc Agric Stat. Author manuscript; available in PMC 2011 October 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http:/www.ncbi.nlm.nih.gov/projects/geo/


Several methods have been proposed in the literature to analyze longitudinal gene
expression data utilizing ideas from linear mixed models or hierarchical Bayesian models to
describe the covariance structure. For example, based on Brumback and Rice (1998), Storey
et al. (2005) modeled the covariance structure using a linear mixed effects model based on
B-Splines. Karlovich et al. (2009) used the standard linear mixed effects model approach,
while Marot et al. (2009) extended the structural mixed model approach of Jaffrézic et al.
(2007) to longitudinal data.

It is important to note that the intra-chip correlations and temporal correlations may arise in
a complex unknown manner and hence are often difficult to model. As a result, often times
the correlation models are misspecified. For instance, it may not even be appropriate to
assume that all genes have the same temporal correlation structure due to potential
heterogeneity among genes. Consequently, it is important to have a methodology which is
robust to any hidden/correlation structure among the genes. Motivated by this requirement,
in this paper we use a simple bootstrap methodology that accounts for the above correlations
non-parametrically without making any modeling assumptions. The proposed methodology,
described in Section 2, uses order-restricted inference based test statistics introduced in
Peddada et al. (2003, 2005). It is designed to control the false discovery rate (FDR) at the
pre-specified nominal level. Results of a small simulation study are provided in Section 3.
The proposed method is illustrated in Section 4 using a published data set. Concluding
remarks and future research problems in this area are provided in Section 5.

2. ANALYSIS OF GENE EXPRESSION DATA USING ORDER RESTRICTED
INFERENCE
2.1 Notations and motivation

Let Yg,c,i denote the observed expression of the gth gene g = l,2, …, G, in the cth category, c
= 1,2, …, C, for the ith experimental unit, i = 1,2, …, n, with E(Yg,c,i) = μg,c. Throughout this
paper the terms “profile” and “pattern” will be used interchangeably. A gene g is said to
have a “flat” or constant profile across the categories if μg,1=μg,2= … =μg,C. This Profile will
be denoted by P0. Typically, researchers are interested in (a) identifying genes that do not
have a flat pattern profile across categories, and (b) clustering genes with similar profiles/
patterns. For example, μg,1 ≤ μg,2 ≤ … ≤ μg,c represents a non-decreasing pattern in gene
expression over the C ordered categories, whereas μg,1 ≤ μg,2 ≤ … ≤ μg,C ≥ μg,c+1 ≥ … ≥
μg,C represents an umbrella profile with peak at the cth category. In practice a researcher
may be interested in clustering genes that belong to a subset of patterns/profiles which can
be enumerated before performing the analysis. These patterns may typically consist of (i) a
non-decreasing pattern, (ii) umbrella patterns with peaks at c = 2,3, …, C−1, (iii) a non-
increasing pattern, and (iv) inverted umbrella patterns with minimum at c = 2,3, …, C −1.
Patterns such as cyclical patterns are of interest some times, but other irregular/arbitrary
patterns are not very common. Thus in this paper, and in the companion software that soon
will be released (ORIOGEN 3.0), we limit to monotonic patterns, umbrella patterns and
single cycle patterns and do not include other arbitrary patterns. Let the collection of all non-
null patterns be denoted by . Then, for each individual gene g one may consider testing the
following hypotheses using the classical likelihood ratio test (LRT) provided that the
structure of the true temporal covariance matrix is known:

Against
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(1)

However, even if one were to know the structure of the temporal covariance matrix, the
sample size is typically not large enough to use the asymptotic critical values. Furthermore,
it is important to note that such a test does not account for the within intra-chip correlation.
Hence one needs to use some version of a resampling procedure to test (1) for all genes.

A possible alternative approach to this problem is to use a parametric model to describe the
relationship between the mean expression μg,c and c. For example, in a time course
experiment or a dose-response study one may consider a regression model to describe the
relationship (cf. Liu et al., 2005) and impose a mixed model structure to account for
dependence in the data. However, such a model requires the experimenter to know a priori
the relationship between the two variables for all genes. Another alternative is to use
variations to splines with mixed models as in Storey et al. (2005). Such procedures are
generally attractive because of their simplicity but they induce a very specific dependence
structure that may not be correct and/or difficult to verify for all genes. Furthermore, such
model-based approaches may not be appropriate when c represents an ordered category,
such as “tumor stage”. For these reasons, Peddada et al. (2003, 2005) used order restricted
inference where profiles/patterns among the means are described in terms of mathematical
inequalities instead of a parametric model. Hence in this paper we continue with the
nonparametric methodology developed in Peddada et al. (2003, 2005) and in ORIOGEN
2.2.1, making no distributional or modeling assumptions and thus providing a large amount
of flexibility. As one would expect, a nonparametric procedure such as the procedure
proposed here will have smaller power than a parametric procedure when the underlying
model is correctly specified. However, since it is hard to justify a particular parametric
model in gene expression studies, a nonparametric procedure, such as the one proposed here,
may be preferable.

