
AMASS: Algorithm for MSI Analysis by Semi-supervised
Segmentation

Jocelyne Bruand†,*, Theodore Alexandrov‡, Srinivas Sistla†, Maxence Wisztorski¶, Céline
Meriaux¶, Michael Becker§, Michel Salzet¶, Isabelle Fournier¶, Eduardo Macagno†, and
Vineet Bafna†

†University of California, San Diego, La Jolla, USA
‡University of Bremen, Bremen, Germany
¶FABMS, Université Lille 1, Villeneuve d’Ascq, France
§Bruker Daltonik GmbH, Bremen, Germany

Abstract
Mass Spectrometric Imaging (MSI) is a molecular imaging technique that allows the generation of
2D ion density maps for a large complement of the active molecules present in cells and sectioned
tissues. Automatic segmentation of such maps according to patterns of co-expression of individual
molecules can be used for discovery of novel molecular signatures (molecules that are specifically
expressed in particular spatial regions). However, current segmentation techniques are biased
towards the discovery of higher abundance molecules and large segments; they allow limited
opportunity for user interaction and validation is usually performed by similarity to known
anatomical features.

We describe here a novel method, AMASS (Algorithm for MSI Analysis by Semi-supervised
Segmentation). AMASS relies on the discriminating power of a molecular signal instead of its
intensity as a key feature, uses an internal consistency measure for validation, and allows
significant user interaction and supervision as options. An automated segmentation of entire leech
embryo data images resulted in segmentation domains congruent with many known organs,
including heart, CNS ganglia, nephridia, nephridiopores, and lateral and ventral regions, each with
a distinct molecular signature. Likewise, segmentation of a rat brain MSI slice data set yielded
known brain features, and provided interesting examples of co-expression between distinct brain
regions. AMASS represents a new approach for the discovery of peptide masses with distinct
spatial features of expression.
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1 Introduction
The use of multiple imaging techniques to assess the presence and location of specific
proteins in tissues and cells is central to the study of biological systems. Historically,
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successful approaches usually involved labeling one/few proteins at a time either by
attaching a fluorescent domain genetically or by treating a biological sample with labeled
antibodies, and then recording two-dimensional (2D) micrographs of the sample, possibly
also reconstructing them into a three-dimensional (3D) object or movie. Such imaging
techniques are low-to-medium throughput approaches and give the biologist insight into just
a small number of biological samples, limited to known proteins for which antibodies or
tagged forms are available. By contrast, there is an increasing number of imaging
technologies (transcriptomic or proteomic) that allow for the sampling and exploration of
the entire complement of active molecules in the cell.

Mass Spectrometric Imaging (MSI) is a molecular imaging technique which allows the
generation of 2D ion density maps for a large complement of the molecules present in the
tissue under study1. In the Matrix-Assisted Laser Desorption/Ionization (MALDI) MSI
workflow, thin tissue sections (10 – 15µm) from organs, or even whole dissected specimens,
are mounted onto a transparent glass slide, allowing microscopic observation of the material
prior to MS analysis. After deposition of the MALDI matrix, automated direct MALDI
analysis of tissue sections provides information on masses of the desorbed molecules in a
2D raster defined by the selected positions of the laser beam2. The studies performed by
various groups3–7 have demonstrated that acquisition of tissue expression profiles while
maintaining cellular and molecular integrity is feasible. With automation and new analysis
software, it has also become possible to produce multiplex imaging maps of selected bio-
molecules within tissue sections1,2,8. Molecules that are preferentially expressed in a region
of the sample will show higher intensities in that region when looking at the image
corresponding to the specific m/z value associated with the molecule. Discovery of these
molecules often involved observing the images for each mass value sequentially in a movie,
to short-list ones with interesting patterns.

Most bioinformatics approaches have focused on making the discovery process easier by
allowing computational queries of MSI data-sets. In previous work9, we started with a
supervised approach in which we assumed that the region of interest (ROI) is specified
based on pre-selected morphological criteria. As an example of an ROI, consider the central
nervous system (CNS) of the medicinal leech, Hirudo medicinalis, one of the best-studied
representatives of the phylum Annelida (segmented worms). Given a particular ROI, we
asked if (a) there were specific molecular signatures or collections of peptide mass values
that are specific to the ROI; and, (b) which peptides correspond to these masses. We
identified molecular signatures for many ROIs, including 43 m/z values in the CNS, and
identified 35 peptides, one of which was a novel member of the intermediate filament family
(which we named HmIF4), which appears to be involved in neural development.

