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Abstract
Background and Objective—Hyperdopaminergic signaling and an upregulated brain
arachidonic acid (AA) cascade may contribute to bipolar disorder (BD). Lithium and
carbamazepine, FDA-approved for the treatment of BD, attenuate brain dopaminergic D2-like (D2,
D3, and D4) receptor signaling involving AA when given chronically to awake rats. We
hypothesized that valproate (VPA), with mood-stabilizing properties, would also reduce the D2-
like-mediated signaling via AA.

Methods—An acute dose of quinpirole (1 mg/kg) or saline was administered to unanesthetized
rats that had been treated for 30 days with a therapeutically relevant dose of VPA (200 mg/kg/day)
or vehicle. Regional brain AA incorporation coefficients, k*, and incorporation rates, Jin, markers
of AA signaling and metabolism, were measured by quantitative autoradiography after intravenous
[1-14C]AA infusion. Whole brain concentrations of prostaglandin (PG)E2 and thromboxane
(TX)B2 also were measured.

Results—Quinpirole compared to saline significantly increased k* in 40 of 83 brain regions, and
increased brain concentrations of PGE2 in chronic vehicle-treated rats. VPA treatment by itself
reduced concentrations of plasma unesterified AA and whole brain PGE2 and TXB2, and blocked
the quinpirole-induced increments in k* and PGE2.

Conclusion—These results further support our hypothesis that similar to lithium and
carbamazepine, VPA downregulates brain dopaminergic D2-like receptor-signaling involving AA.
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1. Introduction
Valproate (2-propylpentanoate, VPA) has a wide clinical spectrum of use in both psychiatric
and neurological disorders. It is one of the most frequently used antiepileptic drugs, has
mood-stabilizing properties in the treatment of acute mania (Bowden, 2009), and might be
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effective for the reduction of depressive symptoms of acute bipolar depression (Smith et al.,
2010; Wang et al., 2010). Despite more than 40 years of clinical use, the mechanism(s) of
action of VPA in bipolar disorder (BD) is still not fully understood. It is well known that
VPA exerts multiple pharmacological effects, and has been found to affect glycogen
synthase kinase-3 (GSK-3), the Wnt/β-catenin pathway, the extracellular signal-regulated
kinase (ERK) pathway, γ-aminobutyric acid (GABA)ergic neurotransmission, N-methyl-D-
aspartate (NMDA) glutamatergic signaling, pre- and post-synaptic dopamine (DA)
neurotransmission, voltage-gated sodium and T-type calcium channels, histone acetylation,
and brain lipids and their metabolism (Basselin et al., 2008a; Montezinho et al., 2006; Phiel
et al., 2001; Rapoport et al., 2009; Yatham et al., 2002). In addition, VPA is neuroprotective
in several models of neurodegenerative diseases (Monti et al., 2010; Monti et al., 2009).

Hyperdopaminergic neurotransmission is suggested to be involved in the pathophysiology of
mania in BD (Berk et al., 2007; Cousins et al., 2009; Diehl and Gershon, 1992; Goetz,
1997). Reports show that administration of drugs that inhibit DAergic transmission
(haloperidol, chlorpromazine) has antimanic action whereas drugs that stimulate DA
synthesis (levodopa), bind to D2-receptors (bromocriptine) or reduce DA reuptake
(amphetamine) often precipitate mania (Anand et al., 2000; Cipriani et al., 2006; Peet and
Peters, 1995). In this context, psychotic BD brains show higher D2 receptor expression in
the caudate and prefrontal cortex (Feng, 2008; Pearlson et al., 1995) and genetic studies
have linked the DA reuptake transporter (DAT) and BD (Greenwood et al., 2001;
Greenwood et al., 2006), with a DAT mutation causing inhibition of the transporter cell
surface expression being associated with BD (Horschitz et al., 2005). Furthermore, analysis
of postmortem cortex from BD patients shows significantly elevated levels of the neuronal
calcium sensor-1 (NCS-1), which inhibits D2 desensitization/internalization (Kabbani et al.,
2002; Koh et al., 2003), changes in the levels of DA and cyclic adenosine 3’:5’-
monophosphate-regulated phosphoprotein of relative molecular mass 32,000 (DARPP-32)
(Ishikawa et al., 2007; Zhan et al., 2011), and decreased protein and mRNA levels of DAT
(Rao JS and Rapoport SI, unpublished data).