Corresponding to a given inequality pattern, two parameters are said to be linked if the
inequality between them is specified by the inequality pattern. For example, in an umbrella
pattern μg,1 ≤ μg,2 ≤ … ≤ μg,c ≥ μg,c+1≥ … ≥ μg,C the parameters μg,1,μg,2, …, μg,c are
linked to one another and similarly μg,c,μg,c+1, …, μg,C are linked to one another. However,
none of the parameters in the collection {μg,1, μg,2 μg,c−1}are linked to any of the parameters
in the collection {μg,c+1, … μg,C}. A parameter in a given inequality patterns is said to be
nodal if it is linked with all parameters { μg,1, μg,2, …, μg,C}. Thus in the above umbrella
pattern μg,c is the only nodal parameter, whereas in a non-decreasing pattern every
parameter is a nodal. For a given pattern P ∈ , using the estimators derived in Hwang and
Peddada (1994), we compute TP the studentized distance between the farthest linked
parameters in P. Thus for example, in the case of umbrella pattern P, μg,1 ≤ μg,2 ≤ … ≤ μg,c
≥ μg,c+1 ≥ … ≥ μg,C the statistic Tg, P is given by

(2)

where μ̂g,i,i = 1,2, … C, is the constrained estimator of μg,c under the constraint P derived
according to the Hwang and Peddada (1994) methodology, ignoring correlations in the data.
It is important to note that one could use restricted maximum likelihood estimators (RMLE)
of μg,c instead of the point estimators proposed in Hwang and Peddada (1994) (ignoring the
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correlation structure). Perhaps iterative algorithms along the lines of Shi (1994), Shi and
Jiang (1998) and Hoferkamp and Peddada (2002) may be developed to the present context
which not only estimate the mean parameters but also estimate the underlying covariance
matrix iteratively. Although in theory such an iterative algorithm may be appealing, it can be
computationally expensive. Furthermore, as noted in Hwang and Peddada (1994), the
RMLE need not perform well as an estimator for individual components of the mean vector.
For these reasons, we use the estimator proposed in Hwang and Peddada (1994), ignoring

correlations in the data. As usual,  denotes the pooled sample variance for the gth gene g =

1,2, … G. Again, one may replace  by the true standard error of the numerator in (2).
However, the derivation of such a quantity is not straightforward and since our test relies on
bootstrap the choice of the correct denominator is very important. As in Peddada et al.
(2003, 2005), for a gene g, the test statistic for testing (1) is defined as:

(3)

Thus neither in the computation of the order-restricted estimators, nor in the construction of
the above test statistic do we incorporate the underlying correlation structure. However, in
the spirit of the popular generalized estimating equations (GEE) methodology, the
correlation in the data will be accounted in the derivation of the bootstrap null distribution
(3), which is described in Section 2.2.

Once the null hypothesis is rejected for a gene g according to the methodology described in

Section 2.2, we assign it to the pattern P in  which corresponds to .

2.2 The bootstrap methodology
In Peddada et al. (2003, 2005) and in ORIOGEN 2.2.1, for a gene g, the null distribution of

 was derived by assigning simple random samples (with replacement) of size n,
from the combined sample of size n × C, to each ordered category and by computing the

statistic . The process was repeated a large number of times B which yielded the
null distribution for gene g. The above bootstrap methodology assumes that for a gene g,
under the null hypothesis, its expressions across the C categories are independently and
identically distributed. In the context of longitudinal data such an assumption is not valid.
Under the null hypothesis we can only assume that the means across categories are equal,
but cannot assume independence or that the variances are equal. A simple method to relax
these assumptions is by bootstrapping the residuals as shown below. Bootstrapping residuals
is widely used in literature because of the flexibility it provides to deal with heterogeneity in
the data (Efron and Tibshirani, 1993).

Let  denote the grand sample mean of the gth gene g = 1,2, …, G, averaged over all
experimental units and categories and let Ȳg,c denote its sample mean in the cth category, c =
1,2, …, C. Let ε ̂g,c,i = Yg,c,i −Ȳg,c,. denote the residual corresponding to the ith experimental
unit in the cth category. Let the jth simple random sample of n experimental units (with
replacement) from{l,2, …, n} be denoted by {j1, j2, …, jn}. Thus we are resampling the
experimental units. Then for gene g, the bootstrap sample that honors the null hypothesis

while maintaining any dependence structure in the data is given by , i =

1,2, …, n, c = 1,2, …, C. Using this bootstrap sample we construct the statistic 
which yields the bootstrap null distribution. Rather than fixing the number of bootstrap
samples B a priori, we use the adaptive bootstrap methodology of Guo and Peddada (2008)
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which reduces the total number of bootstraps while controlling the false discovery rate at the
desired nominal level α.

