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Abstract: Nonlinearmicroscopy can be used to probe the intrinsic optical
properties of biological tissues. Using femtosecond pulses, third-harmonic
generation (THG) and four-wave mixing (FWM) signals can be efficiently
produced and detected simultaneously. Both signals probe a similar pa-
rameter,i.e. the real part of the third-order nonlinear susceptibilityχ(3).
However THG and FWM images result from different phase matching
conditions and provide complementary information. We analyze this
complementarity using calculations, z-scan measurements on water and
oils, and THG-FWM imaging of cell divisions in live zebrafish embryos.
The two signals exhibit different sensitivity to sample size and clustering
in the half-wavelength regime. Far from resonance, THG images reveal
spatial variations|∆χ(3)(−3ω;ω,ω,ω)| with remarkable sensitivity while
FWM directly reflects the distribution ofχ(3)(−2ω1+ω2;ω1,−ω2,ω1). We
show that FWM images provideχ(3) maps useful for proper interpretation
of cellular THG signals, and that combined imaging carries additional
structural information. Finally we present simultaneous imaging of intrinsic
THG, FWM, second-harmonic (SHG) and two-photon-excited fluorescence
(2PEF) signals in liveCaenorhabditis elegansworms illustrating the
information provided by multimodal nonlinear imaging of unstained tissue.
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1. Introduction

Nonlinear(or multiphoton) microscopy is an effective method for obtaining 3D-resolved im-
ages of biological tissues, and two-photon-excited fluorescence (2PEF) microscopy has found
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a broad range of applications in the life sciences [1]. In addition to 2PEF imaging of exoge-
nouslabels and fluorescent proteins, multiphoton microscopy can be used to probe the intrinsic
nonlinear optical properties of tissues. A growing literature shows that physiologically and/or
structurally relevant information is obtained through the detection of coherent signals such as
second-harmonic generation (SHG) [2], third-harmonic generation (THG) [3, 4, 5], or four-
wave mixing (FWM) processes [6] such as coherent Raman scattering (CARS, etc) [7, 8] or
stimulated parametric emission (SPE) [9]. In particular, THG imaging detects spatial variations
of the electronic part of the third-order nonlinear susceptibilityχ(3)(−3ω;ω,ω,ω) [10, 11],
such as lipid inclusions in an aqueous environment [12], and has proven useful for embryo and
tissue imaging applications [3, 4, 5, 13, 14]. When experimentally available, the combination
of different nonlinear contrasts usually provides complementary information. Using pulsed ex-
citation provided by a femtosecond Ti:sapphire oscillator and a synchronously pumped optical
parametric oscillator (OPO), THG and four-wave mixing (FWM) signals can in principle be ef-
ficiently produced and detected simultaneously. In isotropic media exhibiting no electronic nor
vibrational resonance, THG and FWM can be viewed as both probing a similar parameter,i.e.
the real part ofχ(3). However THG and FWM signal levels result from different phase match-
ing conditions. In contrast with FWM, TH coherent signal buildup in the forward direction is
frustrated by the Gouy phase shift of the focused excitation beam, resulting in no THG from
a homogeneous medium having normal dispersion [10, 15]. Non-resonant FWM has received
relatively little attention for nonlinear microscopy applications, apart for being considered as
an unwanted “non-resonant background” in CARS microscopy. However, given their different
dependence on sample size, combined THG and FWM imaging of the same objects should
provide more structural information than either modality alone. In this study we first discuss
the contrast mechanisms of THG and FWM imaging as a function of sample size and geom-
etry and we then present imaging examples from model liquids and live tissues. We discuss
the properties of the images and some implications for THG and CARS microscopy. THG and
FWM are shown to provide complementary information onχ(3) variations, compatible with
other femtosecond laser-based imaging modalities.

2. THG and FWM contrast mechanisms

In this part we first summarize a model for describing coherent nonlinear microscopy used
in previous studies [16, 17], and we briefly discuss THG and FWMχ(3). We use numerical
simulations relying on the Debye-Wolf description of focused fields [18] and on the Green’s
function formalism [19] to review the contrast mechanisms of THG and FWM microscopies,
and to highlight their different sensitivities to sample structure and size in the half-wavelength
regime.