By contrast, unsupervised approaches (no pre-specified ROI) seek to computationally
segment (or partition) MALDI spots into regions, each characterized by a specific molecular
signatures or profile. In most cases, the idea is to treat each MALDI spot as a vector of
expressed masses, and to apply unsupervised clustering techniques for segmentation.
Principal Component Analysis (PCA) and hierarchical clustering (HC) are classic non-
parametric clustering techniques, and have been used successfully for MSI10–13. Alexandrov
et al. argue that these methods do not take advantage of the spatial clustering of MSI spots
and develop a technique based on edge detection and smoothing11. While these clustering-
based methods show promising results, they need to be optimized both in memory and
runtime to be able to process the full MSI datasets which are typically large. For example a
data set acquired on 20000 MALDI spots with 40000 m/z values for each spectrum yields a
dataset of 800 million values (3.2GB). Typically, MSI datasets are reduced for processing
by decreasing mass resolution10,15, by applying a discrete wavelet transform16 to each
spectrum, or by explicit peak selection on each spectrum14,15. Normally, the peak-picking is
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performed at a pre-processing stage in a spectrum-wide manner based only on the intensity
and the shape of a potential peak. If a region of interest is characterized by a single (or a
few) peaks that are not among the most intense peaks in a region, these peaks may be
omitted during peak-picking, making the region indistinguishable from others. The standard
clustering approaches also does not rely on any a priori knowledge about tissue morphology.
Finally, unsupervised clustering-based segmentation methods are useful but limited in
providing a user an opportunity to go deeper into the data analysis. Most significantly, we
find in our investigations that segments overlap because they share peaks so it is important
to allow the user to make a reasoned choice.

In this paper, we address these issues explicitly. We start with the difficult question of what
constitutes a `good' segmentation. Prevailing methods implicitly equate good segmentation
to ones that match known morphological features of tissues observed through optical
methods10,12,14. While this validation is natural and provides direct visual feedback – indeed
we use it as one technique in this report (see Figures 4 and 5) – it has problems. Often,
molecules are expressed in multiple, morphologically distinct, regions. Segmenting images
so as to conform to known morphology will inhibit the discovery of novel molecular
signatures. Second, MSI resolution (20–70 µm) is still inferior to optical resolution (< 1 µm).
The potential of MSI is not as a replacement of optical methods, but to help identify the
molecular basis of morphological differentiation. Therefore, we judge image-segmentation
quality with alternative criteria based on molecular signatures.

A key finding of our previous work9 was that, given a region of interest (ROI) defined by an
image-segment (or collection of MSI spots) I, we usually obtain a strong molecular
signature for I, a collection of mass values that are preferentially expressed in spots in I.
Then, the spectrum of each spot s can be compared to the molecular signature associated
with I. We use this idea to judge the quality of segmentation. Informally, a segmentation is
consistent if each segment I has a unique molecular signature that is shared with all spots in
I and not with other spots. This consistency measure is independent of morphology, and
allows us to discover signatures that cross known morphological boundaries.

Using the molecular signature defined by I as a `query', we can recruit other spots to the
segment, refining the segmentation. Our method is reminiscent of iterative unsupervised
clustering methods, like a k-means clustering. It starts by choosing an initial segmentation,
each with a molecular signature (or `center'). Subsequent iterations repeat two steps: (a) each
spot is assigned to the nearest of the k signatures (based on a query) and, (b) k new
signatures are described from the recruited spots. Earlier methods consider each MALDI
spot as a vector of intensities over mass-bins, causing the clustering is dominated by high
intensity peaks. This has been typically circumvented by using scaling techniques, such as
autoscaling, which have their own problems. We propose a different representation of each
spot. Starting with a current image-segmentation ℐ, each spot is represented as an |ℐ|-
dimensional vector of query-scores to each of the segments in |ℐ|, where |ℐ| is the number of
clusters in the segmentation. Thus two spots are similar if they have similar scores against
all clusters. To start the algorithm we need an initial segmentation. In our case, the initial
segments can be chosen at random, or by partial user-input (semi-supervised). The initial
segments are chosen to be small groups (only a few) of contiguous spots, but otherwise no
spatial correlation is assumed.

In summary, three ideas describe AMASS (Algorithm for MSI Analysis by Semi-supervised
Segmentation). (a) Rank based statistics are a useful discriminator for any current cluster,
and this allows us to query. (b) Query-result consistency is a valid score for the validity of a
cluster. (c) The scores of a spot against existing clusters can be used to compare and re-
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partition spots. In addition, we make available a computational tool implementing the
algorithm which allows many other controls for user intervention.

We applied AMASS on multiple data sets, including a leech embryo data set obtained from
a 12-day (E12) specimen that was dissected and prepared flat before mounting on the
MALDI target, and a data set of a rat brain coronal section of 4.16 mm from Bregma with
known anatomical structures. We show in the detailed results below that, in each case, a
completely automated run provided fine-grained, biologically meaningful segmentations and
their molecular signatures. The leech dataset was segmented into regions corresponding to
head, tail and segmental ganglia of the central nervous system, nephridia, heart, and lateral
and ventral regions. The rat brain dataset was segmented into many domains corresponding
to well-defined anatomical regions, with some signatures corresponding to co-expression of
molecules in distinct morphological regions.

