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Abstract
An appealing genome-wide association study design compares one large control group against
several disease samples. A pioneering study by the Wellcome Trust Case Control Consortium that
employed such a design has identified multiple susceptibility regions, many of which have been
independently replicated. While reusing a control sample provides effective utilization of data, it
also creates correlation between association statistics across diseases. An observation of a large
association statistic for one of the diseases may greatly increase chances of observing a spuriously
large association for a different disease. Accounting for the correlation is also particularly
important when screening for SNPs that might be involved in a set of diseases with overlapping
etiology. We describe methods that correct association statistics for dependency due to shared
controls, and we describe ways to obtain a measure of overall evidence and to combine association
signals across multiple diseases. The methods we describe require no access to individual subject
data, instead, they efficiently utilize information contained in P-values for association reported for
individual diseases. P-value based combined tests for association are flexible and essentially as
powerful as the approach based on aggregating the individual subject data.
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INTRODUCTION
For a number of genetic associations, the Wellcome Trust Case Control Consortium
(WTCCC) study [The Wellcome Trust Case Control Consortium, 2007] has established
“guilt beyond a reasonable doubt” [Altshuler and Daly, 2007], promising a refreshing
change from the widespread concern about the abundance of “freely associating” studies
with dismal rates of replication [Cohen, 1999]. Several WTCCC associations were
successfully replicated by independent studies, and the study had quickly accumulated over
700 citations by the end of 2008. Thus, the shared controls design employed by the WTCCC
proved to be successful. A “News and Views” article in Nature described the design as an
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“instructive approach to large-scale genomic scans of this type, showing that a set of
common controls can be used for a variety of diseases with relatively little loss of analytical
power” [Bowcock, 2007]. The WTCCC study design used 3,000 shared controls for the
seven studied diseases with about 2000 cases per disease, typed for about 500K SNPs.

The WTCCC article raised a concern about the usage of shared controls, related to the
potential for misclassification: some of the shared controls may have a disease of interest,
and some will develop it in the future. Other concerns with the design are related to a
possibility of confounding of the case-control status with factors that affect genotyping
quality (e.g., possibility of spurious results due to “plate effects”). These problems are
inherently difficult to avoid.

An important issue that we focus on here is statistical: the fact of reusing a control group
while testing for genetic association with different diseases creates a correlation between the
results. Fortunately, various problems that stem from this fact can be addressed and taken
into account efficiently when only summary data, such as association P-values, are
available. Here we mainly focus on three important statistical consequences of using shared
controls in association studies.

1. For any given SNP, the shared control design induces a correlation between
association test statistics for different diseases. This correlation may lead to a
substantial increase in the rate of spurious associations: an observation of a small
P-value for one of the diseases greatly increases chances of finding a small P-value
for a disease that used the same sample of controls. Thus, if a SNP is selected based
on a small association P-value, correlation must be taken into account while
computing P-values for any other diseases. We provide methods that not only
quantify chances of observing a small P-value, but also give an appropriate
correction, by explicitly incorporating the correlation.

2. Evaluation of an overall evidence for association of a SNP with multiple, related
diseases must also account for the correlation. We provide two ways to combine P-
values for etiologically similar diseases into an overall P-value. One of these
approaches does not suffer a loss of power when the association direction “flips”
between diseases, while the other approach gains power by capitalizing on the
assumption of a similar association effect among diseases.

3. There is a multiple testing problem due to reporting P-values for several diseases at
a SNP, embedded into the issue of testing multiple SNPs in a GWAS. Accounting
for the correlation allows one to obtain an appropriate P-value for a given disease,
adjusted for having tested multiple diseases. We investigate the effect of the
correlation on the multiple testing correction and give practical recommendations
for obtaining an disease-specific P-value for a SNP, adjusted for the number of
diseases tested at that SNP.

The methods we will describe are not only efficient and broadly applicable, but also
straightforward to apply: they make it possible for a researcher to conduct meaningful
analysis while only having access to P-values, sample sizes, and in some cases, knowledge
of which allele confers susceptibility (“the effect direction”).

METHODS
When a control sample is reused, association test statistics are no longer independent. In the
absence of association, the asymptotic correlation for common types of chi-square
association statistics (such as allelic trend test and genotypic tests) does not depend on the
total sample size, or on the allele frequencies at a genetic locus. This correlation depends
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only on the ratio of the number of shared controls in the two studies (N0) to the number of
cases, which is denoted by N1 for the first, and by N2 for the second disease group (study).
For common association tests, such as the chi-square test for allele frequency differences,
and the allelic trend test, the correlation is, asymptotically,

(1)

This correlation also holds for multiple degrees of freedom chi-square statistics. When the
control samples overlap only partially, sharing N0 individuals, with N01 and N02 individuals
being distinct, the correlation becomes

(2)

A more general expression when both case and control samples overlap and the
corresponding details are given in Appendix A. Strictly, these expressions are asymptotic,
however they are nearly exact in practice, for sample sizes as small as one hundred. A
square root of this correlation (for a signed version of the statistics) was recently reported by
Lin and Sullivan, by considering a logistic regression model [Lin and Sullivan, 2009]. When
two studies share all of the controls (N01 = N02 = 0), as in the WTCCC study, then (2)
reduces to (1). For several disease samples, the correlation structure is represented by the
matrix of correlations, {ρij}. Dunnett’s correlation [Dunnett, 1955] derived in the context of
analysis of variance is the square root of the correlation in (1). If the two case sample sizes

are the same, N1 = N2, then . Thus, when there is no association in reality, a
decrease in the N0/N1 ratio drives the correlation value toward 1, regardless of the total
sample size, N0 + N1.