2.1. Excitation fields near focus

Throughout this paper, we assume that the excitation beams entering the objective are Gaussian
with linear polarization along thex axis. In this case the vectorial nature of the focused fields
can be neglected for parametric processes in isotropic media [16, 25, 17]. Thex component of
the field near focus can be expressed as [19]:

Ef (ρ,φ ,z) =
∫ 2π

0

∫ θmax

0
exp(

sin2 θ
f 2
0

)sinθ
√

cos(θ)[cosθ +sin2 ψ(1−cosθ)]

. exp(−ikω ρ sinθ cos(ψ −φ))exp(−ikωzcosθ).dθ .dψ (1)

wheren(ω) (resp.kω ) is the index of refraction (resp. wave vector) at the fundamental wave-
length,θmax = arcsin(NA/n(ω)), with NA being the numerical aperture of the objective, and
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f0 is the filling factor of the objective (ratio between the beam waist and the diameter of the
back aperture).

2.2. THG-FWM third-order polarization and nonlinear susceptibility

The third-order polarizations induced by the focused fields are described by:

P(THG) = χ(3) (−3ω;ω,ω,ω) ·E ·E ·E (2)

P(FWM) = χ(3) (−(2ω1−ω2) ;ω1,−ω2,ω1) ·E1 ·E∗
2 ·E1 (3)

where 1 and 2 denote the two excitation fields in the case of FWM.
For isotropic media the THG and FWM nonlinear susceptiblities can be written as [7, 8, 15]:

χ(3)
i jkl (−3ω;ω,ω,ω) = χ(THG)

1111

(

δi j δkl +δikδ jl +δil δ jk
)

(4)

χ(3)
i jkl (−(2ω1−ω2) ;ω1,−ω2,ω1) = χ(FWM)

1111

(

δi j δkl +δikδ jl
)

+ χ(FWM)
1221

(

δil δ jk
)

(5)

If we consider isotropic media with isotropic resonances and beams linearly polarized along
thex axis, the THG and FWM third-order polarizations read:

P(THG) = 3χ(THG)E3 (ω) (6)

P(FWM) = 3χ(FWM)E2
1 (ω1)E∗

2 (ω2) (7)

The THG and FWM nonlinear susceptiblity tensors then only have one independent element
and can be developed as follows:

χ(THG) = χ(THG)nr + χ(THG)r (8)

χ(FWM) = χ(FWM)nr + χ(FWM)r (9)

wherenr and r denote the nonresonant and resonant parts of the tensors.χ(THG)r describes
resonant THG and is related to one-, two- or three-photon absorption, see [20].χ(FWM)r denotes
resonant FWM and can be related to vibrational (e.g.CARS) or electronic (e.g.stimulated
parametric emission) resonance, see [6, 7, 8, 9, 21].

Several semiempirical models have been proposed for relating the nonresonant com-
ponent ofχ(3) to linear indices [15, 22]. A generalized version of Miller’s rule valid for
some materials [15] proposes thatχ(3)(ω4,ω3,ω2,ω1) ≈ n(ω4)n(ω3)n(ω2)n(ω1), so that
χ(THG) ≈ n(3ω)n(ω)3 and χ(FWM) ≈ n(ω)4. Far from resonance, THG and FWM can
therefore be expected to probe a similar parameterχ(3)nr. However it is in practice uncommon
to find materials that are transparent (i.e.non-resonant) for the frequency range involved in the
processes considered here,i.e. encompassingω and 3ω .

2.3. Propagation of the harmonic fields and signal creation

Once the polarization distribution near focus has been calculated, fields scattered from all po-
sitionsr in the focal region are propagated to a positionR in the collection optics aperture:

EFF (R) =

∫

V
P(r) GFF (R-r) dV (10)
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whereV spansthe excitation volume andGFF is the far-field Green’s function

GFF (R) =
exp(ikR)

4πR

[

I −RR/R2] (11)

whereR = |R| and I is the third-order identity tensor. Finally the total THG/FWM intensity
scattered in the forward direction is estimated by integrating|EFF (R) |2 over the front aperture
of a transmission-collecting objective.