Although this manuscript is written for analyzing longitudinal gene expression data, the
residual bootstrap methodology described above is readily applicable for analyzing cross-
sectional ordered gene expression data when the variance of expression for a gene is not
constant across ordered categories (known as heteroscedasticity). Since the sample
experimental unit is not observed in all categories in a cross-sectional data, the above

bootstrap sampling scheme can be modified as follows. As above, let  denote the grand
sample mean of the gth gene g = 1,2, …, G, averaged over all experimental units and
categories and let Ȳg,c denote its sample mean in the cth category, c = 1,2, …, C. Let ε ̂g,c,i =
Yg,c,i − Ȳg,c,. denote the residual corresponding to the ith experimental unit in the cth

category. For the cth category, let jth simple random sample of n experimental units (with
replacement) from {1,2, …, n} be denoted by {jc,1 jc,2, …, Jc,n}. Thus we are resampling the
experimental units within each category separately rather than using the same set of
sampling units across all categories as was done above for the longitudinal data. Then for
gene g, the bootstrap sample that honors the null hypothesis while maintaining any

dependence structure in the data is given by , i = 1,2, …, n, c = 1,2, …,

C. Using this bootstrap sample we construct the bootstrap statistic  which yields
the bootstrap null distribution. Thus the proposed methodology is applicable for
heteroscedastic gene expression data.

3. SIMULATION STUDY
A simulation study was conducted to evaluate the performance of the proposed methodology
in terms of the control of false discovery rate (FDR) and the power in identifying the true
non-nulls. We compared our procedure with the EDGE procedure developed by Storey et al.
(2005). We generated data according to the following linear mixed effects model which is
somewhat consistent with the underlying assumptions of Storey’s methodology (Storey et
al., 2005).

Yg,c,i =θg,c + αi + εg,c,i, g = 1,2, …, G, c = 1,2, …, C, i = 1,2, …, n, where

(4)

(5)

Note that (4) induces intra-chip dependence as well as temporal dependence and (5) induces
heteroscedasticity. All random variables described above are assumed to be independently
distributed. We considered an experiment where microarray data were obtained on a random
sample of n = 6 subjects over C = 6 ordered categories. Each microarray chip consisted of G
= 16000 probes of which 12000 had null pattern (i.e., θg,c = 0 g = 1,2, …, 12000, c = 1,2, …,
6) and 4000 had non-null patterns described in Table 1. Each non-null pattern had 400
probes. Patterns of parameters in equations (4) and (5) that describe the variability and
correlation structure are provided in Table 2. Although a broad collection of patterns of
various parameters were investigated, we provide a small subset of our simulation study.
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A software package called ORIOGEN 3.0 was developed by SDP and programmed by SH
for the methodology described in this paper and is currently in use. We used this software
for simulations reported in this paper. The results are based on 10,000 bootstrap samples per
gene. The nominal FDR level was set at 0.05. Similarly, EDGE 1.1.291 was used to evaluate
the procedure of Storey et al. (2005). Throughout this paper EDGE 1.1.291 will be referred
to EDGE and ORIOGEN 3.0 will be referred to as ORIOGEN. Since EDGE uses q-values,
we evaluated EDGE at a nominal q-value of 0.05, which in our experience approximates an
FDR nominal level of 0.05. We implemented EDGE using 500 bootstrap samples.

Based on the results of the simulation study for the 8 cases summarized in Table 3 and
others (not reported in the paper) we find that the proposed methodology controls the FDR
at the nominal level of 0.05, although it can be conservative. In our experience its FDR
never exceeded the nominal level. Although the EDGE procedure of Storey et al. (2005)
enjoys larger power than the proposed methodology, it tends to have an inflated FDR
especially when there is a significant amount of heteroscedasticity among the null genes.

Note that in an ideal simulation study we should repeat this simulation for several thousand
random realizations for each case considered in Table 2. However, neither ORIOGEN nor
EDGE is designed to run a simulation study and it is practically impossible to run
ORIOGEN and EDGE one random realization at a time for a large number of times.
However, we arbitrarily selected case 3 in Table 2 and generated 5 sets of microarrays with
16000 genes each and ran ORIOGEN and EDGE 5 times each. The estimated FDRs and
powers for each of the 5 sets of random realizations are provided in Table 3 in the row
corresponding to case 3. From these numbers it is clear that the FDR estimates for
ORIOGEN and EDGE are fairly stable with standard deviations of 0.0085 and 0.0061,
respectively.