2 Results
2.1 AMASS: Algorithm for MSI Analysis by Semi-supervised Segmentation

The input to AMASS is a set of MSI spots S. Each spot in S is defined by a spectrum: a
collection of m/z values and associated intensities. Define an image-segment I simply as a
collection of spots. An image-segmentation ℐ (=⋃I) of an MSI data-set is an incomplete
partitioning of the spots into image-segments. By incomplete, we mean that each spot is
assigned to at most one image-segment, but could be assigned to none. The output of
AMASS is a segmentation ℐ = ⋃I into consistent segments such that most spots are
assigned. AMASS works with an iterative refinement of segments.

Procedure AMASS (S, spectra) → ℐ, A, molecular signatures

1. Select an initial image-segmentation ℐ, chosen either by the user, or via random
spot selection.

2. Repeat until (|S| < ε)

a. Calculate A = Query (ℐ).

(* A[I, s] denotes the score for spot s against each segment I ∈
ℐ*)

b. For all consistent segments I ∈ ℐ

(* see Methods 4.4, equation 10 for definition of consistency *)

• Output I ; Set S = S\I

(* A consistent spot is
fixed and output *)

c. Set ℐ ← Spot-partition(ℐ, A).

(* Recompute non-consistent segments based on scores in A *)

In practice, we iterate for a small number of rounds before terminating. The three main steps
are a choice of Initial segmentation, the Query procedure, and the Spot-partition, and these
are described below, along with results.

2.2 Initial Segmentation
The initial segmentation can be done in either a guided mode or in a blind mode. In a guided
mode, the user provides the initial clustering. Typically, it is a list of regions of interest
(ROIs) for which he/she would like to get additional information with spots outside the
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ROIs unassigned. Examples of guided initial segments are shown in Figure 2. The semi-
supervised component of the algorithm will then return additional information about the
segments or ROIs, specifically which areas have similar molecular signatures as well as the
actual molecular signatures. In a blind approach, the algorithm automatically generates a
large set of small random seed clusters. Subsequently, it merge and expand the appropriate
seeds. An example of such random segmentation is shown in Supplemental Figure 3a.

2.3 Querying
The goal of querying is to compute A [I, s], a log-odds measure of similarity between the
spectrum at a spot s and the molecular signature of spots in segment I. Denote the MALDI
spectrum (m/z values and intensities) associated with spot s by a vector of intensities vs;
vs[m] is the intensity at m/z value m (Methods 4.2). We use the following steps.

1. For each m/z value m and segment I, compute weight wI, with wI[m] describing the
`importance' of m in discriminating I from S\I (Methods 4.2, equation 6).

2. Compute a weighted-intensity Z(I, s) = wI·vs.

3. Optionally, smooth the weighted intensities image.

4. Compute Pr (s ∈ I) and Pr(s ∉ I) using the distribution of Z (I, s) over spots in I and
S\I, respectively (see Methods 4.2, equations 2 and 3)).

5.
Set 

To showcase AMASS's ability to work with user defined queries (initial segments), we
prepared queries informed by our knowledge of morphology. However, the queries were not
precisely defined, as seen in Figure 2a. For example, ventral and lateral regions were defined
by simple lines (for anterior, central and posterior) across the corresponding sections, while
three of the ganglia were queried independently.

For each query I, we show three consecutive images in Figure 2a. The first two panels
correspond to weighted-intensities Z (I, s) (before and after smoothing) and the third panel
corresponding to the log-odds score A[I, s] computed as above. In every case, the scored
images all highlight exactly the areas we would expect to see, illustrating the power of
querying. Queries that are fairly complete, such as the skin, essentially recapture the region
of the original query. Partial queries, such as the three single ganglia, each recover the entire
central nervous system.

Figure 2b shows the advantages and costs of smoothing. The granularity inherent in MALDI
imaging data is reduced by smoothing allowing for evenness in spot to spot weighted-
intensities. Larger regions, such as the ventral central region, benefit by coalescing
disjointed spots. This allows us to define unified regions in different section of the leech.
However, very small and finely defined regions, such as the nephridiopores, lose in accuracy
and localization. While we can see higher intensities in almost all the pores throughout the
leech in the non-smoothed image, only the highest intensity pores are detectable in the
smoothed image. We can also notice some diffusion of the signal in the CNS after
smoothing. Spatial smoothing is an important part of some MALDI imaging analysis
tools14. While AMASS provides smoothing as an option to reduce granularity, it is not used
in our final segmentation results.

In the log-odds score images, we contrast the negative scores and the positive scores by
showing them in green and red respectively (see scale in Figure 2). Thus, dark red spots in
these images represents spots with molecular signatures very similar to that of the original
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query, and thus are recruited by the query, while dark green spots represent spots that are
very unrelated. Partially related spots typically obtain scores closer to 0 (shown in pale
yellow to light orange). For example, querying with the ventral posterior region (Figure 2b),
expectedly results in partial recruitment across the entire ventral region including the ventral
anterior region, with the highest scores in the ventral posterior regions. Thus, while the
automated segmentation chooses a score threshold based on the distribution of the scores in
the original query (see Methods 4.3), we make this an adjustable parameter.

