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Abstract
Two sets of ligand binding decoys have been constructed for the CSAR (Community Structure-
Activity Resource) benchmark by using the MDock and DOCK programs for rigid-ligand and
flexible-ligand docking, respectively. The decoys generated for each complex in the benchmark
thoroughly cover the binding site and also contain a certain number of near-native binding modes.
A few scoring functions have been evaluated using the ligand binding decoy sets for their abilities
of predicting near-native binding modes. Among them, ITScore achieved a success rate of 86.7%
for the rigid-ligand decoys and 79.7% for the flexible-ligand decoys, under the common definition
of a successful prediction as RMSD < 2.0 Å from the native structure if the top-scored binding
mode was considered. The decoy sets may serve as benchmarks for binding mode prediction of a
scoring function, which are available at the CSAR website (http://www.csardock.org/).
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1 Introduction
Performance assessment is an important issue in the development of scoring functions for
structure-based drug design.1–7 Usually, the performance can be assessed from three
aspects: binding mode prediction, binding affinity prediction, and database screening.1 The
binding mode prediction is to evaluate the ability of a scoring function to identify
experimentally determined native structures in a set of diverse putative binding modes. The
binding affinity prediction is to assess the ability to correctly predict the binding tightness
between a protein and a ligand, for example, the correlation between the experimentally
measured binding affinities and the computationally calculated binding energy scores. A
perfect scoring function should give a correlation coefficient of 1.0. Lastly, the virtual
database screening is to test the reliability of a scoring function to distinguish true binders
from a set of decoy compounds for a given target protein.

These three aspects are closely related to each other and a perfect scoring function should
perform equally well on all of them. Unfortunately, current scoring functions are far from
perfection, and many of them are specialized or designed for only one or two of the three
aspects/purposes.1,8–10 Achieving excellent performance on all the three criteria (i.e.,
binding mode prediction, binding affinity prediction and database screening) is challenging.
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A variety of test sets have been developed for the assessment of scoring functions on mode
prediction, affinity prediction or database screening.8,11–20 These test sets are valuable
assets for the molecular docking community, but also pose difficulty for comparative
analysis of existing scoring functions as different research groups use different test sets.
There is a pressing need for the scoring community to have access to common, high-quality
and publicly available scoring benchmarks so that the assessments can be performed on the
same baseline. Lessons learned from scoring these benchmarks will provide valuable
insights into how to improve the existing scoring methods and how to develop novel
approaches. Recently, Dr. Heather Carlson at the University of Michigan, Ann Arbor has
been leading an NIH-sponsored big project on constructing such benchmarks named CSAR
(Community Structure-Affinity Resource, http://www.csardock.org/). The first CSAR
benchmark was released in 2009, which consists of 345 diverse protein-ligand complexes
with high-resolution structures and known affinities. Particularly, the crystal structures of
the complexes in the benchmark were carefully examined and any inconsistencies with the
electron density maps were fixed by recalculating the related atomic coordinates by the
CSAR team (http://www.csardock.org/).

In an accompanying work,21 we have assessed the ability of our ITScore scoring function on
binding affinity prediction for the CSAR benchmark. In the present study, we have
constructed decoys of ligand binding modes for every complex in the CSAR benchmark.
The motivations are as follows: First, a good performance on affinity prediction does not
necessarily warrants the scoring function to be capable of discriminating near-native binding
modes from non-native binding modes in the decoys.1 For example, scoring functions that
are mainly based on contact scores may favor any saltbridge formation without considering
the desolvation penalty and van der Waals (VDW) repulsion, leading to an unsatisfactory
performance in binding mode prediction. Second, a scoring function that fails in mode
prediction is expected to also fail in virtual screening. Lastly, binding mode prediction is
important for mechanistic studies of ligand binding, the insight from which can provide
guidelines on lead optimization. In this work, we present two sets of ligand binding decoys
(up to 500 sampled decoys plus one native ligand mode per complex in each set) that we
constructed for the CSAR benchmark of 345 protein-ligand complexes by rigid and flexible
ligand docking with MDock9,10,22,23 and DOCK (v5.3.0)24,25 tools. These decoys may serve
as a CSAR benchmark of binding mode prediction for the ligand-protein docking
community.