Dopaminergic D2-like (D2, D3, and D4) receptors in brain can be coupled via a Gαi/o-
protein to Ca2+-dependent cytosolic phospholipase (cPLA2 , EC 3.1.1.4), which when
activated releases arachidonic acid (AA, 20:4n-6) from the stereospecifically numbered
(sn)-2 position of synaptic membrane phospholipid (Clark et al., 1995; Nilsson et al., 1998;
Ong et al., 1999; Vial and Piomelli, 1995). AA is an important second messenger in brain
with multiple effects, and a precursor of bioactive eicosanoids such as prostaglandin E2
(PG)E2 (Rapoport, 2008). Markers of the AA cascade have been reported to be abnormal in
BD (Kim et al., 2011; Noponen et al., 1993). The brain AA signaling can be measured in
unanesthetized rodents by infusing radiolabeled AA intravenously, quantifying integrated
plasma radioactivity, using quantitative autoradiography to determine regional brain
radioactivity due to tracer AA incorporated in membrane phospholipid, then applying a
mathematical model to calculate AA incorporation coefficients and rates, k* and Jin,
respectively (Rapoport et al., 2001; Robinson et al., 1992). Since the AA lost after release
and metabolism cannot be synthesized de novo from 2-carbon fragments, or elongated
significantly (< 1%) from its shorter chain polyunsaturated precursor, linoleic acid (18:2n-6)
(Demar et al., 2006; Holman, 1986), k* and Jin for AA represent net AA consumption
following release from phospholipid.

We previously showed using the intravenous infusion method that acute administration to
unanesthetized rats of quinpirole (1 mg/kg, D2-like receptor agonist) (Seeman and Van Tol,
1994), amphetamine or apomorphine (D1/D2 receptor agonist), but not the D1-like receptor
agonist, SKF-38393, increased k* and Jin for AA in many brain regions rich in D2-like
receptors, and that the increases could be blocked by pre-administration of a D2-receptor
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antagonist (e.g. butaclamol, raclopride) or of each of the two FDA-approved antimanic
mood stabilizers, lithium and carbamazepine when given chronically (Basselin et al., 2005;
Basselin et al., 2008b; Bhattacharjee et al., 2005; Bhattacharjee et al., 2006, 2008;
Hayakawa et al., 2001). Each mood stabilizer downregulated brain AA turnover and/or
reduced levels and activities of essential enzymes and metabolites of the brain AA cascade
(Bazinet et al., 2006; Bosetti et al., 2002; Chang et al., 1996; Ghelardoni et al., 2004; Rao et
al., 2007; Rao et al., 2005).

VPA also is approved as an antimanic mood stabilizer for BD, and when given chronically
reduces AA turnover within brain phospholipids and decreases activity and concentrations
of cyclooxygenase (COX) and its metabolites, respectively (Bosetti et al., 2003; Chang et
al., 2001). We hypothesized that chronic administration of VPA to produce therapeutically
relevant plasma levels, also would block the quinpirole-initiated AA signal and other AA
cascade markers in rat brain. We applied our established in vivo fatty acid and activity
methods, and measured AA incorporation coefficients ,k*, and rates, Jin, in each of 83 brain
regions after acutely giving saline or quinpirole (1 mg/kg) to unanesthetized rats that had
chronically received VPA (200 mg/kg/day, i.p) or vehicle for 30 days. Whole brain
concentrations of prostaglandin PGE2 and thromboxane (TX)B2 were also measured.

2. Material and methods
2.1. Animals and Diets

Two-month-old male Fischer CDF 344 rats (Charles River Laboratories, Wilmington, MA)
were acclimated for 1 week in an animal facility with regulated temperature, humidity and
light cycle, and had free access to food and water. The diet (Rodent NIH-31 auto 18-4 diet,
Zeigler Bros, Gardens, PA) contained (as % of total fatty acid) 20.1% saturated, 22.5%
monounsaturated, 47.9% linoleic, 5.1% α-linolenic, 0.02% AA, 2.0% eicosapentaenoic, and
2.3% docosahexaenoic acid (Demar et al., 2006). Experiments were conducted following the
“Guide for the Care and Use of Laboratory Animals” (National Institutes of Health
Publication No. 86-23) and were approved by the Animal Care and Use Committee of
Eunice Kennedy Shriver National Institute of Child Health and Human Development. All
efforts were made to reduce the number of animals used and to minimize animal suffering.