Random Queries—While the algorithm is designed to let the user guide the study by
choosing initial segments, choosing random spots as initial queries also results in a
remarkably high quality segmentation. In Supplemental Figure 1, we show several examples
of random seed-segments and the corresponding query-results, which are very similar to
user-defined queries from the same morphological region (such as the CNS). In addition,
query-results gain specificity in the next iteration as the new queries are based on molecular
signatures found from each current iteration. Regions that are only defined by a few spots,
such as the pores, are less likely to show on every random run; however, in general, several
runs of the algorithm on a random seeding eventually find that region (data not shown).

Molecular signatures—In Figure 2a, one can observe that while a query consisting only
of ganglion 4 recruits the entire CNS, more or less evenly, the query-results associated with
ganglion 14 show stronger association in the more posterior ganglia. Thus, there are some
differences in the molecular signatures associated with these queries in different regions
from the same gross morphological feature (i.e. CNS). This specific case can be attributed to
the rostrocaudal gradient in leech embryo development17. The head of the embryo is ~3 days
older than the tail, and thus the ganglia may show different protein expression depending on
their relative “age”. It is also possible that the differences reflect the innervation of different
organs along the rostrocaudal axis.

As AMASS is a query/molecular-signature based segmentation, we can easily extract the
molecular signatures associated with the query. As a test, we chose anterior ganglia 2–4, and
posterior ganglia 13–15, and extracted differentiating score peaks from the querying module.
In Supplemental Figure 2, we show the score peaks with weight greater than 0.7. Note that
these are the weight associated to the m/z value, and not the rank statistics. While many of
the m/z values show expression throughout the entire CNS, such as m/z ≈ 2524 and m/z ≈
5418, some m/z values show a bias in intensities between the anterior and posterior regions.
For example, at m/z ≈ 3299 and m/z ≈ 5273, high intensities values are present in ganglia 1–
10 and 1–12 respectively but not in the rest of the CNS. On the other hand, at m/z ≈ 4377,
high intensities are prevalent in posterior ganglia (8–14), but not anterior ganglia. These
molecules will be prime candidates for targeted identification of peptides involved in
specific stages of the leech neuronal development. In previous work9, we identified one of
the molecule in the table (m/z ≈ 2474) which shows expression in both the anterior and
posterior ganglia as a peptide from a novel gene, HmIF4, in the family of neurofilaments.
Similar targeted identification can be done to target peptides for m/z values specific to
anterior or posterior ganglia.

AMASS iteratively improves segmentation in a way that will create distinct molecular
signatures for each segment. To test the signature strength of specific molecules, we
observed the top 20 score peaks at least 10 Daltons apart for segments at successive
iterations in leech and rat respectively (Supplemental Figures 4 and 5). In both cases, we can
see that the peaks are overall conserved throughout the iterations. However, there are some
changes from one iteration to the next. For peaks m/z ≈ 3508, 5417, 5570, we find that the
weights increase with number of iterations while in peaks at m/z ≈ 3295 and 4007, the
weight is high for the ganglia 5–6 initial segment, much lower in iterations 1 and 2, and not
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even in the top peaks for the ganglion 14 initial segment. These changes happens as the
entire CNS is recruited to a segment starting with a single ganglion, and can be explained by
observing the intensity images in Supplemental Figure 2. Peaks m/z ≈ 3508, 5417, 5570
show high intensity throughout the CNS; peaks at m/z ≈ 3653, 4377, 8564 show up in
posterior ganglia, but not in the anterior ones. While m/z ≈ 8526 shows up as expressed in
both, its intensities are high in ganglia 2–4 but lower in ganglia 5–6. Thus the contribution
of individual peaks to the molecular signature, rises and falls with its expression in the
segment, and allows for a fine grained exploration.

Molecular signatures for different regions of the rat brain also show interesting patterns
(Supplemental Figures 6–11, as well as the corresponding m/z images in Supplemental
Figures 7 and 8). We observe that several of the m/z values specifically expressed in the
piriform cortex also show expression in the CA1-CA3 cell bodies, the CA3 cell bodies and
the dentate gyrus (m/z ≈ 3454, 6223, 6272, 6646 in Supplemental Figure 7). Reciprocally,
when querying the CA3 cell bodies, we find many of the same m/z values that also show
expression in the piriform cortex (m/z ≈ 6626, 6275, 6648). However, the two queries do not
share all peaks. There are many peaks from the piriform cortex query which do not show
expression in the CA3 cell bodies, and there is peak which shows very strong signal in the
CA cell bodies (m/z ≈ 8847) but no signal in the piriform cortex. The molecular relation
between the two areas may be due to both containing apical dendrites of pyramidal neurons
which are located in these regions. These shared peaks, illustrate the need for a tool that
allows exploration of different segments, instead of a `black box' approach to segmentation.