1. Conditional and adjusted P-values
The first problem created by the aforementioned correlation is best illustrated with a graph.
The histogram in Figure 1A is a histogram of P-values obtained by an application of the
trend test to multiple SNPs using simulated samples of sizes N0 = 3000 and N1 = 2000 under
no association. Only SNPs with P-values below 0.01 were retained, thus the resulting
distribution is uniform on 0 to 0.01. Next, the sample of controls was reused to conduct
trend tests for the second disease (again, under no association) with independently sampled
cases (N2 = 2000), using only the retained set of SNPs. The distribution of P-values in the
second histogram now appears badly skewed with a large excess of small P-values. Can the
proportion of P-values that are smaller than some α-level (type-I error) be evaluated
theoretically? More importantly, can an observed value of P1 be used to adjust P2 so that the
histogram of adjusted set of P2 is uniform on 0 to 1? The answer to both questions is “yes”.

We derive the type I error rate and the conditional P-value correction from the joint
distribution of the chi-square association statistics for k diseases, . This
probability can be represented in terms of a multivariate normal cumulative distribution
function (CDF) of the same dimension. Using this representation, the conditional P-value
can be derived, Pr(Pj ≤ pj | {P−j} = {p−j}), where {P−j} denotes a set of random P-values,
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excluding that for disease j, and lowercase p is the observed value of the corresponding
random variable. Details of this calculation are given in Appendix B.

2. Overall association with multiple diseases
In exploration of SNPs involved in multiple diseases with overlapping etiologies, the
WTCCC took an approach of pooling cases of related diseases together and contrasting the
resulting sample against the control group. Two P-value based methods will be considered
here. First, we will describe a method for obtaining results of such a pooled analysis when
only association P-values for separate diseases are available. Our approach appropriately
incorporates the correlation between P-values due to shared controls, and does not require
access to the genotype data. It is similar to a meta-analysis method in Lin and Sullivan [Lin
and Sullivan, 2009]. Our method is simple and most powerful when the same allele is
associated with every disease. It is plausible that, although the same SNP is involved in
related diseases, the association direction is different for different diseases. This
heterogeneity may be a consequence of either genuine difference in the underlying
mechanism, or it may reflect differences in haplotype structure between disease samples
[Zaykin and Shibata, 2008]. The pooled analysis would lack power in this situation because
the associations with opposite directions would cancel one another. Therefore, we also
propose a second method that can combine heterogeneous association signals across
diseases in a stratified manner. Both alternative ways to perform the combination analysis
are valuable, and the choice between the two should be determined by a researcher,
depending on the respective assumptions.

Combining homogeneous effects: inverse normal method—For the pooled
analysis with the assumption that the same allele is associated with every disease, the

inverse normal transformation is applied first, with weights :

(3)

(4)

“Effect” here refers to the direction of association for either one of the two alleles at a SNP
(e.g. minor allele). Next, these Z-scores are combined as

(5)

where Rij are the correlations for the signed statistics:

(6)

The combined P-value, pc is obtained as follows:
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(7)

In this approach, the effect direction for one of the alleles is incorporated into calculation in
order to approximate the value of an overall statistic that would have been obtained directly
from the pooled data. Such statistic is approximated here by first combining one-sided
statistics that depend on the effect direction (equation 4), and then by converting the result to
a two-sided P-value (equation 7). The inverse normal transformation used here is a natural
choice because of an asymptotically normal distribution of the one-sided statistic. It is
possible to use a different transformation, such as a chi-square. However, with non-
symmetric transformations, the step given by equation (4) would have to be carried out
twice, for each tested effect direction. Therefore, the step in equation (7) would yield two
combined two-sided P-values. The minimum of these two would have to be doubled, due to
a multiple-testing penalty. Fortunately, in the case of the normal transformation the two P-

values are the same, and no penalty is necessary. The choice of the weights ( ) is
motivated by the goal of approximating a statistic that pools raw data, (Zraw), in a way

analogous to the WTCCC analysis. The factor  accounts for the fact that the
variance of the unweighted score depends on the correlation structure: the conditional
variance of Zi becomes equal to one when the weights are set to be equal to that factor. As
the relative size of the control sample size increases, the correlation decreases, and the
weights wi approach . It is the optimal weighting under independence of Zi’s, because it
makes the value of the combination statistic as close as possible to that of the combined
statistic based on the pooled data, Zraw. Numerator of Zraw is a mean difference for the entire
data set, T ̄, and denominator is its standard error, ST ̄. In terms of the standard deviation, ST,

and the sample size nT, we have . Consider an operation that is inverse to
pooling the data. If the sample is split into two parts, then the respective statistics are

. We can re-write Zraw in terms of these two means for sub-samples:

The weighted statistic is

While ST can only be approximated by using SX and SY, we can recover the numerators for
the two terms in Zraw by choosing .