2 Materials and Methods
2.1 Docking Protocol

We generated two sets of ligand binding mode decoys for the CSAR benchmark using a
hierarchical docking protocol, one for rigid ligand treatment and the other for flexible ligand
treatment. The flowchart of the protocol is illustrated in Figure 1.

Specifically, for rigid-ligand docking, the putative ligand binding modes were sampled by
docking the native ligand against the binding site using MDcok for each protein-ligand
complex in the CSAR benchmark. MDock is an automated molecular docking program
(http://zoulab.dalton.missouri.edu/software.htm) which integrates the fast ensemble docking
algorithm for multiple protein structures22,23 and efficient ITScore scoring function for
protein-ligand interactions.9,10 The program suite uses the commonly-used Sybyl (Tripos,
Inc.) mol2 files of the protein and the ligand as input, in which hydrogens and atomic
charges are optional and their effects will be ignored when they are present during docking/
scoring calculations. MDock samples ligand binding orientations by performing exhaustive
matching between the ligand heavy atoms and the representative spheres points of the
binding pocket (see below), which generates and scores thousands of ligand binding modes
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with a wide range of RMSD values within seconds, as described in ref 22. Here, RMSD
refers to the root mean square deviation of the heavy atoms between the ligand decoy and
the native structure. During the docking calculations with MDock, the binding site was
defined as the region within 15 Å from the native ligand. The sphere points that represent
the negative image of the whole protein were generated using Kuntz et al's algorithm.26 The
sphere points that are within the binding site were selected to guide putative ligand
orientation sampling via a matching algorithm.22,26,27 There were about 30∼100 sphere
points for each complex, depending on the size of the binding pocket. The maximum
number of the effective ligand orientations was set to 2000 for sufficient sampling around
the binding site. Next, the ligand orientations being generated were clustered to remove the
degeneracy in the decoys. If two ligand orientations had an RMSD < 1.0 Å from each other,
only the one with lower binding score was kept. The top 500 ligand binding modes after
clustering were retained as the decoys for each complex.

Since the scoring function ITScore in MDock considers heavy atoms only and ignores the
contribution from hydrogens, MDock did not optimize the positions of the hydrogens during
ligand sampling despite the hydrogens were kept in the mol2 files. Therefore, the decoys
generated by MDock may contain atomic clashes from hydrogens between the protein and
ligand. However, many scoring functions use all-models, and the positions of hydrogen
atoms should be optimized before the assessment of those scoring functions. Therefore, all
the ligand decoys generated by MDock were further optimized/refined by the all-atom force-
field scoring function of DOCK v5.3.0 (http://dock.compbio.ucsf.edu/).25,28 For each
complex, the native structure was also included in the decoys, yielding a set of rigid-ligand
decoys of up to 501 binding modes (up to 500 sampled decoys plus one native structure).

It should be noted that there still exist a few atomic clashes in the decoys after DOCK
refinement due to small-size binding pockets and improperly preassigned hydrogens. Such
ligand decoys were retained deliberately in order to test whether a scoring function (e.g., a
contact-based scoring function) penalizes too-close contacts. This set of decoys is
recommended for the assessment of general binding mode prediction. However, if a scoring
function has difficult in handling atomic clashes, a second set of decoys was prepared by
removing all the decoys that contain atomic clashes (Figure 1). Specifically, a program was

written in which two atoms are defined to have clashes if  Å for heavy-

heavy atom pairs,29  Å for heavy atom-hydrogen pairs, or rij < 0.5 Å
for hydrogen-hydrogen pairs. Here, rij is the distance between atom i and atom j, and 

and  are their van der Waals (VDW) radii, respectively. The program was used to
remove the atomic clashes in the first general set of ligand decoys.