2.4. Phase-matching and structure sensitivity of THG and FWM

We used the previous analysis to compare the THG and FWM signals obtained from model
geometries. We first considered the “classical” geometry where the focal point isz-scanned
through axy interface between two homogeneous media having different nonlinear susceptibil-

ities: χ(3)
1 = 0 andχ(3)

2 = 1. We then analyzed the situation of a two-media sample exhibiting
heterogeneity in the sub-wavelength range while having a constant averageχ(3) over the fo-
cal region. Specifically, we considered a 3-dimensional checkerboard-like sample with variable
grid size, one grid corner being centered at the focus.
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Fig. 1. Effect of phase matching and geometry on THG-FWM contrast. (a) Calculation of
the THG and FWM intensity obtained when scanning a focused Gaussian beam across a
transverse interface between vacuum and an isotropic nonlinear medium. The THG inten-
sity is highest when the interface is in focus (z= 0). (b) Calculation of the THG and FWM
intensity obtained from a three-dimensional checkerboard-like medium as a function of
granularity. This geometry corresponds to a constant average value of< χ(3) > inside the
excitation volume, with variable sub-wavelength spatial distribution. In this configuration,
THG and FWM exhibit different sensitivities to sample granularity in the half-wavelength
regime. The dashed red line on the THG graph indicates the signal level for a transverse
interface geometry with similar< χ(3) >, shown for comparison. Simulation conditions:
NA= 1.2, Excitation withλ1 = 1.2µmandλ2 = 0.8µm
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The interface case illustrates the effect of the different phase-matching conditions for the two
processes.As pointed out in previous studies, under tight focusing conditions there is no signif-
icant phase mismatch between the excitation and forward-scattered beams in FWM (or CARS),

so that the coherent construction length (or effective coherence lengthl (FWM)
c,e f f ) is comparable

to the axial extent of the interaction volume [25]; in contrast the coherent construction length
for forward-THG is smaller because phase matching is frustrated by the (tripled) Gouy phase

shift of the excitation beam, so thatl (THG)
c,e f f ≈ 0.7λ [16]. This results in THG being observed

only near heterogeneities or interfaces, whereas FWM increases with the excited volume. Since
coherent signals scale as the square of the coherence volume, THG signals are expected to be
significantly smaller than FWM signals for comparable pulse energy and duration. On the other
hand, THG selectively highlights spatial< χ(3) > interfaces and heterogeneities over a dark
background (Fig. 1).

The case of a structured sample is more intriguing. In the geometry considered here, the
average value ofχ3 inside the excitation volume is constant and the sample characteristic
size varies fromλ/20 to 2.5λ . It is seen that FWM does not depend on sample granularity,
whereas THG intensity exhibits significant variation for structure sizes in the rangeλ/3−λ ,
and almost no change outside this range. This can be interpreted as follows. For granularity

e << l (THG)
c,e f f the medium may be seen as homogeneous for the THG process, and therefore

THG → 0 and FWM∝< χ(3) >2. In contrast for cube sizes in the rangeλ/3−λ the medium
is not homogeneous at the scale of the THG coherence length, and THG is observed due to
partly non-destructive interferences, whereas< χ(3) > and FWM are unchanged. Finally for
e>> λ the sample geometry resembles a corner interface with the same average< χ(3) >, and
constant THG and FWM signals are predicted. Although the signals can also depend on sample
position, these simulations indicate that the association of THG and FWM microscopy may
provide more information on the sub-wavelengthχ(3) spatial distribution than either modality
alone, and motivates this combination.