2.4 Spot Partitioning
Hierarchical clustering of query-results—The result of the querying component is a
matrix A [I, s] which contains the log-odds score of each spot s against each segment-query
I. Each row of the matrix represents the result of querying a segment I, while each column is
a vector of scores against each segment for a spot s. In Figure 3, we show the resulting
matrix from querying the previous initial segments on the leech dataset, with scores encoded
in a green-red color map. Spots are sorted by (x,y) coordinates; thus they are ordered from
the top-left spot to the bottom-right spot, scanning vertically from left to right. When
looking at the columns of the matrix, we can find columns with high scores throughout the
same query-results, corresponding to certain morphological features. For example, the first
four score images in the left column show higher log-odds scores in the CNS. The
corresponding rows (2–5) show several bundles of vertical red lines (highlighted in the
figure) which are consistent throughout the 4 rows and represent some of the ganglia. Some
of the anterior ganglia do not show as strong scores in row 5, consistent with the image.

When looking at either the log-odds score images or the corresponding rows, we can see that
the query-results from different segments are often very similar. This is expected as disjoint
segments from the same morphological feature will have similar molecular signatures and
thus MALDI spots will have similar scores against these segments. To merge these query-
results, we perform hierarchical clustering on the matrix rows, or query-result vectors A [I,
*] (Methods 4.3, equation 7), using the Tanimoto coefficient as a distance measure19. Here,
we cluster to a Tanimoto coefficient of 0.65, but empirically AMASS is robust to a large
range of thresholds. The left-side of Figure 3 shows images for query-results, while the
right-hand side shows the clustered results (with mean scores). Regions that covered the
same morphological features, such as CNS or lateral, ended up as one cluster, while regions
that are only partially similar, such as full-lateral vs. posterior-lateral, remain separate. Some
rows, such as the pores or the ventral regions, do not cluster with any other query-results and
are shown as clusters of size 1 on the right-hand side.
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Binary Signatures and Spot-partitioning—While the query-results clustering is
robust, we expectedly find overlapping regions in the clustered query-results (Figure 3). For
example, while some query-results cover the entire lateral region (last image on right-hand
side), others cover only the posterior lateral region (7th image on right-hand side). This
means that most spots in the posterior lateral region have high scores against two clustered
query-results. Recomputing the segmentation involves clustering the spots that have similar
pattern of scores across the current set of segments I. We do the following (also see Methods
4.3):

1. Set B = Binarize (A). Each distinct binary column bs is a binary signature (see
Methods 4.3, equation 8).

2. Choose a subset ℋ ⊆  of dominating signatures: signatures that are common to
many spots.

3. For each dominating signature b ∈ ℋ, calculate the center cb as the mean of spots
that binarize to b (see Methods 4.3, equation 9).

4. Reassign each spot s to the center arg min b‖as – cb‖2.

While the user has some ability to choose which binary signatures are to be maintained in
the interactive mode, the algorithm can automatically determine which binary signatures are
`dominating' (see Methods). Figure 4a describes the dominating binary signatures from the
first iteration. For example, column 4 of the matrix (dark green) describes the binary
signature for spots in the CNS ganglia (1 in rows 3, 4, and 0 elsewhere). Also, the last 3
columns (yellow, gold, orange) describe the ventral region (rows 15, 16). However, the
figure reveals the complexity of segmentation. These 3 binary signatures specify molecules
in the anterior ventral region only, in both the anterior and posterior ventral region, and the
posterior ventral region only, respectively. The `correct' segmentation could be obtained by
any combination of these 3 binary signatures. Moreover, if we look at the anterior ventral
region (row 15), we see representation from multiple signatures, including those from the
heart (column 19), and an undefined region (column 8), illustrating spatial distribution of
molecules that would not be apparent in a final segmentation. It is worth noting that there
are few spots in the heart only, thus resulting in binary signatures that cover both the heart
and the lateral region (columns 18 and 19). Similarly, there are two query-results covering
the head (row 1 and 2). Thus, in the resulting segmentation, the spots are divided between
those in the "inner" part of the head, present in both query-results (columns 2 and 3) and
those present in the "outer" part of the head, i.e. only in row 2 (column 14).

These dominating binary signatures are used to compute new centers. Figure 4b illustrates
the spots that matched exactly to a center signature. We can see that these centers already
reveal the major segments. The reassignment of spots to the center creates a new
segmentation (Figure 4c). In the next iteration, we use each of the segments of this new
segmentation as queries in the semi-supervised component, thus re-iterating through the
process described above. Subsequent iterations result in a refinement of the segmentation
(Figure 4d). The segmentation at the end of 4 iterations (run without any user intervention)
is highlighted (Figure 4e), and reveals the power of AMASS. Unlike other clustering
methods, the final segmentation clearly reveals small and large morphological regions
including ganglia, pores, brain, lateral, and ventral regions along with their molecular
signatures.