The aforementioned process considered ligand orientational sampling only. The decoys
evaluate and/or help improve the non-conformational factors/terms in a scoring function on
mode prediction. To further include the conformational effect, a flexible-ligand decoy set
was also generated for the CSAR benchmark. The procedure was similar except that the
ligand flexibility was represented by multiple conformers and each conformer was then
docked as a rigid body (Figure 1). Specifically, a set of conformations were generated for
each ligand using the OMEGA program (version 2.2.0, OpenEye Scientific, Santa Fe, NM)
with the default parameters. Up to 400 conformers were generated for each ligand. Then,
each ligand conformer (including native ligand) was docked to the protein by MDock and
putative orientations were sampled. The putative binding conformations of all the
conformers were combined and clustered. The final top 500 conformations were refined by
DOCK. Thus, up to 501 decoy conformations (up to 500 decoys plus one native structure)
were obtained for each protein-ligand complex, serving as a CSAR benchmark for flexible-
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ligand decoys. A second flexible-ligand decoys were also prepared by further removing the
decoys that contain atomic clashes.

2.2 Preparation of the Protein and Ligand files
The protein (in pdb format) and ligand (in mol2 format) files for the CSAR benchmark
(2009 release) have been well prepared by the CSAR team, which consists of set 1 and set 2
with a total of 345 diverse protein-ligand complexes. Set 1 consists of 176 complexes, most
of which were deposited in the Protein Data Bank (PDB)30 in 2007 and 2008. Set 2 contains
169 complexes which were deposited in 2006 or earlier. The missing atoms and hydrogens
in the protein were pre-added by the CSAR team. Water molecules were removed from the
protein because the positions of structural waters are normally unknown in advance for real
docking calculations. The protonation states and AMBER (Assisted Model Building with
Energy Refinement)31 charges were automatically assigned for the proteins using the UCSF
Chimera software.29 The metal ions, unnatural residues, cofactors, and post-translational
modifications that Chimera failed to assign for charges were treated as part of the proteins
and assigned with Gasteiger charges32. The Sybyl (Tripos, Inc.) mol2-format files of the
ligands provided in the CSAR benchmark were directly used for our docking, in which the
AM1-BCC charges 33,34 were preassigned.

3 Results and Discussion
Figure 2 shows the statistics of the ligand binding decoys generated by MDock. It can be
seen from the figure that most of the complexes in the CSAR benchmark have a certain
number of decoys close to their native structures (RMSD < 2.0 Å), which is necessary for
the assessment of binding mode prediction. For rigid-ligand docking, there are a maximum
of 31 near-native decoys for a complex, whereas for flexible ligand docking, the number is
132. The presence of more near-native modes in the flexible ligand decoys is because a
ligand can adopt different conformations through OMEGA during orientational sampling in
flexible ligand docking, which increased the conformational diversity of ligand binding
decoys.

It can also been noticed in Figure 2 that about 40 complexes have only one or two near-
native binding modes in their rigid and flexible ligand decoys. There may be two reasons for
the few near-native modes in these cases. The first reason may be due to our clustering
procedure in ligand sampling, which removes many other near-native binding modes within
1.0 Å RMSD from the kept near-native modes in order to increase the sampling diversity
and challenging level of the ligand decoys. The second possible reason is that some binding
pockets are small and only the native ligand mode can fit these binding pockets well. In such
cases, there was an RMSD gap between the native mode (RMSD ≃ 0 Å) and non-native
binding decoys (RMSD > 2 Å). However, this fact would not affect the evaluation of scoring
functions on the decoy sets as the native ligand binding modes were included in the final
decoys. Furthermore, generating more near-native poses by reducing the clustering cutoff
would not significantly improve the performance of a scoring function, given the fact that
the native mode is already in the decoys and its position can be easily optimized near the
native state by the scoring function.