4. ILLUSTRATION
We also illustrate the proposed methodology by re-analyzing the data of Ferre et al. (2007).
They observed that patients receiving treatments/drugs by intramuscular (IM) injections may
experience some adverse reactions or outcomes. Among infants IM injections could lead to
serious complications. Since not much was known about the molecular pathways involved in
local skeletal muscle injury due to IM injections, Ferre et al. conducted a longitudinal gene
expression study using 10 male piglets weighing between 23 and 32 kg. Each piglet was
injected with 4ml of Propylene Glycol at 4 time points (6 hours, 2 days, 7 days, and 21 days
before sacrifice) in the lumbar region and cDNA microarrays were obtained using injected
muscles and the non-injected sites. Thus on each piglet 5 microarray chips were obtained,
one at the baseline and one each at 6 hours, 2 days, 7 days and 21 days before sacrifice,
respectively. In the analysis reported in their paper, Ferre et al. analyzed 1651 clones that
correspond to genes with known accession numbers. They discovered 324 genes to have
“variable expression” using a p-value of 0.0125. Of these 324, they found 153 to have a
differential expression with a fold change more than 1.5 (in either direction) in at least one
time interval. The standard t-test was used for making each pair-wise comparison between
neighboring time intervals. Using these results, a “global” pattern of expression for each
gene over the 21 day time interval was provided. Thus, among genes that were declared to
be significant, Ferre et al. were interested in identifying their pattern of expression over
time. Furthermore from the summaries provided in their paper, it seems that the authors
were interested in clustering genes with similar pattern of expression. Professors Lefebvre
and Liaubet, authors of the above publication, provided us the log-transformed normalized
gene expression data, which is also available at http:/www.ncbi.nlm.nih.gov/geo/. with GEO
accession number GSE3217, so that we may re-analyze the data using the methodology
described in this paper.
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Intrinsically Ferre et al. (2007) were interested in identifying the time course pattern for each
gene. For this reason, we considered the following patterns for each gene:

• Increasing pattern:

P1: μg,base ≤ μg,6hrs ≤ μg,2days ≤ μg,7 days ≤ μg,21days

• Umbrella pattern with peak at 6 hours:

P2:μg,base ≤ μg,6hrs ≥ μg,2days ≥ μg,7days ≥ μ g,21 day

• Umbrella pattern with peak at day 2:

P3: μg,base ≤ μg,6hrs ≤ μg,2days ≥ μg,7days ≥ μg,21days

• Umbrella pattern with peak at day 7:

P4: μg,base ≤ μg,6hrs ≤ μg,2days ≤ μg,7days ≥ μg,21days

• Decreasing pattern:

P5: μg,base ≥ μg,6hrs ≥ μg,2days ≥ μg,7days ≥ μg,21days

• Inverted umbrella pattern with minimum at 6 hours:

P6: μg,base ≥ μg,6hrs ≤ μg,2days ≤ μg,7days ≤ μg,21days

• Inverted umbrella pattern with minimum at day 2:

P7: μg,base ≥ μg,6hrs ≥ μg,2days ≤ μg,7days ≤ μg,21days

• Inverted umbrella pattern with minimum at day 7:

P8: μg,base ≥ μg,6hrs ≥ μg,2days ≥ μg,7days ≤ μg,21days

Thus for each gene g we tested H0: μg,1 = μg,6hrs = μg,2days = μg,7days = μg,21days) against the

alternative hypothesis Hg,a: (μg,base,μg,6hrs,μg,2days,μg,7days,μg,21days)′∈  where . If
the null hypothesis was rejected then the gene was assigned to the pattern Pj with the largest
goodness of fit statistic defined in (1).

Since multiple hypotheses were being tested, we selected significant genes at an FDR of
0.05 using 10,000 bootstrap samples. Our procedure discovered a total of 429 probes. In
Table 4 we provide the list of all genes selected by ORIOGEN according to the 8 different
time course patterns. In many cases multiple probes of the same gene were selected. In many
cases the probes of the same gene displayed different time course patterns of expression. In
Table 4 corresponding to each gene we provide the number of probes that were identified in
a given pattern. There were several probes for which the gene names were not known. The
plot of mean expression of each probe was plotted according to the pattern of expression.
These plots are provided in Figure 1.