2.2. Drugs and Tracers
Radiolabeled [1-14C]AA in ethanol (53 mCi/mmol, >98% pure, Moravek Biochemicals,
Brea, CA) was evaporated and resuspended in HEPES buffer, pH 7.4, containing 50 mg/ml
fatty acid-free bovine serum albumin (Sigma-Aldrich, St Louis, MO). VPA (sodium salt,
Sigma-Aldrich)-treated rats received 200 mg/kg intraperitoneally (i.p) once daily for 30
days. VPA was dissolved in saline (0.9% NaCl, Hospira, Lake Forest, IL) as described
previously (Basselin et al., 2008a; Bazinet et al., 2005; Bosetti et al., 2003; Chang et al.,
2001). A control group received the same volume of saline (vehicle) under parallel
conditions. An acute 1 mg/kg i.v. dose of (−)-quinpirole hydrochloride dissolved in saline
(Sigma-Aldrich) was chosen because it produces widespread significant increments in k* for
AA in the brain of unanesthetized rats that can be blocked by D2-like receptor antagonists,
butaclamol or raclopride, without causing convulsions (Basselin et al., 2005; Bhattacharjee
et al., 2005).

2.3. Surgical Procedures and Tracer Infusion
On the morning of day 30, a rat was injected with the last VPA or vehicle dose, and then
anesthetized with halothane (2–3% v/v in O2). Polyethylene (PE 50) catheters were
surgically inserted into the right femoral artery and vein as described previously (Basselin et
al., 2005). The wound was closed with surgical clips and the rat was wrapped loosely, with
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its upper body remaining free, in a fast-setting plaster cast taped to a wooden block. Surgery
lasted 20–25 min. Rats were allowed to recover from anesthesia for 3–4 h in an environment
maintained at 25°C. Rectal temperature was maintained at 36.4–37.1°C using a feedback-
heating device and rectal thermometer. Arterial blood pressure and heart rate were measured
with a blood pressure recorder (CyQ 103/302; Cybersense, Nicholasville, KY). One minute
after an i.v. injection of quinpirole or saline, [1-14C]AA (170 µCi/kg, 2 ml) was infused into
the femoral vein for 5 min at a rate of 400 µl/min, using an infusion pump (Harvard
Apparatus Model 22, Natick, MA). Twenty min after beginning tracer infusion, the rat was
euthanized with an overdose of Nembutal® (90 mg/kg, i.v.) and decapitated. The brain was
removed (<30 s), frozen in 2-methylbutane maintained at −40°C in dry ice, and stored at
−80°C until sectioned.

2.4. Chemical Analysis
Blood samples, collected before, during or after [1-14C]AA infusion, were centrifuged
immediately at 18,000 g for 30 s. Total lipids were extracted from plasma (30 µl) using a
modified Folch procedure (Folch et al, 1957). One hundred µl of the lower organic phase
was used to determine the radiolabeled unesterified plasma AA concentration by liquid
scintillation counting. As previously reported (DeGeorge et al, 1989), greater than 95–98%
of total plasma and brain radioactivity at 5 min following [1-14C]AA infusion is
radiolabeled AA. Concentrations of unlabeled, unesterified fatty acids were determined from
frozen/thawed arterial plasma. Total lipids were extracted and separated by thin layer
chromatography on 60 silica gel plates (Whatman, Clifton, NJ) using the solvent system
heptane: diethylether:glacial acetic acid (60:40:3, v/v/v). Unesterified fatty acids (identified
under UV light) were scraped from the plate and methylated with 1% H2SO4 (by vol) in
anhydrous methanol (3 h at 70°C), then separated and quantified by gas-liquid
chromatography using heptadecanoic acid (17:0) as an internal standard.