3. Experimental results

3.1. Experimental setup

THG and FWM are third-order electronic processes, and can be efficiently produced and de-
tected simultaneously using femtosecond pulses. The experimental setup is depicted in Fig. 2.
Excitation pulses were provided by a titanium:sapphire (TiS) oscillator (80MHz, Chameleon,
Coherent) and by a KTP-based synchronously pumped optical parametric oscillator (OPO)
(APE). TiS and OPO pulses were overlapped using a dichroic mirror (Chroma 1000dcxr) and
synchronized in the sample using a delay line. Imaging was performed on a lab-built micro-
scope incorporating galvanometer mirrors (GSI Lumonics), photomultiplier tubes (PMT, Sen-
sTech), counting electronics, and water immersion objectives (Olympus). TiS and OPO beam
polarizations in the microscope were linear and co-aligned. The objectives used for excitation
were a 60×1.2NA coverslip-corrected and a 20×0.95NA with its pupil underfilled (approxi-
mately 0.75 effective excitation NA). For the experiments presented in this study, TiS and OPO
pulse durations at the sample were approximately 250fs. Coherent scattering (THG, FWM, and
optionally SHG) was detected in the forward direction and selected with dichroics and filters
(Semrock).

3.2. Nonlinear susceptibility measurement of isotropic media with THG and FWM

We performed z-scan measurements to evaluateχ(THG) and χ(FWM) for several isotropic
media. We analyzed three types of liquids: water, chlorotrifluoroethylene (VoltalefR© immer-
sion oil) and triolein (plant oil). For the measurements, the liquid was sealed between two
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Fig. 2. Experimental setup. TiS: femtosecond titanium:sapphire laser. OPO: optical para-
metricoscillator. X-Y: beam scanning system. In this study coherent signals (FWM, THG,
SHG) are detected in the transmitted direction and 2PEF signals are epidetected.

microscope coverslips (see Fig. 3). THG and FWM radiations were separated using a dichroic
mirror and detected simultaneously on two detectors. Shortpass filters (Semrock) were used to
isolate the signals from scattered laser noise.

In the absence of resonance, the value ofχ(FWM) of a pure liquid relative to glass can be
estimated from az-scan profile such as the ones displayed in Fig. 3 using the relation:

χ(FWM)
liq

χ(FWM)
glass

=

√

Il iq − Inoise

Iglass− Inoise
(12)

whereIliq (resp.Iglass) is the FWM intensity measured in liquid (resp. glass) just after (resp.
before) the glass-liquid interface, andInoise is noise principally due to imperfectly rejected TiS
light, measured in air and corrected by the transmission of the setup. MeasuringIliq andIglass

close to the interface minimizes aberration variations between different experiments and the
subsequent measurement errors [23].

The THGχ(3) of a liquid relative to glass can be estimated from two z-scan experiments:
(i) a water-glass-liquid scan as shown in Fig. 3, and (ii) a water-glass-air reference scan (not
shown). Following [20, 24], theχ(3) relative to glass can be estimated as:

χ(THG)
liq

χ(THG)
glass

=

(

1±

√

Iglass/liq

Iglass/air
×C

)

bliqJ
(

bliq∆kliq
)

bglassJ
(

bglass∆kglass
) (13)

whereb is the confocal parameter:b =
2n(ω)λ

π

(

n(ω)2−NA2

NA2

)

,

J is the phase matching integral:J(b∆k) =
∫ +∞

0
exp(ib∆kφ)

(1+2iφ)2 dφ ,

∆k= 3kω −k3ω is the phase mismatch, andC is a normalization factor that takes into account
power fluctuation and transmission changes between the first and second z-scan.Iglass/liq and
Iglass/air are the THG signals measured at the glass/liquid and glass/air interface in the first and
second z-scan. Under moderate numerical aperture excitation, the above equation can simplified
as follows:

χ(THG)
liq

χ(THG)
glass

=

(

1±

√

Iglass/liq

Iglass/air
×C

)

(14)
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Fig. 3. Effect of χ(3) on THG-FWM contrast. (a)z-scan geometry used for estimating
χ(THG) andχ(FWM) of various liquids relative to glass. The focus of a coverslip-corrected
objective is scanned through a water-glass and a glass-liquid interface. (b) Top, THG (left)
and FWM (right) z-scan profiles for different liquids (immersion oil, water, plant oil). The
displayed profiles are normalized to their values at the first interface. Bottom, estimated
values ofχ(THG) (left) andχ(FWM) (right) relative to glass (see text), for different OPO
wavelengths and TiS-OPO frequency differences. Deviation of the waterχ(FWM) curve
near 3600cm−1 is due to the presence of CARS at this frequency shift. It can be seen

thatχ(3)
water < χ(3)

oil in all the conditions explored here. (c) Simultaneously recorded images
of immersion oil droplets in water forλOPO = 1140nmand ωTiS−ωOPO = 3890cm−1.
Water/immersion oil interfaces are visible in the THG images, and immersion oil produces
a stronger FWM signal than water. Scale bar: 50µm.