Genes that were also identified by Ferre et al. (2007) are denoted by the asterisk (*) in Table
4. Interestingly, more than 85% of the genes identified by Ferre et al. were also identified by
our procedure. The gene expression patterns were also consistent between the two methods,
although the patterns shown by Ferre et al are less specific than the ORIOGEN patterns. For
example, the Ferre et al pattern indicated by a single down arrow followed by three
horizontal arrows could fall into any of the ORIOGEN patterns with a decreasing first
segment: overall decreasing pattern or any of the inverted umbrella patterns. Several genes
identified by our methodology were not identified by Ferre et al. (2007). These are also
provided in Table 4 without the asterisk. There were a few probes whose gene names were
ambiguous and hence were not listed in tables provided in this paper.
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A large proportion of genes selected by ORIOGEN displayed either an umbrella pattern in
expression with maximum at day 7 or an inverted umbrella with minimum at day 7. This is
interesting in view of the pathology findings reported in Ferre et al. (2007). On day 21, the
authors observed dense fibrous and collagenous tissues in the injected areas with re-
generating myocites, consistent with a repairing process following muscle injury. The top 10
biological functions (At FDR = 0.05) these genes involved in are provided in Figure 3 (using
Ingenuity Pathway Analysis). The lengths of horizontal bars represent the log-p value
associated with the category. As expected, these genes are largely involved in functions such
as skeletal muscle development, tissue morphology, tissue development etc. These results
are obtained using Ingenuity Pathway Analysis software (Ingenuity Inc.)

Ferre et al. (2007), who did not control for multiple testing, found only two genes to be
differentially expressed between day 7 and 21. Consequently, it is not surprising that in the
Principal Component Analysis (PCA) plot in Figure 2, based on genes with fold change
exceeding 1.5, day 7 and day 21 samples are clustered together. Samples from the remaining
time points seem to be well clustered according within their groups. Although we see two
potential outliers at the baseline which cluster with 6 hours time point. Here fold change for
a given pattern is defined to be the exponential of the mean distance between the farthest
linked points. For example, in the case of umbrella pattern with peak at 6 hours, for a gene
g, we define fold change as exp(max(μ̂g,6hrs − μ̂g,base, μ̂g,6hrs − μ̂g,21days)).

Our procedure did not identify 21 genes that were identified by the original authors (see
Table 5). However, it is interesting to see that according our test these genes had p-values
ranging from 0.012 to 0.392.

Note that there are several differences between the two methods. Firstly, the two methods
are testing different types of hypotheses and hence it is not surprising to find some
differences. Our method tests for trend in expression over time whereas the original authors
performed pairwise comparisons. Secondly, our method controls the overall FDR whereas
the original paper did not control for multiple testing. Lastly, our method accounts for the
heteroscedasticity, any correlations within chip and also accounts for within animal
correlation over time.

5. DISCUSSION
In this article we described a nonparametric bootstrap methodology based on the residuals
for analyzing gene expression data which accounts for potential correlations among genes
within a chip as well as temporal correlations due to repeated measurements on the same
subject. The proposed methodology uses order-restricted inference based techniques
developed in Peddada et al. (2003 in Peddada et al. (2006). A methodology is also proposed
which is suitable for cross-sectional data when the variance within gene is not constant
across ordered categories (heteroscedasticity). One could argue that it would be better to use
order restricted estimates that account for the underlying covariance matrices. However
there are three problems with that approach, firstly, as demonstrated in Hwang and Peddada
(1994), the classical restricted maximum likelihood estimators (RMLE) may fail even if the
covariance matrix is known. Secondly, typically the covariance matrix is unknown, and in
gene expression studies it needs to be estimated using substantially smaller sample size
relative to the number of genes. Thirdly, the correlation structure among the genes is
typically unknown to the researcher which makes it difficult to model. Our hope (which is
confirmed in our modest simulation study) is that bootstrapping the residuals results in a
methodology which is robust to underlying correlation structures. However, we do believe
that there is room for improvement in the proposed methodology and is worth exploring new
methods. For instance, one could explore modifications to the proposed nonparametric
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bootstrap by using a suitable parametric bootstrap. Secondly, the test statistic may be
modified by using a better denominator than used in this paper. Note that the standard
deviation used in the denominator is not a consistent estimator of the true variance estimator
of the numerator. Unfortunately, it is practically a challenging problem to derive the
moments of order restricted estimates. Consequently, we are using a pooled sample variance
estimator. In a bootstrap setting it may be reasonable to use such a scaling factor. However,
we believe there is an opportunity to improve the methodology by using a better scaling
factor than one used here. The resulting methodologies would have applications in the
analysis of other high dimensional data. It would also be interesting to extend the proposed
methodology to deal with designs with more than one explanatory variable, possibly some
having continuous covariates. The present framework would allow such generalizations,
although they may be non-trivial.
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Figure 1.
Time course plots of mean expression of all significant probes clustered according to their
pattern.
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Figure 2.
PCA plots based on probes selected by ORIOGEN with fold change larger than 1.5
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Figure 3.
Top ten biological functions of genes with umbrella or inverted umbrella pattern at day 7.
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Table 1