2.5. Quantitative Autoradiography
Quantitative autoradiography was performed as described earlier (Basselin et al., 2006a). A
total of 83 brain regions from autoradiographs of coronal brain sections were identified from
a stereotaxic rat brain atlas (Paxinos and Watson, 1987), and were sampled in both
hemispheres. The average of bilateral measurements for each region from three consecutive
brain sections was used to calculate regional radioactivity (nCi/g wet brain) by digital
quantitative densitometry, using the public domain 1.62 Analysis NIH Image program.
Regional brain incorporation coefficients k* (ml plasma/s/g wet brain) of AA were
calculated as (Robinson et al, 1992),

(Eq.1)

 (nCi/g wet brain wt) is brain radioactivity 20 min after beginning infusion,  (nCi/
ml plasma) is arterial labeled unesterified AA, and t (min) is time after beginning [1-14C]
AA infusion. Integrated plasma radioactivity (input function) was determined by trapezoidal
integration and used to calculate k* for each experiment. The regional rate of incorporation
of unesterified AA from plasma into brain phospholipids, Jin (pmol/s/g), was calculated as
follows:

(Eq.2)

where cplasma is the plasma concentration (nmol/ml) of unlabeled unesterified AA.
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2.6. Brain PGE2 and TXB2 Concentrations
In a separate experiment and after the last of 30 daily administrations of VPA or vehicle, a
rat was injected with quinpirole (1 mg/kg, i.p) or saline. Twenty-one minutes later (Basselin
et al., 2008b), it was anesthetized with Nembutal® (45 mg/kg, i.p.), and immediately
subjected to head-focused microwave irradiation (5.5 kW, 3.8 s; Cober Electronics,
Stamford, CT) to stop postmortem brain lipid metabolism (Farias et al., 2008; Poddubiuk et
al., 1982). A half-brain was weighed, homogenized with 18 volumes of hexane:isopropanol
(3:2, by volume) using a glass Tenbroeck homogenizer and the homogenates were
centrifuged (800 g, 5 min). Tissue residues were rinsed with 3 × 2 volumes of the same
solvent. The resultant lipid extracts were concentrated to dryness under N2 and resuspended
in the enzyme immunoassay buffer provided by the polyclonal PGE2 and TXB2
immunoassay kits (Oxford Biochemical Research, Oxford, MI).

2.7. Statistical Analyses
A paired t test using GraphPad Prism version 4.0b (GraphPad Software, San Diego, CA)
was applied to compare mean physiological parameters in the same animal before and after
drug injection. A standard two-way analysis of variance (ANOVA) was performed to
compare chronic VPA and vehicle treatment with acute quinpirole vs. saline administration
with regard to: integrated arterial plasma radioactivity input functions, plasma unesterified
fatty acid concentrations, brain PGE2 and TXB2 concentrations, and regional values of k*
and Jin for AA. If interactions between VPA and quinpirole were statistically insignificant,
probabilities of effects of VPA and quinpirole were reported. If interactions were
statistically significant, probabilities of main effects of VPA and quinpirole were not
reported (Tabachnick and Fidell, 2001). Alternatively, a one-way ANOVA with
Bonferroni’s post-test was used to compare quinpirole and saline responses between chronic
VPA- and vehicle-treated rats, as well as saline responses in VPA-treated compared with
vehicle-treated rats. Data are reported as the mean ± SD, with statistical significance taken
as p ≤ 0.05.

3. Results
3.1. Physiology, behavior and Arterial Plasma Radioactivity

After 30 days of treatment, the mean body weight of VPA-treated rats was significantly
lower than that of vehicle-treated rats (294.1 ± 25.9 g [n = 14] vs. 263.4 ± 21.0 g [n = 14], p
= 0.002), as previously reported (Basselin et al., 2008a; Daoud et al., 2004; Hassel et al.,
2001). There was no significant difference between rats chronically injected with VPA or
saline with regard to rectal temperature, heart rate or arterial blood pressure (Table 1). Acute
quinpirole provoked repeated cycles of an “active” period of repetitive head and mouth
movements and sniffing, followed by a “calm” period (Horvitz et al., 2001). No significant
difference in mean cycling periods was observed in VPA-treated compared to vehicle-
treated rats (Table 1).

Neither chronic VPA nor acute quinpirole modified the time course of arterial plasma
radioactivity (Eq. 1) following intravenous [14C]AA infusion. The mean integral of
radioactivity in the plasma organic fraction (nCi × s)/ml (n = 7), the input function, did not
differ significantly among groups: chronic vehicle + saline, 149,317 ± 30,502; chronic
vehicle + quinpirole, 152,433 ± 32,473; chronic VPA + saline, 121,565 ± 8,959; chronic
VPA + quinpirole, 144,614 ± 24,116.