In addition, Figure 2 also indicates that the sampled ligand decoys span a wide range around
the binding site. For most of the complexes, the maximum RMSD values between the
decoys and the native structure range from 10 Å to 25 Å. Figure 3 shows an example of the
distribution of the flexible ligand binding decoys in terms of RMSD values (Set 1, #122,
PDB entry: 1UTO). The corresponding binding conformations on the protein are illustrated
in Figure 4, showing that the ligand decoys fully cover the binding site.
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Next, we assessed our scoring function ITScore in MDock with the CSAR mode prediction
benchmark. ITScore is a knowledge-based scoring function of which the pairwise potentials
were extracted using an iterative method from the experimentally determined protein-ligand
crystal structures that are mostly different from the CSAR benchmark and the very small
overlap has little effect on the scoring results.9,10,21 Specifically, we calculated the success
rate of ITScore on binding mode prediction with the benchmark. By default, a prediction
was defined to be a success if the top-scored binding mode has an RMSD < 2.0 Å from the
native structure, unless otherwise specified. Table 1 and Figure 5 show the success rates of
ITScore on identifying native binding modes for the CSAR benchmark of 345 complexes.
For references, we also evaluated the performances of the force-field scoring function
(DOCK/FF) and van der Waals (VDW) only 28 provided by UCSF DOCK (v5.3.0) with the
same decoy sets. Minimization was done for each decoy structure during scoring
calculations.

It can be seen from Figure 5 that ITScore achieved the highest success rates in identifying
native binding modes for both rigid and flexible ligand decoys. For rigid-ligand decoys, the
success rate is 86.7% for ITScore, compared to 80.0% and 64.1% for DOCK/FF and VDW
scoring functions. For flexible-ligand decoys, the success rate is 79.7% for MDock,
compared to 71.0% and 52.8% for DOCK/FF and VDW. The RMSD of the top predicted
binding mode for each complex in the CSAR benchmark is shown in Figures 6 and 7. It can
be seen that ITScore predicted the highest number of near-native binding modes (i.e.,
RMSD < 2.0 Å), which is consistent with Figure 5. Moreover, overall speaking, the binding
modes predicted by ITScore are closer to the experimentally determined structures (i.e., with
smaller RMSD values) compared to DOCK/FF and VDW.

The results are similar when different RMSD criteria were used, as shown in Table 1 and
Figure 5. For example, for a more stringent criterion of RMSD < 0.5 Å, ITScore yielded
relatively higher success rates of 76.8% and 68.7% for rigid and flexible ligand decoys,
compared to 55.7% and 48.1% for DOCK/FF and 43.5% and 33.9% for VDW. In addition,
to examine the effect of including native binding modes, we have calculated the success
rates of ITScore, DOCK/FF and VDW by excluding native ligand modes from the binding
decoys. The success rates showed no significantly difference for their relative performances
(Table 1). These results suggest the advantage of the pairwise effective potentials of
ITScore, which were extracted from the experimental structures.

It is thought that the energy landscape for protein-ligand interactions exhibits a funnel-like
shape near the native state so as to facilitate rapid ligand binding in the dynamics point of
view.35 This funnel-like shape may be roughly measured by the correlation between the
scores and the RMSDs of ligand binding decoys of a complex. The correlation coefficients
vary from −1.0 to 1.0. The higher the correlation, the more likely the energy landscape is
funnel-like and thus the more reasonable the scoring function would be. A coefficient of 1.0
stands for an ideal energy funnel, 0.0 represents a random case, and −1.0 corresponds to
complete anti-correlation (i.e., worse scoring). Figure 8 shows the distribution of score-rmsd
correlations (i.e., Pearson coefficients) of ITScore, DOCK/FF, and VDW for the rigid and
flexible ligand decoys of the 345 CSAR complexes. It can be seen from Figure 8 that
ITScore achieved good score-rmsd correlations for significantly more complexes than
DOCK/FF and VDW, suggesting that ITScore is also more reasonable in terms of binding
dynamics.