Patterns of mean expressions of non-null probes

Pattern name Mean vector (θ1, θ2, θ3, θ4, θ5, θ6)

Increasing (0,0.5,1,1.5,2,2.5)

Deceasing (0,−0.5,−1,−1.5,−2,−2.5)

Umbrella Peak at 2 (0,0.5,0,−0.5,−1,−1.5)

Umbrella Peak at 3 (0,0.5,1,0.5,0,−0.5)

Umbrella Peak at 4 (0,0.5,1,1.5,1,0.5)

Umbrella Peak at 5 (0,0.5,1,1.5,2,1.5)

Inverted Umbrella Min at 2 (0,−0.5,0,0.5,1,1.5)

Inverted Umbrella Min at 3 (0,−0.5,−1,0−.5,0,0.5)

Inverted Umbrella Min at 4 (0,−0.5,−1,−1.5,−1,−0.5)

Inverted Umbrella Min at 5 (0,−0.5,−1,−1.5,−2,−1.5)
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Table 3

FDR and Power comparisons between ORIOGEN and EDGE

Case ORIOGEN EDGE

FDR Power FDR Power

1 0.022 0.795 0.054 0.926

2 0.020 0.616 0.048 0.765

3 0.038*(.051, .035, .028, .041, .
036)

0.79*( .82, .81, .74, .80, .78) 0.091*(.096, .082, .097, .091, .
090)

0.918*( .919, .935, .912, .911, .
912)

4 0.043 0.640 0.098 0.712

5 0.015 0.937 0.052 0.989

6 0.020 0.774 0.051 0.918

7 0.027 0.940 0.080 0.988

8 0.033 0.774 0.085 0.916

*
average of the numbers that are in the parenthesis
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Table 4

List of selected genes clustered according to the pattern of expression.

Clones with decreasing pattern Clones with increasing pattern over time

Gene Gene Id Gene Gene Id

26S proteasome non-ATPase regulatory subunit 2 Psmd2 6-phosphofructokinase type C PFKP

Actin alpha skeletal muscle Acta1 (2) * 6S ribosomal protein L27a Rpl27a

Band 4.1-like protein 2 EPB41L2 * Calcyclin S1A6

Creatine kinase M chain CKM * Cell division protein kinase 4 CDK4

Cytochrome c oxidase polypeptide VIII heart
mitochondrial precursor

COX8H (2) * Collagen alpha 1 COL6A1 *

Collagen alpha 2 COL1A2 *

Fructose-bisphosphate aldolase A ALDOA (5) * DNA replication licensing factor MCM2 MCM2

Glyceraldehyde-3-phosphate dehydrogenase GAPD (2) * DNA-binding protein inhibitor ID-3 ID3

Glycerol-3-phosphate dehydrogenase [NAD+]
cytoplasmic

Gpd1 * Fibronectin FN1 *

Galectin-1 LGALS1 (2)

Glycogen phosphorylase muscle form PYGM * Histone H3.3

Importin 13 Ipo13 Homo sapiens annexin A2 ANXA2

Myosin heavy chain skeletal muscle juvenile MYH4 * Hydroxyacylglutathione hydrolase Hagh

Myosin light chain 1 skeletal muscle isoform MYL1 Ligand of Numb-protein X 2 Lnx2

Myosin light polypeptide 3 MYL3 Lipid phosphate phosphohydrolase 1 lipoprotein
lipase

PPAP2A
LPL

Myosin regulatory light chain 2, skeletal muscle
isoform

Mylpf (2) * Protein phosphatase 1 regulatory subunit 12A PPP1R12A

NADH-ubiquinone oxidoreductase MLRQ subunit NDUFA4 Septin 4 4 S E P

Phosphoglycerate mutase 2 PGAM2 (2) * Splicing factor 3B subunit 1 SF3B1

Protein C2orf142 homolog precursor C2orf142 Tumor suppressor p53-binding protein 1

Sarcoplasmic/endoplasmic reticulum calcium
ATPase 1

ATP2A1 * Tyrosine-protein kinase JAK1
Vimentine

JAK1 (2)

Selenoprotein W SEPW1 Zinc finger protein 14 ZNF14

Triosephosphate isomerase TPI1

Tropomyosin 1 alpha chain TPM1 (3) * Clones with minimum at 6 hours

Tropomyosin alpha 3 chain TPM3

Troponin C skeletal muscle TNNC2 * 72 kDa type IV collagenase precursor MMP2 *

Troponin C slow skeletal and cardiac muscles Collagen alpha 1 COL1A1 *

Troponin T fast skeletal muscle isoforms Collagen alpha 2 COL1A2 *

Troponin T slow skeletal muscle isoforms ? (3) Jerky protein Jrk

Pyruvate kinase isozymes M1/M2 secreted protein,
acidic, cysteine-rich

PKM2 *

Clones with peak at 6 hours Sus scrofa H19 gene SPARC *

4S ribosomal protein S16 Rps16 *

Ankyrin 1 Ank1 Clones with minimum at day 2
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Clones with decreasing pattern Clones with increasing pattern over time