3.2. Plasma Concentrations of Unlabeled Unesterified Fatty Acids
A two-way ANOVA showed a significant VPA and quinpirole interaction for the plasma
concentrations of unesterified stearic and AA but not for unesterified palmitic, oleic,
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linoleic, α-linolenic, or docosahexaenoic acids (Table 2). A one-way ANOVA with
Bonferroni’s post-test showed that chronic VPA compared to vehicle significantly reduced
plasma concentrations of stearic acid and AA by 39% and 66%, respectively. Compared
with vehicle, chronic VPA had a significant main negative effect (−57% to −70%) on each
of the remaining six unesterified fatty acids concentrations, while acute quinpirole had no
main effect on any of these concentrations.

3.3. Regional Brain AA Incorporation Coefficients, k*
Figure 1 presents coronal autoradiographs of brains from rats treated chronically (30 days)
with vehicle (control) or VPA, then acutely injected with saline or quinpirole. k* for AA,
calculated by Eq. 1, is color-coded. The figure shows no difference in regional values of k*
in response to saline between VPA- and vehicle-treated rats. Acute quinpirole increased k*
in multiple brain regions of the chronic vehicle- but not of the VPA-treated rats. Data
obtained from such autoradiographs are summarized in Table 3.

Values of the mean AA incorporation coefficients, k*, determined in each of 83 brain
regions were subjected to a two-way ANOVA. Statistically significant interactions between
VPA and quinpirole were found in 40 regions belonging primarily to the nigrostriatal and
mesocorticolimbic systems, which comprise the DAergic circuits of the basal ganglia
(Baldessarini and Tarazi, 1996) (Table 3, Fig 1). In all 40 regions, a one-way ANOVA with
Bonferroni’s post-test showed that chronic VPA did not significantly change mean baseline
(after saline) k* in any region (Table 3). The same one-way ANOVA showed that acute
quinpirole compared with saline increased k* by 22% to 58% in chronic vehicle-treated rats.
Affected regions included caudate-putamen (36–43%), globus pallidus (45%), subthalamic
nucleus (33%), substantia nigra (41%), prefrontal cortex (39–50%), primary olfactory cortex
(35%), frontal cortex (29–38%), pyriform and anterior cingulated cortex (22%), motor (31–
44%), somatosensory, auditory (29–33%), visual (41–48%) cortical areas (26–39%), bed
nucleus of the stria terminalis (53%), amygdala (58%), nucleus accumbens (42%), ventral
tegmental area (44%), arcuate nucleus of the hypothalamus (28%), ventroposterior thalamic
nuclei (40–45%) and zona incerta (29%). Quinpirole compared to saline did not significantly
increase k* in any of the 40 regions in chronic VPA-treated rats.

In the 43 regions where VPA and quinpirole interaction was statistically insignificant,
neither VPA nor quinpirole had any significant main effect on k* for AA (data not shown).
Thus, chronic VPA blocked each of the 40 quinpirole-induced k* increments that were
observed in the chronic vehicle-treated rat.

3.4. Regional Rates of Incorporation of Unlabeled Unesterified AA into Brain
Rates of incorporation of unlabeled unesterified AA from plasma into brain, Jin, (data not
shown) were calculated by Eq. 2 from regional k* (Table 3) and cplasma for AA (Table 2). A
two-way ANOVA showed no statistically significant interaction between VPA and
quinpirole in any of the 83 brain regions examined. Chronic VPA compared with vehicle
had a significant main negative effect in each of the 83 brain regions while acute quinpirole
had no main effect on any. In vehicle-treated rats Jin ranged from 5.9 pmol/s/g in the internal
capsule to 28 pmol/s/g in the choroid plexus, whereas Jin ranged from 2.2 pmol/s/g to 11
pmol/s/g in the respective areas of the VPA-treated rats.