Combining heterogeneous effects: inverse chi-square method—Two-tailed P-
values obtained with the above approach correspond to results of analysis where all case
data are pooled and then contrasted against the control group. One pitfall of this approach is
that it is possible for association direction to differ among the combined diseases. Simple
pooling would result in cancellation of association effects, and the ensuing lack of power. In
this case we would like to combine correlated two-sided P-values directly. One approach is
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to consider one of the usual transformations of P-values, such as Fisher’s −2 log(P), or the
inverse normal transformation [Kost and McDermott, 2002]. However, such approaches do
not recover the original joint distribution, and their accuracy at small α-levels is suspect. For
example, the inverse normal transformation of chi-square P-values yields normally
distributed scores that are not jointly normal. Therefore, we suggest that the association test
statistic should be recovered from the P-value with the inverse of its distribution. We
combine dependent chi-square scores obtained with the  transformation,
where Ψ−1(·) denotes the inverse chi-square distribution with one degree of freedom
(assuming that P-values were obtained with a one degree of freedom association statistic).
As in (6), denote the matrix of correlations {Rij} by R. As before, the weights for the

underlying multivariate normal scores are . The variance for the vector of
weighted scores is V = diag(w) R diag(w)T, with the eigenvalues {λi}. For k diseases, the

sum of weighted correlated chi-squares, , is equal to the weighted sum of
independent chi-squares, where weights are the eigenvalues {λi} [Box, 1954a]. Simple
methods exist for approximating the distribution of the sum of weighted chi-squares by a
scaled chi-square distribution. We evaluated two such methods: one based on approximating
the scale and the degrees of freedom by functions of eigenvalues of the correlation matrix
[Box, 1954b]; and a different method based on matching of the first two moments [Kost and
McDermott, 2002]. Neither of these simple methods provided sufficient accuracy in the
extreme tail of the distribution for GWAS applications, therefore we implemented a more
sophisticated approach. The distribution of the weighted sum of independent chi-squares,

(equivalently, that of the sum of weighted dependent statistics,  can be
represented by an infinite series and evaluated to a high precision by considering a large
number of terms [Kotz et al., 1967; Ruben, 1962]. We translated Farebrother’s modification
of Ruben’s algorithm [Farebrother, 1984] into C++ and implemented it as a function for the
popular statistical package R [R Development Core Team, 2009]. The function inputs
sample sizes and P-values and evaluates the combined two-sided P-value. We verified via
simulating the actual distribution that this method provides accurate P-values in the tail at
least as small as 1 × 10−9.

3. Multiple testing adjustment for disease-specific P-values
Disease-specific P-values may have to be adjusted for having tested multiple diseases at a
SNP. The adjustment can be derived from the joint distribution of the chi-square association
statistics for k diseases, . If chi-square association statistics were
independent, the Bonferroni-corrected P-value would be p* = 1 − (1 − p)k. This can be
written in terms of the multivariate normal density, φ(·), as

(8)

where the mean vector is zero (μ = 0), the correlation R is an identity matrix, and the limits

are , where Ψ−1 denotes the one degree of freedom inverse chi-square CDF.
With the shared control design, statistics are correlated, and the entries in R are given by (2)
instead. Then formula (8) gives the distribution of the maximum of correlated chi-square
statistics, . This approach is also the basis for Dunnett’s critical values in the
analysis of variance design where several treatments are compared with a reference group
[Dunnett, 1955].
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SIMULATION STUDIES
We evaluated precision and performance of our analytical approaches with a series of
simulation experiments.

1. Simulation setup for conditional P-values
Table 1 and Figure 1 are designed to demonstrate the influence of correlation due to usage
of shared controls on the distribution of P-values, and the ability of the conditional
adjustment approach to appropriately correct this distribution. The empirical probabilities in
Table 1 were obtained by generating trinomial samples of genotypes from populations in
Hardy-Weinberg equilibrium, and conducting the Cochran-Armitage test. The control
sample in each simulation was shared between the studies (diseases), while the case samples
were obtained independently. Samples where the first P-value exceeded α1 were discarded.
For the remaining samples, P -values for the second disease (P2) were recorded. Table 1
gives proportions of P2 that were found to be less than or equal to several values of α2, as
well as the theoretical values obtained by equation (B-2). The number of simulations was at
least 100,000 for each row in Table 1, not counting simulations that resulted in rejected
samples. If controls were not shared, the entries in Table 1 would all be around α2. However,
due to the correlation, the numbers (that represent the actual type-I error) are expected to be
inflated. “Setting 4” in the table assumes that the first disease association is known to be
genuine: our approach allows to utilize case/control allele frequencies, assuming that they
are estimated well. In this case, we assumed a multiplicative genotypic risk for the
simulations, penetrances of 0.041 and 0.048 for the two SNP alleles, and the population
allele frequency of 0.155. Case and control genotype frequencies were obtained given these
parameters by the Bayes rule. Multinomial samples of genotypes for simulations were
obtained repeatedly, using these case and control genotype frequencies. The disease
prevalence in this model is 1.8%; the expected risk allele frequencies are 0.155 (in controls)
and 0.175 (in cases). This is modeling allele frequencies for a novel Crohn’s disease
association in the WTCCC study (SNP rs2542151), as estimated by an independent
replication study [Todd et al., 2007]. Figure 1A was constructed by generating trinomial
samples of genotypes for cases and controls under no association, and by retaining only
those samples where the trend test P-values for the first disease were smaller than 0.01.
Samples of controls from that subset were reused, and genotype samples for the cases were
sampled again to produce P-values in Figure 1B. Figure 1C was constructed by applying
equation (B-3) to pairs of P-values for the two diseases, obtained by the same type of
simulations.