Very recently, a new version of CSAR benchmark was released, which is referred to as the
CSAR-NRC HiQ benchmark. A major difference between the two versions is that the
protonation states of the complexes were curated in the CSAR-NRC HiQ benchmark.
Because the matching procedure for ligand orientation generation in MDock requires only
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the positions of ligand heavy atoms and sphere points, which are not affected by protonation
states/partial charges of the atoms, it is expected that there will be no dramatic difference
between the ligand decoys for the CSAR and CSAR-NRC HiQ benchmarks in terms of
sampling. The statistics of the ligand decoys for the CSAR-NRC HiQ benchmark are shown
in the Supporting Information, and the corresponding success rates of ITScore, DOCK/FF
and VDW are listed in Table 1. It can be seen from Table 1 that there is no significant
difference in the success rates of ITScore and VDW between the CSAR and CSAR-NRC
HiQ benchmarks, suggesting the robustness of ITScore. It is also notable that DOCK/FF
yielded improved success rates of 86.6% and 79.3% for rigid and flexible ligand decoys of
the CSAR-NRC HiQ benchmark, respectively, compared to 80.0% and 71.0% for the CSAR
benchmark. The finding again indicates the importance of atomic charge/protonation
assignments to force filed scoring functions, even though the curation of protonation states
for the CSAR-NRC HiQ version did not improve the performance of DOCK/FF in affinity
prediction.21

Considering the sensitivity of force filed scoring functions to electrostatic interactions (and
therefore charge assignments), users are recommended to re-assign the partial charges that
are consistent to their force fields to the protein and ligand atoms for the best scoring
performance when they use the ligand decoy sets presented in this work.

4 Conclusion
Binding affinity prediction and binding mode prediction are two important aspects for
assessment of a scoring function. Yielding good correlation in affinity prediction does not
guarantee a scoring function to perform equally well in mode prediction, and vice versa.1
The CSAR decoy test sets constructed in the present study evaluate the ability of a scoring
function to discriminate near-native binding modes from non-native decoy modes for the
complexes in the CSAR benchmark.

Specifically, we have constructed two sets of well-sampled ligand binding decoys (up to 500
docking decoys plus one native structure per complex in each set) for the CSAR benchmark
around the binding sites. One set is the rigid-ligand decoys, in which the ligands were
treated as rigid bodies and only the orientational space was sampled. The other set is the
flexible ligand decoys, in which the ligand conformational space was also sampled. The two
sets of ligand binding decoys may serve as a benchmark for assessing a scoring function on
binding mode prediction.

The assessment of our ITScore scoring function using the CSAR rigid-ligand decoy sets
achieved a success rate of 86.7% on identifying native binding modes when the top
orientation was considered for each complex under the criterion of RMSD < 2.0 Å,
compared to 80.0% and 64.1% for the force field (DOCK/FF) and van der Waals (DOCK/
VDW) scoring functions of UCSF DOCK. With the CSAR flexible-ligand decoys, ITScore
yielded a success of 79.7%, compared to 71.0% and 52.8% for DOCK/FF and DOCK/
VDW. Moreover, the binding modes predicted by ITScore are closer to the experimentally
determined structures (i.e., more accurate) than DOCK/FF and DOCK/VDW. The lower
success rates with the flexible ligand decoys than with the rigid ligand decoys may be
because none of these scoring functions explicitly account for ligand conformational
energies. The two reference scoring functions, DOCK/VDW and DOCK/FF, were
introduced as crude gauges of energetic contributions from nonpolar interactions and
electrostatic interactions. It is not surprising that VDW yielded the lowest success rates for
binding mode prediction, because this reference scoring function accounts for only the effect
of geometric complementarity on binding. DOCK/FF, which is the sum of the coulombic
electrostatic energy and the VDW energy, performs better than VDW on binding mode
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prediction because of the inclusion of electrostatic specificity. In contrast, ITScore is an
iterative knowledge-based scoring function.9 Its pairwise potentials not only consider the
VDW and electrostatic interactions but also implicitly incorporate the effects of desolvation
and entropy,36 which may be attributed to the best performance of ITScore.