3.5. Brain PGE2 and TXB2 Concentrations
As shown in Table 4, a two-way ANOVA demonstrated a statistically significant interaction
between VPA and quinpirole with regard to the brain PGE2 concentration. Consequently, a
one-way ANOVA with Bonferroni’s post-test showed that chronic VPA reduced basal brain
concentrations of PGE2 by 59 % (p < 0.05). Acute quinpirole significantly increased the
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PGE2 (p < 0.01) concentration by 1.7-fold in vehicle- but not VPA-treated rats. Chronic
VPA reduced TXB2 concentration at baseline and in response to quinpirole (significant VPA
main effect) by 42%.

4. Discussion
In this study, we showed that daily administration of VPA (200 mg/kg, i.p.) to rats for 30
days, at a dose that produces a plasma VPA concentration relevant to BD, prevented the
statistically significant increases in AA incorporation coefficients k*, and in whole brain
PGE2 concentration, that were produced by an acute dose of quinpirole in chronic vehicle-
treated rats. To the extent that DAergic signaling via D2-like receptors and the AA cascade
are pathologically upregulated in BD patients, for which evidence exists (see “Introduction”)
(Berk et al., 2007; Cousins et al., 2009; Diehl and Gershon, 1992; Goetz, 1997; Kim et al.,
2011), these results suggest that the efficacy of VPA in the disease treatment is due in part to
its ability to dampen upregulated D2-like signaling involving AA and its downstream
metabolites. In agreement, chronic administration to rats of a therapeutically relevant plasma
concentration of lithium or carbamazepine also dampens D2-induced elevations in k* for
AA and in brain eicosanoids (Basselin et al., 2005; Basselin et al., 2008b; Bosetti et al.,
2002; Bosetti et al., 2003). Taken together, reduced D2-like signal involving AA and its
metabolites may be common to the therapeutic action of mood stabilizers effective in BD. In
contrast, topiramate, which appeared effective in Phase II trials in BD, but later failed Phase
III placebo-controlled trials (Kushner et al., 2006), did not change markers of the rat brain
AA cascade (Ghelardoni et al., 2005; Lee et al., 2005). Topiramate has not been tested with
regard to the D2-like signal.

Similar to lithium and carbamazepine, chronic VPA significantly decreased baseline PGE2
and TXB2 concentrations as previously reported (Basselin et al., 2008a; Bosetti et al., 2002;
Bosetti et al., 2003; Ghelardoni et al., 2004). We ascribe this to VPA selectively decreasing
the binding activity of the transcription factor NF-κB that regulates neuronal COX-2 gene
expression, as well as reducing COX-1 and COX-2 protein levels and whole brain COX
activity (Bosetti et al., 2003; Kaltschmidt et al., 2002; Rao et al., 2007).

Acute quinpirole significantly increased k* for AA in 40 brain regions, most of which are
rich in D2-like receptors (Levant et al., 1992; Lidow et al., 1989) and are related to the
topographical distribution of DAergic innervation in the brain (mesocorticolimbic,
nigrostriatal, and tuberoinfundibular pathways). The zona incerta, located in the ventral
thalamus, and cerebral cortical areas (layers I to VI) including auditory and visual cortex
also contain DA neurons (Berger et al., 1985; Bjorklund and Lindvall, 1975; Lidow et al.,
1989; Rivera and Chun, 2008). The globus pallidus, subthalamic nucleus, and ventrobasal
thalamus also receive DAergic innervation and express DA receptors (Baldessarini and
Tarazi, 1996; Govindaiah et al., 2010).

The mechanisms underlying VPA’s ability to block the D2-like-receptor-induced increases
in k* for AA and to reduce PGE2 and TXB2 concentrations in rat brain are not clear. VPA
could have acted by reducing COX activity, and COX-1 and COX-2 protein levels (Bosetti
et al., 2003). When COX enzymes are pharmacologically inhibited or knocked out in rodent
brain, k* responses to drugs acting at cPLA2-coupled neuroreceptors are reduced or lost, as
are the increases in brain PGE2 and/or TXB2 concentrations (Basselin et al., 2006b; Basselin
et al., 2007b). VPA also may have interfered with the DAergic system and D2-like receptors.
Consistent with altered gene expression of histone deacetylases and increased in histone H3
and H4 acetylation in BD patients (Hobara et al., 2010; Sharma et al., 2006), VPA, a direct
histone deacetylase inhibitor (Phiel et al., 2001), may modify the transcription of the rate-
limiting enzyme in DA biosynthesis, tyrosine hydroxylase (D'Souza et al., 2009), or of Sp1
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(Marinova et al., 2009), a transcription factor of the D2 receptor (Yajima et al., 1998), and/or
DAT gene acetylation (Wang and Bannon, 2005). Consistent with its property, VPA has
been shown to decrease D2 receptor protein in the rat prefrontal cortex (Montezinho et al.,
2006), lower presynaptic DA function in the striatum of patients with mania (Yatham et al.,
2002), and increase DAT gene expression in rat midbrain DA neurons (Wang et al., 2007),
thus decreasing extracellular DA concentration at the synaptic cleft. Although VPA has been
reported to inhibit GSK-3 (Chen G et al., 1999), which can be regulated by DA via the Akt
signaling pathway (Beaulieu et al., 2004; Beaulieu, 2011), this effect is indirect and has been
attributed to inhibition of activation of Akt and inactivation of GSK-3 following inhibition
of histone deacetylase (Phiel et al., 2001; De Sarno et al., 2002).