As seen from this expression an ambiguity remains in the determination ofχ(THG) due to
the two possible signs. This ambiguity was resolved using additional relative measurements at
the interfaces between the different liquids. [12, 20]

We estimatedχ(FWM) as a function of the frequency difference between the Ti:S and the
OPO for frequency shifts ranging from 3550cm−1 to 3890cm−1, andχ(THG) as a function of
the OPO wavelength between 1140nmand 1200nm. The measured values relative to glass are
displayed in Fig. 3.

Consistent with previous studies [12], these data show thatχ(THG)
water < χ(THG)

oil , which explains
why water/lipid interfaces are visible in THG microscopy [14]. The measurements also indicate
that χ(FWM) values for water, immersion and plant oil are significantly different at 3890cm−1

where there are no vibrational resonances for the three liquids (Fig. 3b). Therefore nonresonant
FWM microscopy is expected to distinguish oil droplets from water with a good contrast, as
illustrated in Fig. 3c.
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These experiments indicate thatχ(THG) and χ(FWM) have comparable values, and that
their relative values for the materials considered here have similar relative order,i.e.
χ(3)

water < χ(3)
immersion oil< χ(3)

glass< χ(3)
plant oil holds true for both processes.

Quantitative differences are observed in the case of plant oil and water for which the ratio

χ(THG)
liquid /χ(THG)

glass is found to be higher thanχ(FWM)
liquid /χ(FWM)

glass . This may be related to resonant

enhancement of theχ(THG), since both liquids exhibit absorption in the 1100nm-1200nm
range. Another difference between THG and FWM is observed in the spectral dependence of
χ(FWM) for water (Fig. 3b). This is attributed to the presence of resonant CARS from water,
since OH bonds exhibits vibrational resonance between 3300cm−1 and 3600cm−1, whereas
immersion and plant oils have no vibrational resonance in the frequency range studied here.
Consistently, the estimated value forχ(FWM) of water decreases with the frequency shift, while
the estimatedχ(FWM) of immersion oil is constant. We conclude that, despite the possible
presence of electronic or vibrational resonances, the FWM signal can generally be considered
as a qualitativeχ(3) map for analyzing THG images.

3.3. THG-FWM microscopy of a zebrafish embryo during early divisions

THG microscopy has proven effective for studying cell divisions in the early zebrafish em-
bryo [5]. In particular, THG images highlight the boundaries of cells, nuclei, and yolk platelets
with remarkable contrast [4, 5]. However the interpretation of these images is not immediate,
since a strong THG signal can originate from different sample geometries (interfaces or
inclusions), and from either a local increase or a local decrease inχ(3). To gain insight into the
origin of these THG signals, we recorded time-lapse THG-FWM images of zebrafish embryos
during early cell divisions. The embryos were mechanically dechorionated, and maintained
in the observation chamber using low-density agarose as described in [4, 5]. Representative
images are shown in Fig. 4.

A first straightforward observation is that non-resonant FWM signals are not homogeneous
in space, and therefore provide an image of the sample. As expected fromχ(3) measurements
in water and lipids, different media produce different signal levels. For example, the lipid-rich
interface between the cells and the yolk is particularly visible in the FWM images. This has
implications for CARS imaging since the FWM signal is what is usually termed “non-resonant
background” in the context of CARS microscopy, where it interferes coherently with resonant

vibrational CARS signals and signal scales asICARS∝
∣

∣

∣
χ(3)r

∣

∣

∣

2
+
∣

∣

∣
χ(3)nr

∣

∣

∣

2
+ 2χ(3)nr.ℜ(χ(3)r)

[7, 8]. As illustrated in Fig. 4, this electronic (non-resonant) contribution is not homogeneous
and, in short, generally hinders the detection of non-lipid-related signals in CARS microscopy.