Similar results were obtained for the rat brain segmentation (Figure 5), with clear
demarcations of the morphology. Basic anatomy is provided for reference in Supplemental
Figure 13b. Specific initial queries behave as expected with a few surprises. In Figure 5, we
have separated the queries based on the brain the substructure to which they belong (cortex,
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thalamus, hippocampus, etc). The triplet of images associated with each query is composed
of the corresponding original query, the weighted intensity image and the log-odds score
image (outward towards the middle). When looking at the cortex queries, we can see that the
different upper cortex queries (retrospenial, parietal, primary somatosensory) all result in the
larger upper cortex region. However, the region demarcated as the auditory cortex
interestingly recruits a portion of the thalamus. The piriform cortex and amygdala, which are
related to the neocortex, show some signal in the cortex with the majority of the signal in
their respective regions. Interestingly, the paraventricular thalamic nucleus also shares a
similar molecular signature to that of the amygdala and the piriform cortex. Other parts of
the thalamus seem to split between two different regions; the lateral posterior thalamic
nucleus and the ventral posteromedial thalamic nucleus recruit one shared reqion, while the
ventral posteriolateral thalamic nucleus and the lateral geniculate nucleus recruit white
matter. The internal capsule, mamillothalamic tract and corpus callosum, which are part of
the white matter of brain which consists mostly of myelated axons, also recruit all white
matter regions of the brain. This suggests that there is a distinct molecular signature for
white matter, possibly due to myelin. As expected, all ventricles share the same molecular
signature, which in this case should correspond to that of the matrix, explaning the signal at
the edge of the sample. It is worth noting that some regions, such as the medial habenular
nucleus and posterior hypothalamic area, have very particular molecular signatures,
resulting in the recruitment of very specific regions. The middle panels describe the result of
hierarchical clustering after the first iteration. The two images in each cluster represent the
resulting average log-odd scores and the binary image after votes. The clustering step
behaves as expected, with the different cortex query-results ending up in one cluster and all
white matter query-results ending up in another. The bottom panels show the image-
segmentation results after subsequent iterations. The rat brain is segmented in the different
anatomical regions.

Finally, in Supplemental Figure 3, we show results for a completely random run on the leech
embryo data set. The algorithm automatically generated an initial random segmentation
(shown in panel a), composed of 100 seed-segments each consisting of a 1 to 3 adjacent
MALDI spots. We ran 10 automatic iterations of the algorithm, once using 3x3 median
smoothing, and once without any smoothing (panels b and c respectively). Segments
resulting from the random segmentation also show the major morphological features of the
leech and does not differ much from the guided approach. A few things to note are that the
distinction between the anterior ventral and posterior ventral regions of the leech is not as
well defined as in the guided approach, although it is still present. Also, in this specific run,
a part of the top body margin clustered with the ventral region of the leech. Moreover, the
nephridia, which have a weak signal, are not shown in this specific run, while the anterior
ones are maintained in the guided analysis. This is due to the fact that small regions of
interest do not show on every random run as there is a chance that no seed-segment is
generated in the region. However, we do see the nephridiopores in the non-smoothed version
of this specific run, signaling that a random segment must have been generated in one the
nephridiopore. Finally, it is worth noting that the smooth segmentation provides much
cleaner and more unified segments, but at the cost of some of the smaller segments, such as
the pores or some of the anterior ganglia, which are completely lost by the final
segmentation.

3 Discussion
MALDI imaging is rapidly becoming a technique of choice for surveying and discovering
proteins and peptides that have spatially distinct signatures of expression. The large multi-
dimensional nature of the data sets (expression of ~103 molecular species in ~104 spots)
makes the mining for knowledge difficult. Unsupervised approaches seek to segment the
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tissue section into regions, each with a distinct molecular signature. However, classical
segmentation techniques are often based on clustering molecules that have similar
expression patterns. The quality of segmentation is often judged by its congruence with
known morphology.

Here, we argue that these approaches do not work as well if there are small segments with
low to medium abundance mass values. Instead, we propose a semi-supervised approach
that ranks mass values by their spatial discrimination. Our results lead to consistent
discovery of very fine segments (organs with 2–3 spots at 50µm resolution). Also, our query
based techniques often reveal novel relationships, such as co-expression of molecules in the
auditory cortex and portions of the thalamus in rat brain.

The next step in the process, is the actual identification of peptides corresponding to the
molecular signatures. This remains a challenge even with progress in in situ trypsinization
and other MS/MS fragmentation techniques. Further refinement of the discover of molecular
signatures, and the identification of peptides will contribute to a novel tool for exploring the
role of molecules in specific cellular phenotypes.

4 Methods
We first acquire MS Imaging data on the animal/section. We convert the data into our own
lossless format and normalize it. As shown on Figure 1, the algorithm consists of two main
components: a semi-supervised component and a partitioning component. The semi-
supervised component performs a query for each of the original segments. It returns the
molecular signature specific to the segment, as well as all areas sharing similar molecular
signatures. The partitioning component assigns each spot to 0 or 1 cluster creating a
(potentially partial) segmentation map. After selection of initial clusters, the algorithm
iteratively runs these approaches fixing high-accuracy clusters along the way. While the
algorithm can be run in a completely automatic mode, the main goal is to provide the user
with easy control at each step of the way. Thus, it is possible for the user to choose which
clusters to fix, keep or discard at each iterations. This allows the user to fine tune the results
without “tweaking” parameters. The final output is a segmentation map with associated
areas and molecular signatures for each cluster.