Gene Gene Id Gene Gene Id

Ankyrin repeat domain protein 2 Ankrd2 (2) *

Ankyrin repeat domain protein 6 Ankrd6 * Actin alpha skeletal muscle Acta1 (4) *

BAG-family molecular chaperone regulator-3 BAG3 * Alpha-actinin 3 Acta3 (2) *

Cytochrome c oxidase polypeptide III MT-CO3 * Conserved oligomeric Golgi complex component 4 COG4

GTP-binding protein RAD RRAD * Creatine kinase M chain CKM *

Heat shock 7 kDa protein 1B HSPA1B * Enigma homolog Enh

Multisynthetase complex auxiliary component p38 JTV1 * Fructose-bisphosphate aldolase A ALDOA (2) *

Oligodendrocyte transcription factor 2 Olig2 Glycerol-3-phosphate dehydrogenase [NAD+]
cytoplasmic

Gpd1 *

Pantophysin SYPL *

Tyrosine-protein kinase JAK1 JAK1 Glycogen phosphorylase muscle form PYGM *

Ubiquitin-conjugating enzyme CDC34 Muscle type phosphofructokinase M-PFK *

E2-32 kDa complementing Myoglobin MB

Myosin heavy chain cardiac muscle beta isoform MYH7 (2) *

Clones with peak at day 2 Myosin heavy chain skeletal muscle adult 2 MYH2 *

Myosin heavy chain skeletal muscle juvenile MYH4 *

Adenylyl cyclase-associated protein 1 CAP1 Myosin regulatory light chain 2 ventricular/cardiac
muscle isoform

MYL2

Alpha crystallin B chain

Beta-2-microglobulin precursor B2M (2) * Myosin regulatory light chain 2, skeletal muscle
isoform

Mylpf *

Calgizzarin S1A11 Nebulin NEB *

Calnexin precursor CANX Phosphoglycerate mutase 2 PGAM2 (5) *

Calpain small subunit 1 CAPNS1 * Sarcoplasmic/endoplasmic reticulum calcium
ATPase 1

ATP2A1 *

Cofilin non-muscle isoform CFL1 (3) * Selenoprotein W SEPW1

Desmin DES * Triosephosphate isomerase TPI1 *

DNA repair protein RAD51 homolog 1 RAD51 Troponin C skeletal muscle TNNC2 (2) *

Dynein light chain 2A cytoplasmic Dncl2a Troponin T fast skeletal muscle isoforms beta/alpha ? (3)

Ferritin heavy chain FTH * Ubiquitin-like protein FUBI FAU

Ferritin light chain FTL (2) *

ferritin, heavy polypeptide 1 FTH1 Clones with minimum at day 7

Gamma-aminobutyric acid Gabarap

receptor associated protein 4S ribosomal protein S2 Rps2

Glia maturation factor gamma GMFG (2) * 5′ Nt5m

Heat shock protein HSP 9-alpha HSPCA * 6-phosphofructokinase muscle type PFKM

High mobility group protein 2 HMGB2 Actin alpha skeletal muscle Acta1 (32) *

Legumain precursor LGMN * Actin aortic smooth muscle Acta2
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Clones with decreasing pattern Clones with increasing pattern over time

Gene Gene Id Gene Gene Id

Peptidyl-prolyl cis-trans isomerase A PPIA * Adenylate kinase isoenzyme 1 AK1

Protein K4 Alpha-actinin 3 Acta3 (6) *

Tubulin alpha-ubiquitous chain ATP synthase delta chain mitochondrial precursor ATP5D

U4/U6 small nuclear ribonucleoprotein Prp3 Prpf3 (2) Band 4.1-like protein 2 EPB41L2 *

Beta enolase ENO3 (11) *

Clones with peak at day 7 Calsequestrin skeletal muscle isoform precursor CASQ1

26S protease regulatory subunit 6B Carboxy-terminal domain RNA polymerase II
polypeptide A small phosphatase 2

CTDSP2 *

6S ribosomal protein L18 RPL18 * Creatine kinase M chain CKM (16) *

ADP-ribosylation factor-like protein 7 Arl7 Cytochrome c oxidase polypeptide VIa-heart
mitochondrial precursor