In addition, a therapeutically relevant concentration of VPA has been shown to decrease the
activity and protein level of protein kinase C (Chen et al., 1994), which mediates
phosphorylation, desensitization and trafficking of the D2 receptor (Namkung and Sibley,
2004). Alternatively, chronic VPA may have indirectly attenuated the D2-mediated AA
signaling by (i) enhancing GABAergic transmission, which participates in regulating the
activity of DA release and inhibiting DAergic activity (Agmo et al., 1996) and/or by (ii)
reducing excitatory neurotransmission and blocking the AA signaling mediated by
glutamatergic-NMDA receptors (Basselin et al., 2008a), as D2-like and NMDA receptors are
often functionally coupled and colocalized on the same neurons in the brain (Cepeda and
Levine, 1998; Wang et al., 2003). Together with our previous reports (Basselin et al., 2005,
2006a; Basselin et al., 2008b; Basselin et al., 2007a), we strongly infer that antimanic mood
stabilizers effective in BD suppress AA signaling coupled to both NMDA and D2-like
receptors. Combined, these data are consistent with VPA protecting DA neurons in
lipopolysaccharide-induced neurotoxicity (Peng et al., 2005). In agreement, VPA was
neuroprotective in experimental models of cerebral ischemia, Parkinson’s disease and
glutamate-induced excitotoxicity via histone deacetylase inhibition (Monti et al., 2010;
Monti et al., 2009; Ren et al., 2004; Wang et al., 2010; Chuang et al., 2009).

VPA increased brain-derived neurotrophic factor (BDNF) (Einat et al., 2003; Yasuda et al.,
2009), hippocampal neurotrophin-3 (Walz et al., 2008), anti-apoptotic factor B-cell
lymphoma-2 (Bcl-2) (Chen et al., 1999), and restored amphetamine-induced downregulation
of BDNF and of neurotrophin-3 in rat brain (Frey et al., 2006; Walz et al., 2008). Given that
the brain and serum in BD have reduced BDNF and other neurotrophic factors (Kauer-
Sant'Anna et al., 2009; Kim et al., 2010; Knable et al., 2004; Tramontina et al., 2009), these
actions may contribute to VPA's neuroprotective effect in BD, a disease characterized by
progression and apoptosis (Benes et al., 2006; Kim et al., 2010; Rapoport et al., 2009).

Consistent with our previous studies, chronic VPA significantly decreased the plasma
concentration of unlabeled unesterified fatty acids including AA (Bazinet et al., 2005;
Chang et al., 2001), indicating a widespread effect on whole body fatty acid metabolism. A
similar reduction in plasma unesterified fatty acids has been found with other mood
stabilizers and antipsychotics used to treat BD, such as lamotrigine, olanzapine and
clozapine (Ramadan et al., 2011; Cheon et al., unpublished observation) suggesting a
common peripheral effect of these drugs. The decrease in plasma unesterified fatty acids
may be due to (i) reduced liver secretion of lipoprotein-bound esterified fatty acids, the main
source of unesterified fatty acids in plasma, or (ii) reduced release of unesterified fatty acids
from adipose tissue by lipases. Although the effects of VPA on free fatty acid release have
not been investigated, evidence of impaired secretion of esterified fatty acids has been
demonstrated with a marked reduction in triglyceride secretion following VPA treatment
(Bellringer et al., 1988).
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The baseline values of k* and Jin in this study agree with previous reports (Basselin et al.,
2005; Basselin et al., 2008a; Bhattacharjee et al., 2005; Bhattacharjee et al., 2006, 2008).
Values of baseline k* were not altered by chronic VPA, which is consistent with our
previous data (Basselin et al., 2008a), and supports the finding that chronic VPA does not
affect basal cPLA2-IV expression (Bosetti et al., 2003). Chronic VPA had a significant main
negative effect on all Jin values at baseline compared to vehicle-treated rats, indicating that
the regional rate of metabolic AA loss from brain is lower in the VPA-treated animals. We
ascribe this to VPA’s significant reduction of the plasma concentration of unlabeled
unesterified AA and of brain PGE2 and TXB2 concentrations, and to its selective inhibition
of acyl-CoA synthetase 4-mediated activation of AA to AA-CoA (Bazinet et al., 2006a;
Shimshoni et al., 2011).