4.1 Data Acquisition
Leech embryo—For the leech embryo analysis, we selected a specimen at stage E12 (12
days of development at room temperature), when the segmented nervous system and other
organs like the nephridia, have clearly defined boundaries and are in a sufficiently advanced
degree of molecular differentiation that specific signatures can be expected. The embryo was
opened along the dorsal midline and the yolk removed, then pinned flat, exposed for 1–2
min to methanol to harden the tissues, finally placed on metal-coated (ITO) glass slides with
the internal surface exposed and immediately dried. After recording transmitted light images
to document the gross morphology of the specimen, it was coated with several layers of
special solid ionic matrices (CHCA/Aniline), using a manual pneumatic TLC sprayer
(VWR, Strasbourg, France). Such matrices have proven to be very efficient for peptide/
protein analysis directly from tissue sections. MALDI direct analyses of tissues and MALDI
Imaging were performed on a MALDI-TOF/TOF instrument (Ultraflex II, Bruker Daltonics,
Germany) over 38837 m/z values from 12115 locations, generally sampling the embryo
completely in a rectangular raster of points 60 µm apart. We refer to previous work9 for a
more detailed description of the sample preparation. The complete data-set is a collection of
spectra, each associated with a `spot' on the leech surface. Conceptually, the data can be
represented as a collection of triples 〈m,s,I,m,s〉 describing the spectral intensity Im,s at each
spot s, and m/z value m. The spectral intensity depends upon the abundance of the molecular
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species among other factors. While the intensities of different molecules cannot be
compared directly, the relative intensity of the same molecule (mass value m) at different
spots is a measure of the relative abundance of the molecule.

Rat brain slice—Cryosections of 10µm thickness were cut on a cryostat (CM 1900 UV,
Leica Microsystems GmbH, Weltzar, Germany) and transferred to a precooled, conductive
indium-tin-oxide (ITO) coated glass slide (Bruker Daltonik GmbH, Bremen, Germany). The
sections were washed twice for 1 min in 70% ethanol, and once for 1 min in 96% ethanol
and then dried in a vacuum desiccator. The matrix (Sinapinic acid at 10 mg/mL in 60%
acetonitrile and 40% water with 0.2% trifluoroacetic acid) was applied using the ImagePrep
device (Bruker Daltonik GmbH) following a standard protocol. Mass spectra were acquired
on a MALDI-TOF instrument (Autoflex III; Bruker Daltonik GmbH) equipped with a 200
Hz smartbeam II laser. MALDI measurements were performed in linear positive mode at a
mass range of 2.5 kDa to 25 kDa. The lateral resolution for the MALDI image was set to
80µm. A total of 200 laser shots were summed up per position.

4.2 Query
We compute A:S × 2S → ℜ, where

(1)

The probability estimates are computed empirically. Consider a score function Z: S × 2S →
ℜ where Z(I, s) denotes the `score' of spot s against the segment I. The only requirement on
Z (see next subsection) is that the scores in I are higher than S\I, and well separated. We
estimate Pr(s ∈ I) by empirically computing the probability that a randomly chosen spot in I
would score lower than Z(I, s)

(2)

Likewise,

(3)

Weighted intensity scores—The spectrum acquired on spot s is a collection of m/z
values and intensities. We do a simplified peak selection, choosing the top 5 scoring m/z
values (averaged over a 1 Da window) in a scrolling window of 50 Daltons. The selected
peaks are represented by a vector vs, where vs[m] is the intensity at m/z value m. Second, we
compute a vector of weights wI, where wI[m] describes the `importance' of a peak at m in
separating spots in I from S\I. Intuitively a spot s belongs to I if wI and vs are correlated.
Therefore, we choose the weighted-intensity score function

(4)

In earlier work9, we computed the Wilcoxon-Mann-Whitney ρ-statistic. ρI[m] is a measure
of how well the peak at m separates spots in I from those in S\I. Formally, for randomly
chosen spots s ∈ I,t ∈ S\I

(5)
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While we could use ρI[m] directly as the weighting function, we choose

(6)

Here, ‖wI‖−1 is a normalizing constant. For ρ > 1, wI[m] increases sub-linearly, staying close
to 0 for intermediate values of ρI[m], and then increasing sharply to 1, thus allowing the
strongly discriminative m/z values to be sharply upweighted versus multiple low-
discriminating mass-values. As ρ increases, so does the weight of the top m/z discriminative
values, causing the query-result to be more specific to the original query.

Smoothing—Optionally, image smoothing may be applied on the weighted intensity
images in order to suppress the pixel-to-pixel variability. As shown in Alexandrov et al.14,
the advanced image smoothing methods applied to mass intensity images significantly
improve the segmentation results. In contrast to Alexandrov et al.14, we use simple median
smoothing (3x3 window).