COX6A2

Calmodulin CALM2

calponin 2 CNN2 Cytochrome c1 heme protein mitochondrial
precursor

CYC1

Co-chaperone protein HscB mitochondrial
precursor

HSCB FKSG26 protein FKSG26 *

Fructose-bisphosphate aldolase A ALDOA (6) *

Collagen alpha 1 COL6A1 * Glyceraldehyde-3-phosphate dehydrogenase GAPD (12) *

Elongation factor 1-alpha 1 EEF1A1 * Glycogen phosphorylase muscle form PYGM (4) *

Enabled protein homolog ENAH GPD;

Eukaryotic translation initiation factor 2 subunit 1 Eif2s1 Hypothetical protein B495.5 in chromosome II

Formin-binding protein 3 FNBP3 11Importin 13 IPO13

Guanine nucleotide-binding protein G GNB2 L-lactate dehydrogenase B chain LDHB

Heterogeneous nuclear ribonucleoprotein K Myomesin 2 MYOM2

IGF1; Myosin heavy chain cardiac muscle beta isoform MYH7 (2) *

Leukocyte elastase inhibitor SERPINB1 Myosin heavy chain skeletal muscle adult 1 MYH1 (7) *

Metastasis-associated protein MTA1 Mta1 Myosin heavy chain skeletal muscle juvenile MYH4 (9) *

Palmitoyl-protein thioesterase 2 precursor PPT2 Myosin light polypeptide 3 MYL3 (2)

Pig complement cytolysis inhibitor Myosin-binding protein C fast-type MYBPC2 (2) *

Pleckstrin 2 PLEK2 NADH-ubiquinone oxidoreductase 19 kDa subunit NDUFA8*

Potential carboxypeptidase-like CPXM2 Oxytocin receptor OXTR

protein X2 precursor Peroxiredoxin 2

Retinol dehydrogenase type III Phosphoglycerate mutase 2 PGAM2 (6) *

Retrovirus-related Pol polyprotein LINE-1 Pol Proteasome activator complex subunit 3 PSME3

S1 calcium-binding protein A16 S1A16 Protein C1orf8 precursor C1orf8

Syntaxin-1 STX1 Protein kinase C and casein kinase PACSIN3

TBC1 domain family, member 15 TBC1D15 substrate in neurons protein 3

Thiosulfate sulfurtransferase TST Protein phosphatase inhibitor 1 Ppp1r1a

Thymosine beta 4 TMSB4 * Sarcoplasmic/endoplasmic reticulum calcium
ATPase 1

ATP2A1 *

Tryptophanyl-tRNA synthetase WARS Sterol regulatory element binding protein-1 SREBF1
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Clones with decreasing pattern Clones with increasing pattern over time

Gene Gene Id Gene Gene Id

Tubulin alpha-3 chain TUBA3 Telethonin TCAP

Tropomyosin 1 alpha chain TPM1 (4) *

Troponin C skeletal muscle TNNC2 (22) *

Troponin I fast skeletal muscle Tnni2

Troponin T fast skeletal muscle isoforms ? (2)

Troponin T fast skeletal muscle isoforms beta/alpha

Ubiquitin-conjugating enzyme E2-32 kDa
complementing

CDC34

*
genes also identified by Ferre et al. (2007)

If the number of clones are more than 1 then the number is within parenthesis ( ) next to the Gene Id
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Table 5

Genes that were identified by Ferre et al. (2007) and not by ORIOGEN

Gene Name Gene ID
P-value according to

ORIOGEN

4S ribosomal protein S11 Rps11 0.146

4S ribosomal protein S15 Rps15 0.117

4S ribosomal protein S19 Rps19 0.392

4S ribosomal protein S26 Rps26 0.043

4S ribosomal protein S3 RPS3 0.045

4S ribosomal protein S5 RPS5 0.058

6S ribosomal protein L11 Rpl11 0.062

6S ribosomal protein L19 Rpl19 0.012

6S ribosomal protein L23a Rpl23a 0.046

6S ribosomal protein L8 Rpl8 0.069

Actinin alpha 3 ACTN3 0.068

ATP synthase alpha chain heart isoform mitochondrial precursor ATP5A1 0.062

Carboxypeptidase D precursor CPD 0.036

Cytochrome c oxidase polypeptide VIIa-liver/heart mitochondrial precursor COX7A2 0.015

Inhibitor of carbonic anhydrase precursor ICA 0.034

Major seminal plasma glycoprotein PSP-I precursor 0.027

NF-kappaB inhibitor-like protein 1 NFKBIL1 0.036

Nucleoprotein TPR TPR 0.060

Peptidyl-prolyl cis-trans isomerase like 2 PPIL2 0.017

Trifunctional purine biosynthetic protein adenosine-3 [Includes: Phosphoribosylamine--glycine
ligase

GART 0.021

Tropomyosin beta chain Tpm2 0.018
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