Chronic VPA, like chronic carbamazepine but unlike chronic lithium, did not prevent
quinpirole-induced hyperactivity or stereotypy (Basselin et al., 2005; Basselin et al., 2008b;
Beaulieu et al., 2004; Shaldubina et al., 2002). As each of the three mood stabilizers
downregulates the brain AA cascade, their different effects on quinpirole-induced behaviors
suggest that these behaviors do not involve AA signaling, and that the quinpirole-induced
activity cycles are not modeling BD. In contrast, VPA attenuated the hyperactivity and
preservative locomotor behavior in the DAT knockdown mice (Ralph-Williams et al., 2003).

We investigated the effects only of chronic VPA in this study, mood stabilization properties
in BD patients only appears after 10 days of treatment with VPA. An acute injection of VPA
(200–300 mg/kg) in rats caused no/very transient change in the brain DA level (Ahmad et
al., 2005; Mitsikostas et al., 1993).

In conclusion, chronic VPA pretreatment prevented the statistically significant increases in
k* for AA and in PGE2 concentrations that were observed in response to quinpirole in
chronic vehicle-treated rats. These and observations in rats administered chronic lithium or
carbamazepine support the hypothesis that mood stabilizers commonly downregulate brain
AA signaling via D2-like receptors, and are consistent with evidence that some BD
symptoms arise from excessive DAergic neurotransmission (Goetz, 1997). It would be
worthwhile to see if atypical antipsychotics (e.g. clozapine, olanzapine), which are D2-like
receptor antagonists, do so as well, which would suggest a more general receptor action of
these agents on cPLA2-mediated AA signaling (Liauw and McIntyre, 2010). Additionally
positron emission tomography using [1-11C]AA might be employed in BD patients under or
without chronic VPA treatment, before and after drug induced D2-like receptor activation, to
see if VPA has a similar transient effect on AA signaling BD (Giovacchini et al., 2004;
Goetz, 1997; Hosey et al., 2005).

Highlights

• The research identifies VPA’s ability to downregulate dopamine-D2 receptor
signaling via AA.

• Quinpirole increases AA signaling and metabolism in vehicle-treated rats.

• Chronic VPA blocks increments in AA signaling and metabolism induced by
quinpirole.

• Mood stabilizers attenuate hyperdopaminergic neurotransmission.

• Possible implication for the efficacy of mood stabilizers against bipolar
disorder.
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Abbreviations

AA arachidonic acid

BD bipolar disorder

BDNF brain-derived neurotrophic factor

cPLA2 Ca2+-dependent cytosolic phospholipase A2

COX cyclooxygenase

DA dopamine

DAT dopamine reuptake transporter

GSK-3 glycogen synthase kinase-3

VPA valproate

PGE2 prostaglandin E2

TXB2 thromboxane B2
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Figure 1.
Coronal autoradiographs of brain showing effects of quinpirole and valproate on regional
arachidonic acid incorporation coefficients k* in rats. Values of k* (ml/s/g wet brain × 10−4)
are on a color scale from 4 (blue) to 10 (orange). Acb, nucleus accumbens; CP, caudate
putamen; Fr 8, frontal cortex (8); Fr 10, frontal cortex (10); PFr, prefrontal cortex; SN,
substantia nigra; VTA, ventral tegmantal area. VPA, valproate; Quin, quinpirole.
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