4.3 Spot Partitioning
Hierarchical clustering—Since highly related queries return very similar results, we
cluster the rows of matrix A. We use hierarchical clustering with the Tanimoto coefficient as
a distance function between segments I1, I2, computing distance to the average log-odds
image in the case of clustered-segment.

We denote the clustered-segments as I′, and let I → I′ if and only segment I is clustered into
I′. We compute cluster-scores for spots as

(7)

Spot-vector binarization—We select a threshold score tI for each I based on the
distribution of scores in I and S\I. Intuitively spot s belongs to I if A[I, s]≥tI. Next we merge
the segments in C by taking a majority vote. Denote matrix B as a binary matrix with rows
corresponding to segment-clusters.

(8)

Dominating signatures as centers—The columns of B corresponding to spot s
describe a `binary-signature' for spot s. In the ideal case, strong segment-clusters should
have a unique signature and all spots contained in the cluster have the corresponding
signature. For each cluster, denote the most frequent signatures as dominating, if it has
sufficient frequency.

Spot partitioning—In the final step of the iteration, we use the dominating signatures to
determine cluster centroids and partition spots by assigning the remaining spots to these
clusters. Let a's denote the cluster-scores (A'[*,s]) for spot s. For each dominating signature
b, we define the associated set of spots Sb = {s: bs = b}. We then define a centroid cb for
each dominating signatures as the mean of the cluster-scores of spots

(9)
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We also add a zero centroid to the set, which is either the centroid of all spots not belonging
to any query-result if such spots exists, or a zero vector if there are no such spots. Each spot
s is reassigned to the closest centroid arg min b‖a′s–cb‖2. Overall, spot partitioning
corresponds to a single pass of k-means clustering, and provides the segmentation for the
next iteration.

4.4 Query consistency
We measure segmentation based on consistency of query (see Supplemental Figure 10). For
segment I, denote SI as the set of all spots such that A[I, s]≥tI. In the ideal scenario,
querying a segment will return all the spots in that cluster and only those spots (I = SI). We
use the Jaccard similarity coefficient to measure consistency of I as

(10)

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Main workflow overview. First, we need an initial image- segmentation, which can either be
defined randomly or by the user. In the querying component, each of the segment from the
image-segmentation is used as a query and top-scoring m/z peaks are retained. A log-odds
score is calculated for each spot and each query; this score represents the likelihood of a spot
belonging to that query. The resulting set of scores per query forms a set of query-results.
These are used as input to the spot partitioning component. In this component, the highly
similar query-results are clustered together. We then obtain binary signatures for each of the
spots and retain the dominating ones as cluster centroids. Clustering the all spots to the
closest centroid results in a new image-segmentation. The whole process can be run
iteratively until the quality of the segmentation is satisfactory.
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Figure 2.
(a) List of queries and their associated results. Shown are on each row the original query, the
corresponding weighted intensities image, the smoothed weighted intensities image and the
log-odds scores image. Querying with specific image-segments results in the recruitment of
other spots with similar molecular signatures. For example, querying with one ganglion or a
few pores recruits the whole CNS or the rest of the pores respectively. (b) Detailed images
for 3 different queries. We can see that while smoothing helps in cleaning noise on larger
queries such as the ventral query, it can also cause the loss of some MALDI spots in the case
of smaller regions, such as the pores.
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Figure 3.
Log-odds score matrix and hierarchical clustering. Each row of the matrix represents a
query-result, with some of the corresponding log-odds images shown on the left-hand side.
Spots are sorted by (x,y) coordinates; thus they are ordered from the top-left spot to the
bottom-right spot, scanning vertically from left to right. When looking at the columns of the
matrix, we can see high-scoring columns throughout several rows corresponding to specific
morphological features, such as the ganglia in rows 2–5. Certain rows of the matrix also
show very high similarity. These rows are clustered together and the result clustered query-
result image is shown on the right-hand side. Rows (or query-results) that do not show high
similarity to other rows end up in singleton clusters.
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Figure 4.
Binary spot signatures and leech segmentation maps. a) The dominating binary signatures.
Each row represents a clustered query-result and each column represents a selected binary
signature. Regions of interest may show some overlap. For example, the centroid for the
heart (columns 18 and 19) also shows expression in the lateral region (row 7) thus resulting
in binary signatures containing 1's in both rows 7 and 12. b) Spots corresponding to each of
these binary signatures. These are used as centroid for clustering. These centers already
reveal the major segments. c) New image-segmentation resulting from the reassignment of
spots to the closest centroids. d) Refinement of the segmentation over subsequent iterations.
e) The segmentation at the end of 4 iterations (run without any user intervention).
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Figure 5.
Results for the rat brain slice dataset. Basic anatomy is provided for reference in
Supplemental Figure 13b. The triplet of images associated with each query is composed of
the corresponding original query, the weighted intensity image and the log-odds score image
(outward towards the middle). The middle panels describe the result of hierarchical
clustering after the first iteration. The two images in each cluster represent the resulting
average log-odd scores and the binary image after votes. The bottom panels show the image-
segmentation results after subsequent iterations. The results show clear demarcations of the
morphology.
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