2. Simulation setup for combined P-values
Type-I error and power for the combination methods were evaluated via a similar type of
simulations. Power simulations assumed a multiplicative risk model. The population value
of allele frequency for the low risk allele was 0.15. The penetrance value for the low-
susceptibility allele was 0.30. The relative risk value varied between different simulation
settings to ensure about 90% power for a test with the best power characteristics. Risk
values and sample sizes used in each simulation setting are given in the legends of Tables 3
and 4. Assuming Hardy-Weinberg equilibrium, population genotype frequencies in cases
and controls are obtained by the standard application of the Bayes rule and depend on the
penetrance values of the genotypes and the allele frequency in the entire population. We
used multinomial sampling with these phenotype-specific frequencies as parameters to
obtain samples of cases and controls. Because we used a multiplicative model of risk, the
distinction between typing a causal variant and typing a proxy SNP that tags a mutation via
linkage disequilibrium is inconsequential with regard to the purpose of these simulations:
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under the proxy model the induced risks at the proxy SNP remain multiplicative [Zheng et
al., 2009].

3. Simulation setup for multiplicity-adjusted P-values
Table 5 was constructed to investigate conservativeness of a simple Bonferroni correction
when there is a correlation between k test statistics (i.e. k diseases). Values in Table 5 were
obtained by simulating k-variate equicorrelated normal vectors, with correlation ρ = 0.5 and
collecting the value of the largest absolute value (X). For each k, 108 X values were drawn to
build a sample from the distribution of the largest absolute value statistic. If h is the (1 − α)
empirical quantile of X, then one can compute p = 1 − Ψ (h2) and p* = 1 − (1 − p)k, where Ψ
denotes the one degree of freedom chi-square CDF. As correlation approaches zero, p*

would approach α (in a large number of simulations), otherwise p* values, that are given in
the table for ρ = 0.5, should be larger than α. The discrepancy between p* and α represents
the effect of doing a simple Bonferroni correction (i.e., the effect of ignoring the
correlation). For small k, we checked the simulated values by direct integration using
equation (8).

RESULTS
Genome wide association approaches have proved to be capable of identifying novel
variants that influence susceptibility to complex diseases. Moreover, these approaches have
highlighted genetic loci involved in etiological overlap between diseases with shared
pathogenesis, such as cardiovascular and autoimmune diseases. To find loci of etiological
overlap was one of the explicit goals of the WTCCC study. One of the conclusions of the
WTCCC study is that there appears to be a number of novel associations involved in
diseases with common etiology. The WTCCC approach was to combine samples of cases
across diseases with possible common etiologies. Finding of a strong association at a
particular SNP in the combined sample, accompanied by a substantial associations of that
SNP with individual diseases can be used as evidence of an involvement of the SNP variants
in overlapping disease mechanisms.

1. Conditional P-values
The WTCCC study reported a novel association at the PTPN2 gene, a regulator of
inflammatory response. The SNP rs2542151 showed a strong association (P = 4.6 × 10−8)
with Crohn’s disease (CD), as well as with type-1 diabetes (T1D), with P = 1.9 × 10−6.
Further, WTCCC study reported a weaker association with rheumatoid arthritis (RA), with P
= 0.019). The combined trend test P value for all three diseases was significant with P = 9 ×
10−8. These findings supported the hypothesis of overlapping pathways in the pathogenesis
of these inflammatory diseases.

The weaker RA association has come to attention because of an observation of strong
associations with two other inflammatory diseases, particularly with CD. However,
correlation between P-values due to the shared control sample greatly inflates chances of
observing a small RA P-value. Conditioning only on the CD P-value, and assuming no
association for CD, the corrected RA P-value is 0.39. After taking into account both the
T1D and the CD P-values, and assuming no association for these two diseases, the corrected
RA P-value becomes 0.71. Note that this calculation, assuming the null hypothesis of no
association, does not depend on allele frequency (equ. B-5). The associations with CD and
T1D have been independently replicated and are likely genuine [Todd et al., 2007; Franke et
al., 2008; Parkes et al., 2007]. Our approach allows one to incorporate these independent
estimates of case-control allele frequency differences into the calculation (cf equation B-5),
thus arriving at a smaller RA P-value, 0.037. In general, even when there is an association at
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one of the diseases, there is still considerable bias in the distribution of P-values at the other
disease, as long as SNPs are selected based on the magnitude of P-values for the first
disease.

The approach we developed provides an analytical way of quantifying the type-I error and
gives a conditional P-value correction. A simulation study was designed to evaluate
precision of the analytical approach. We considered a situation where a subset of SNPs is
selected based on a P-value. The histogram of P-values in Figure 1A was obtained by an
application of the trend test to samples of genotypes under no association, using sample
sizes of the WTCCC study. SNPs with P-values below 0.01 were selected, producing a
uniform histogram on 0 to 0.01. Selected SNPs were re-tested for association with the
second disease. The resulting histogram (in the middle) shows a substantial increase in the
proportion of spuriously small P-values. An application of equation (B-3) corrects the
distribution, bringing it back to uniform (graph on the right). Similar results were obtained
for conditioning on more than a single disease (data not shown). The actual empirical
proportions of P-values for a few levels are given in Table 1 (Setting 1, first row). The table
quantifies bias illustrated by Figure 1B. For example, 0.190 of P-values in the graph were
smaller than 0.05. The next row (“Analytical”) shows the proportion obtained theoretically
(by equation B-2). The last pair of rows (“Setting 4”) shows that there is still bias even when
there is a genuine association with the first disease: there is still an increase in the type-I
error at the second disease, for which there is no association. In all cases, α-levels obtained
via simulations are nearly identical with the analytical results, confirming that the formulas
on which the conditional P-value correction is based are highly accurate. The simulation
approach is also highly computer-intensive, since the majority of P-values (P1 > α1) need to
be discarded.