The present decoy sets consist of a reasonable number of well-sampled, diverse binding
modes. Ideally, one may construct a scoring-function-independent decoy set by using
exhaustive sampling around the binding site. However, exhaustive sampling is unnecessary
for assessment of scoring functions because most of the generated ligand modes would be
trivial binding decoys that either make no contact or have severe atomic clashes with the
protein. Therefore, a scoring function such as ITScore used in this study is required to filter
out those trivial binding modes so as to form a set of physicochemically reasonable ligand
binding decoys. The resulting decoys would provide a good, more challenging basis to
assess the performance of different scoring functions. The decoys could lead to a bias for a
scoring function being assessed to outperform the filtering scoring function (e.g. ITScore in
the present study), because the filtering scoring function actually ranked many more ligand
binding modes during the initial ligand sampling than the decoy set which kept only the
modes with relatively good scores from ITScore.

In the present decoys, the native ligand structure was included in ligand sampling for each
complex. Future study may replace the native mode by a set of near-native ligand
conformations (e.g., RMSD within 2.0 Å from the native mode) generated by programs like
OMEGA using a small clustering cutoff. Combined with the rest ligand decoys, the new
benchmark would better mimic practices like virtual screening. For the new benchmark, the
scoring performance may depend not only on the tested scoring function but also on the
quality of generated ligand conformations, an interesting issue to be studied in the future.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
A flowchart of the docking protocol for construction of the ligand binding decoys for the
CSAR benchmark.
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Figure 2.
The statistics of the ligand binding decoys for the CSAR benchmark: The number
distribution of the near-native binding modes (RMSD<2.0 Å) in the (a) rigid-ligand and (b)
flexible-ligand decoys of a complex; The maximum RMSD distribution in the (c) rigid-
ligand and (d) flexible-ligand decoys of a complex. Notice that the horizontal axes in Panel
(a) and Panel (b) are in logarithmic scales.
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Figure 3.
The RMSD distribution observed in the ligand binding decoys for No.122 complex of set 1
(PDB code: 1UTO) constructed by (a) rigid-ligand and (b) flexible-ligand docking,
respectively.
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Figure 4.
The flexible ligand binding decoys sampled by our docking method for the No.122 complex
in set 1 (PDB code: 1UTO). The protein is represented by molecular surface. The ligand
binding decoys are shown in semi-transparent, stick mode. The native ligand is shown in
solid, stick mode and colored in magenta (C), blue (N) and gray (H). The figure was
prepared using UCSF Chimera.29
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Figure 5.
The success rates of ITScore, DOCK/FF, and DOCK/VDW on identifying native binding
modes with the ligand decoys constructed for the CSAR benchmark when different criteria
were used regarding the RMSD (Å) between the top-scored pose and the native structure.
For each RMSD criterion, the bars correspond to ITScore, DOCK/FF and DOCK/VDW
from left to right, respectively.
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Figure 6.
The RMSD values of the top binding modes predicted by ITScore (black, filled circle),
DOCK/FF (red, filled diamond), and DOCK/VDW (blue, open circle) with set 1 of the
CSAR benchmark: (a) rigid ligand decoys; (b) flexible ligand decoys. Notice that the CSAR
ID numbers of the complexes are not sequential, and therefore the x axes extend up to 300,
which is more than the total number of complexes.
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Figure 7.
The RMSD values of the top binding modes predicted by ITScore (black, filled circle),
DOCK/FF (red, filled diamond), and DOCK/VDW (blue, open circle) with set 2 of the
CSAR benchmark: (a) rigid ligand decoys; (b) flexible ligand decoys. Notice that the CSAR
ID numbers of the complexes are not sequential, and therefore the x axes extend up to 300,
which is more than the total number of complexes.
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Figure 8.
The distribution of score-RMSD correlations of ITScore, DOCK/FF, and DOCK/VDW for
(a) rigid and (b) flexible ligand binding decoys of the complexes in the CSAR benchmark.
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