Rows for “Setting 3” (c,d) give results for the case of a partial overlap of control samples.
Sample sizes for the partial overlap were chosen in such a way that the theoretical
correlation between association statistics matched the value computed for the complete
sharing (“Setting 3” a,b). Table 1 values for complete and the partial sharing are very
similar, confirming that the conditional (and the joint) distribution of P-values is driven by
the correlation. Because the asymptotic correlation depends on the ratios of sample sizes,
these ratios are important, rather than a particular design (i.e. complete vs. partial overlap).
We also varied the population allele frequency in these simulations (“Setting 3”) to confirm
that results do not depend on a particular frequency. In all settings, simulation values in
Table 1 agree well with the analytical computation, even in the case when the frequency is
as small as 0.01.

2. Overall association with multiple diseases
Next, we applied our P-value combination approach to the signals in the autoimmune
disease group of the WTCCC study. Table 2 shows results of the inverse chi-square method
for a group of SNPs that show a strong association in two or all three diseases, as well as a
reversal of association direction between diseases. In such situations, the WTCCC analysis
which aggregated case samples into one group, may not be powerful. The “Pooled” column
under the P-value heading lists P-values of that method, confirming that the signal is being
lost due to the flip in the association direction. In contrast to that, the inverse chi-square
method yields very small P-values in support for an overall association. The last column of
the table gives gene names for the SNPs. In all cases, the listed genes appear to be involved
in pathogenesis of autoimmune diseases. SNPs rs206015, rs9391858, and rs438475 reside in
the genes had been independently found to be associated with autoimmune diseases [Tazi-
Ahnini et al., 2003; Duvefelt et al., 2004; Feng et al., 2009]. Eleven out of 22 SNPs listed in
the table are confirmed associations with T1D [Barrett et al., 2009].
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The inverse chi-square test combines association statistics with no regard to which allele is
associated. One might want to combine signals while hypothesizing that there is a common
association direction among diseases with a similar etiology. Ideally, such method should
mimic results of an analysis where individual data for the disease samples are pooled and
contrasted against the control sample. The inverse normal method provides such a test.
Figure 2 illustrates correspondence between the “ideal test” P-value (where individual
WTCCC disease samples are pooled) with the combined P-value, where individual P-values
for association are combined by our inverse normal approach. The graphs show an excellent
agreement between the two P-values. In general, discrepancies between the two P-values are
rare and seem to be confined to cases where there are flips in association direction between
diseases (data not shown).

We have suggested two methods for obtaining an overall P-value that combines signals
across several diseases that are thought to have a common etiology. The inverse normal
method capitalizes on the assumption that the same allele confers susceptibility in every
disease. Thus, we expect that when this assumption is true, the inverse normal method
would be more powerful than the inverse chi-square method. Conversely, the inverse chi-
square method should gain power over the inverse normal when there is a flip in the
direction of association in some of the diseases. Table 3 shows power values for signals
combined across k = 10 diseases, as well as proportions of rejections under no association
(type I error). A value k = 3 was also tried, but the change in k did not appear to have a
noticeable effect on the pattern of power values (data not shown). In all cases, power values
for the chi-square test that uses pooled individual data are almost exactly the same as those
for the inverse normal method. This corroborates findings by Lin and Zeng that proper meta-
analysis based on summary statistics is as efficient as analysis based on individual
participant data [Lin and Zeng, 2010]. As expected, the inverse normal method has a greater
power than the inverse chi-square, when the population relative risk values are the same for
all diseases. However, the power gain is sufficiently large only when the statistics approach
independence (i.e. when the ratio of the control to the case sample size is large). At the
WTCCC values (≈ 3/2 sample size ratio) there is a very little difference between the power
values. Moreover, the inverse chi-square method has a greater power than the inverse
normal when there is a substantial heterogeneity between disease-specific relative risks,
even when the susceptibility allele is the same allele for all diseases. As with the WTCCC
data, the inverse chi-square method has a clear power advantage when association signs are
reversed in some of diseases. Table 4 presents a similar comparison of the methods for the
case of very different sample sizes for disease groups. Pattern of power values in this case
agrees with the previous scenario, where sample sizes for all disease groups are the same.
Figures 3, 4 show the effect of using different weightings on performance of the inverse
normal statistic in simulated data under H0. Graphs plot the “true” P-values obtained with
the trend test on pooled data against the combined P-value, using different weightings. The

optimal weighting is with the weights . As N0/Ni increases, the correlation

approaches zero, and  approaches . Given an appropriate weighting, there is a
very close correspondence of combined P-values with P-values that are based on pooling
individual data and conducting a single trend test. This gives additional support to findings
of Lin and Zeng who advocated meta-analysis based on summary data [Lin and Zeng,
2010]. Further, our findings suggest that when the weighted inverse normal method is
applied for meta-analysis of independent P-values,  is a more appropriate weighting than
Ni. Less efficient weighting by the sample size is being commonly used and has been
previously advocated for meta-analysis of independent P-values [Whitlock, 2005].
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3. Multiple testing adjustment for disease-specific P-values
Lastly, there is an issue of significance of association for a given disease. With k diseases
tested at a SNP, there is a multiple testing problem. If the P-values were independent, the
adjusted value would take the usual form, p* = 1 − (1 − p)k, which is the distribution
function of the minimum P-value. In the presence of correlation, we need to consider the
distribution of the largest statistic among k correlated chi-square statistics (Methods section).
Realistic values of correlation are not likely to be great, however, and we suggest that
ignoring the correlation and doing the Bonferroni adjustment instead is not likely to affect
analysis to an appreciable degree. When the control sample size is at least as large as the
size of the largest case group, the largest correlation between the signed (non-squared)
statistics is 0.5. Table 5 shows changes in per-disease significance levels for correlated chi-
square tests when the correlation is ignored. Calculations assumed the common correlation
value of 0.5 for the underlying normal scores. With three diseases, the Bonferroni correction
would result in a P-value that is equal to 0.055 when the “true” P-value (that takes into
account the correlation) is 0.05. The table shows that at smaller significance levels, which
are more relevant in the context of GWAS, the consequence of ignoring the correlation is
negligible. We considered values of k as high as 10000, to illustrate the fact that even at
large k there is little change in P-values at small significance levels.

DISCUSSION
In this manuscript, we describe methods for combining and adjusting P-values in the context
of the shared controls design. We suggest that P-value based analysis provides powerful
means of inference for association studies that reuse control individuals.

First problem that we consider is the conditional P-value adjustment. This type of
adjustment arises specifically in GWAS, when a particular SNP comes in the spotlight
because of a significant P-value for a particular disease. A scenario that we consider is when
case samples for several etiologically related diseases are contrasted against a common
control group. Suppose that a small P-value is observed for one disease, significant at the
GWAS level. Suppose that next we notice that the association P-value for a related disease
at that SNP is 0.01. This value by itself would not stand out among the GWAS results.
However, if these two P-values were independent, we could claim that there is support for a
hypothesis of common etiology. With the shared controls design, P-values are no longer
independent. Chances of observing a second P-value as small as 0.01 or smaller is no longer
1%, and can be considerably higher. Thus, without taking the correlation into account we
would arrive at a spurious conclusion. Or approach allows to quantify just how likely it is to
observe a small P value, given observations of small P-values for one or several related
diseases and leads to a conditional P-value adjustment.

Next, we consider the problem of combining association signals across several diseases. We
find that weighted versions of P-value combination methods that take into account
correlation due to shared individuals are as powerful as analysis that aggregates individual
genotype information. These methods are especially useful in meta-analytic applications.
Association signals can be combined across distinct diseases with similar, genetically
mediated etiology. The inverse chi-square method that is robust in the presence of either
association heterogeneity or association direction reversal is especially useful. Alternatively,
P-values obtained for a single disease and several independent case samples, contrasted
against the same control group, can be combined to ascertain an overall strength of
association. The proposed inverse normal method is most appropriate for this situation. The
P-value combination methods described here are useful in broader contexts than just the
shared controls design. These methods can be applied whenever asymptotically normal
statistics, or their squared versions are used, and the correlation between the statistics is
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either known, or when the tests are independent. The idea of combining several two-sided P-
values in a meta-analytic application by first converting them to one-sided, combining, and
converting the result back to a two-sided P-value was considered previously. Overall and
Rhoades (1986) considered such approach based on the Fisher combination method [Overall
and Rhoades, 1986]. However, because the effect direction cannot be chosen beforehand,
one would have to consider both directional hypotheses in turn with that approach, then
compute two one-sided P-values, and then double the minimum of the two. Doubling is
nothing more than the Bonferroni penalty, which results in a conservative test. In fact, the
resulting P-value can be greater than one. With the inverse normal approach that we
advocate, two combined Z-scores are identical but opposite in sign. Thus, our approach
avoids the penalty, and gives a single two-sided combined P-value. Moreover, we find that
in most cases, the resulting P-value is nearly the same as that provided by the overall
statistic, based on pooling raw data. Our weighting approach for combined P-values gives an
improvement over a previously suggested weighting by the study size for combining
independent tests [Whitlock, 2005]. We suggest that for the independent tests, the optimal
weighting is by the square root of the study size, that is, the weights should be proportional
to the inverse of the standard error.

The last issue is that of multiple testing. Whenever tests are combined with the goal of
obtaining a consensus evidence in support of a common hypothesis, there is a possibility that
a significant result is driven by just one very small P-value. If P-values for k diseases are
combined, one might be interested in examining individual P-values, adjusted for having
made k tests. In general, taking into account the correlation between these tests results in a
less conservative penalty than that provided by a simple Bonferroni adjustment. However,
we find that when the shared control group is at least as large as the largest case group, the
improvement over the Bonferroni adjustment is negligible, especially at small significance
levels that are appropriate in the context of GWAS. Thus, we recommend that when the
multiplicity adjustment is made based on testing association for k diseases, the Bonferroni
adjustment is sufficient.

Recently, Lin and Sullivan described ways to perform meta-analysis by combining
individual records as well as summary statistics which also allow for shared study subjects
[Lin and Sullivan, 2009]. Their approaches and the approaches we describe are mutually
complementary, building toward a statistical framework for comprehensive analysis of
genetic data with overlapping subjects. The P-value based approach is efficient, but it is also
useful because of its simplicity and broad applicability. Most of the analysis described here
only requires access to association P-values and knowledge of sample sizes. The inverse
normal approach has an additional obvious requirement for knowledge of the association
direction: with this approach, one would not want P-values to reinforce the combined result,
unless the respective effect directions are in agreement.
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APPENDIX A

CORRELATION BETWEEN ASSOCIATION STATISTICS
We appeal to asymptotic normality of the one-sided version of common association
statistics, such as the Cochran-Armitage statistic or chi-square statistics for testing the
difference between two binomial proportions. Under population HWE, these statistics are
themselves asymptotically equivalent [Guedj et al., 2008]. We start by establishing
correlation between two differences of binomial proportions, (q01 − q11), (q02 − q12). Here,
q11, q12 denote estimated allele frequency in two sample of cases, and q01, q02 denote
estimated allele frequency in corresponding samples of controls. Next, assume that samples
partially overlap, i.e. share N0S controls, and N1S cases, and that the population allele
frequency is q, under the absence of association. The numbers of distinct controls in studies
1 and 2 are denoted by N01 and N02. For the numbers of distinct cases the notation is N11
and N12. Due to the presence of shared individuals, there is covariance between two
differences, and it depends on the allele frequency:

However, allele frequencies cancel out in the corresponding correlation:

(A-1)

This corresponds to the correlation derived for a signed statistic in a logistic regression
model by Lin and Sullivan [Lin and Sullivan, 2009].

The main focus of this paper is on the situation when only controls are reused. The formula
(A-1) simplifies, and to facilitate notation, we drop the “S” subscript. Thus, from now on, N0
will denote the number of shared controls, and N1, …, Nk will denote the sample sizes of
cases for diseases (or studies) 1 through k. With partially overlapping controls, the
correlation formula becomes:
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Next, we are interested in the correlation between asymptotically normal test statistics,

, and in the correlation between their squares, where STi stands for the
standard deviation and N denotes sample size. Sample sizes are set to be equal to simplify
notation, which is not essential for the argument. Denote  = Cor(q01 − q11, q02 − q12).
Under no association,

These approximations utilize the asymptotic normality of T ̄i in computing the variance

, first order Taylor series approximations for variances and covariances of functions of
random variables, and the fact that the square of a zero-mean bivariate normal pair with
correlation  has the correlation .

This result extends to the correlation of two chi-square statistics for 2 × C contingency tables
that share one of the rows (samples). One such statistic is the case-control association
statistic based on the counts of the three SNP genotype classes. Each chi-square statistic can
be written in the form that depends on the sum of C squared frequency differences for the
two rows,

where q̄i is the pooled frequency for the column i, and mij are sample sizes for the cell (i, j).
Let the shared row be the row zero, with the sum N0 = Σ m0i. Without loss of generality,
assume the sample is shared completely. Then, for any given term i of the sum above, the
covariance between the two tables, considering only that term, is 2(qi(1 − qi)/N0)2, where qi
is the population frequency under the H0. There is also covariance between the terms within
a table, as well as covariance between the terms i, j; i ≠ j between the two tables. In the
equation below, the former contributes to the covariance (the second part of the numerator);
and the later to the variance (the denominator)
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Thus, the correlation is equal to .

APPENDIX B

CONDITIONAL P-VALUES AND TYPE-I ERROR: DERIVATIONS
Allowing for association with disease 1, we denote the standardized mean allele frequency
difference by

(B-1)

where q0, q1 are population allele frequencies in controls and the disease 1 cases. Under the
null hypothesis of no association, η1 = 0. First, we derive the distribution for the P-values in
study 2 (P2) given that the P-value in study 1 (P1) was smaller than a given value
(henceforth denoted by α1). Denote the joint bivariate normal cumulative distribution
function (CDF) evaluated at X = x, Y = y by , where η1, 0 are the mean
parameters, the variance is 1, and the correlation parameter is . Denote the corresponding
conditional CDF of X evaluated at x, given Y = y by . Denote the one-
dimensional normal CDF, with the variance 1, mean η1, and evaluated at x by Φ(x; η1). The
corresponding density is denoted by φ (x; η1). Denote the one degree of freedom chi-square
CDF, with the non-centrality λ, evaluated at x by Ψλ (x). The corresponding density is
denoted by ψλ (x). The quantiles are denoted by the inverses, e.g. Ψ−1(x). The conditional
probability that the second study P-value is less than or equal to α2 is then given by

(B-2)

where

The sums define regions over which the CDF should be evaluated, after taking square roots
of the squared statistics. Under the null hypothesis (η1 = 0), M is just α1. As ratios N0/N1,
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N0/N2 increase, J approaches Pr(P1 ≤ α1) Pr(P1 ≤ α2). The probability in (B-2) gives the
type-I error for the test of association with the second disease. For example, if the nominal
significance level is α, then in the context of a GWAS with L tests, one can define α1 to be
the Bonferroni threshold, i.e. α1 = α/L. The value α1 needs to be pre-defined, although the
observed value of P2, i.e. P2 = p2 can be used in place of α2. In practice, one would like to
have a way to plug in the actual P-values for the two diseases, to obtain a new P-value,
corrected for correlation due to shared controls. This is accomplished with the following
formula, obtained by differentiating the distribution in (B-2) with respect to the first
dimension.

(B-3)

where

The conditioning can be extended to many P-values in two ways. The first way proceeds as
before using the fact that the probability  can be represented in terms
of a multivariate normal CDF of the same dimension. This method has an advantage in that
the effect directions do not need to be known. However, there is a disadvantage in that the
formulas become increasingly complicated as k increases. The second method requires
knowledge of which of the two alleles at a SNP is positively associated with a particular
disease. To derive a general formula for k P-values, Pr(Pk ≤ pk | P1 = p1, P2 = p2, …, Pk−1 =
pk−1), we utilize the symmetry of the normal distribution. First, the P-values, pi, are
transformed to Z-scores by equations (3), (4).

The “effect” is defined as the observed direction of association for the minor allele. The

scale factors for Zi’s are , where the matrix R has elements as given by equation
6. The covariance matrix of Zi, C = diag(w) R diag(w)T, can be partitioned as

Under the hypothesis of no association for disease k, the conditional distribution of Zk has
the variance 1 and the mean , where Z(−k) is the vector of Zi’s with
Zk omitted, and the means (η) are the standardized frequency differences, computed as in
(B-1), i.e.
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(B-4)

Under the hypothesis of no association for any of the diseases, η = 0. Then

(B-5)

When k = 2, this probability is the same as (B-3), which was derived directly for two-tailed
statistics. Because of the symmetry of the normal transformation, the choice of which allele
defines the direction is inconsequential in this approach, because the result is being
converted back to a two-tailed P-value. Utilization of the allele effect simply allows one to
keep track of switches in the direction of association between Zi’s.

The values η(−k) would usually be set to zero, thus assuming no association for any of the
diseases. Only when some of the associations are believed to be genuine, allele frequency
estimates, obtained from large independent studies, can be plugged in into (B-4). Although
this would result in a less conservative adjustment, the utility of allowing for non-zero
means appears limited.
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Figure 1. Distribution of P-values under no association
(A) P1: histogram of P-values for the first disease, while retaining P1 ≤ 0.01. (B) P2:
histogram of P-values for the second disease. (C) Corrected P2, calculated by equation
(B-5).
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Figure 2. Correspondence of combined P-values and “true” P-values in WTCCC data for 10,000
random SNPs
“True” P-values, computed from Zraw are on the y-axis, plotted against P-values combined
by the inverse normal method with different weightings (right graph: −log10 (P) plot).
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Figure 3. Effect of different weighting on the combined analysis; large N0/Ni ratio
“True” P-values, computed with the trend test on pooled data are on the y-axis, plotted
against P-values combined with the inverse normal method, using different weightings; N0 =
5000; Ni = 100, 200, …, 700.
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Figure 4. Effect of different weighting on the combined analysis; small N0/Ni ratio
“True” P-values, computed with the trend test on pooled data are on the y-axis, plotted
against P-values combined with the inverse normal method, using different weightings; N0 =
200; Ni = 100, 200, …, 700.
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Table 3

Power results for the combined analysis

Setting

Method

Chi-square on raw data Inverse normal Inverse chi-square

Power at α = 0.05

Setting 1 0.915 0.917 0.912

Setting 2 0.907 0.908 0.753

Setting 3 0.604 0.603 0.904

Setting 4 0.854 0.855 0.913

Setting 5 0.269 0.264 0.977

H0 (no association) 0.0493 0.0492 0.0497

Setting 1: The same effect for all diseases (log-relative risk γ = 0.115); ; N0 = 3000; N1, …, N10 = 2000.

Setting 2: The same effect for all diseases (log-relative risk γ = 0.1); large N0/Ni ratio: N0 = 10000; N1, …, N10 = 500.

Setting 3: The same effect direction with effect size heterogeneity; disease-specific log-relative risks: {γi} = {0.26/i}; N0 = 3000; N1, …, N10 =
2000.

Setting 4: The same effect direction with effect size heterogeneity and large N0/Ni ratio: N0 = 10000; N1, …, N10 = 500; {γi} = {0.31/i}.

Setting 5: The same effect magnitude with the sign flipped in 3 out of 10 diseases; |γ| = 0.108; N0 = 3000; N1, …, N10 = 2000.
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Table 4

Power results for the combined analysis – variable sample sizes

Setting

Method

Chi-square on raw data Inverse normal Inverse chi-square

Power at α = 0.05

Setting 1 0.917 0.919 0.915

Setting 2 0.997 0.997 0.994

Setting 3 0.607 0.607 0.852

Setting 4 0.982 0.983 0.998

Setting 5 0.282 0.270 0.970

H0 (no association) 0.0499 0.0498 0.0493

Setting 1: The same effect for all diseases (log-relative risk γ = 0.115); ; N0 = 3000; N1, N2, …, N10 = 400, 800, …, 4000.

Setting 2: The same effect for all diseases (log-relative risk γ = 0.1); large N0/Ni ratio: N0 = 10000; N1, N2, …, N10 = 400, 800, …, 4000.

Setting 3: The same effect direction with effect size heterogeneity; disease-specific log-relative risks: {γi} = {0.26/i}; N0 = 3000; N1, N2, …, N10
= 400, 800, …, 4000.

Setting 4: The same effect direction with effect size heterogeneity and large N0/Ni ratio: N0 = 10000; N1, N2, …, N10 = 400, 800, …, 4000; {γi} =
{0.31/i}.

Setting 5: The same effect magnitude with the sign flipped in 3 out of 10 diseases; |γ| = 0.108; N0 = 3000; N1, N2, …, N10 = 400, 800, …, 4000.
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