Another observation is that THG and FWM images are significantly different. As discussed
above, THG images highlight the spatial variations∆χ(3), and FWM can be qualitatively used
as aχ(3) map to interpret THG images. In the zebrafish embryo during early divisions, THG
signals produce contrasted images of cell contours. Such a contrast could result either from
a χ(3) difference between adjacent cells, or from the presence of a large inter-cellular space
at this stage of development. The latter interpretation was proposed in [5] and is here con-
firmed by combined THG-FWM imaging: a local FWM signal decrease is consistently detected
around cells (figure 4b). This indicates that the cytoplasm has higherχ(3) than the extracellular
medium, and that it is the inter-cellular spacing rather than optical differences between cells
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Fig. 4. THG-FWM microscopy of a zebrafish embryo during early divisions. (a) Imaging
geometry. (b) Simultaneous THG and FWM images showing the different contrasts. THG
highlights the spatial variations∆χ(3). FWM revealsχ(3) distribution, which is not ho-
mogeneous. THG contrast from cells, nuclei contours, vesicles, and yolk structures can be
understood from the FWM image. (c,d, andMedia 1) Dividing cells before (c) and after
(d) disruption of the nuclear envelope. THG and FWM images provide different informa-
tion about the structural reorganisation of the cytoplasm and the nucleus (see text). Pixel
accumulation time: 5µs. Scale bars: 30µm.

or a local lipid accumulation near membranes which is responsible from the high THG signal
around cells. //

Signals in the yolk region are also remarkable. In the early zebrafish embryo, the vitelline
stores form a foam-like arrangement of packed yolk globules (or platelets) separated by canali-
culi filled with ooplasm (see e.g. [26]). The yolk generally produces a strong FWM signal, and
the contours of the yolk globules are readily visible in THG microscopy images. From the ratio
betweenxy andxzoriented yolk interfaces in THG images [5], the spacing (ooplasm) between
globules can be estimated to be less than 500nmwide, in agreement with morphological obser-
vations [26]. Since signal in coherent nonlinear microscopy scales as the squared volume of the
probed structure, this small size explains why these contours do not clearly emerge against the
strong coherent signal from the yolk globules in the FWM images (figure 4b). This observation
again illustrates the complementarity of the two images. THG exhibits superior sensitivity to
χ(3) spatial variations, but images must be interpreted with care (different geometries and dif-
ferent∆χ(3) signs give the same signal), while FWM signal level provide clearer information
about the geometry and media being observed.

More intriguing is the time dependence of THG-FWM signals from nuclei during cell
divisions. As previously reported, THG highlights the contours of the cell nuclei. FWM images

#153141 - $15.00 USD Received 19 Aug 2011; revised 19 Sep 2011; accepted 19 Sep 2011; published 26 Sep 2011
(C) 2011 OSA 1 October 2011 / Vol. 2,  No. 10 / BIOMEDICAL OPTICS EXPRESS  2846

http://www.opticsinfobase.org/boe/viewmedia.cfm?uri=boe-2-10-2837-1


indicate that the nuclei exhibit reducedχ(3) compared to the cytoplasm, which explains why
nuclear contours are visible in THG images (Figure 4c). Before cell division, the THG signal
from the nucleus disappears [5], most likely when the nuclear envelope is disrupted. THG-
FWM imaging shows that this THG signal coincides with an increase in nuclear FWM signal,
which then becomes comparable to cytoplasmic FWM signal (Figure 4d). This may reflect a
redistribution of material between the nucleus and the cytoplasm, and/or a reorganization of
the nucleus. This latter hypothesis is strengthened by the observation that, after the disruption
of the nuclear envelope, FWM is constant across the cytoplasm and nucleus whereas THG is
lower in the nucleus (Figure 4d). This difference between the evolution of the two signals may
be related to a sub-wavelength material reorganization, as illustrated by the simulations shown
in Figure 1. Although more experiments are obviously needed to fully decipher these images,
they illustrate that combiningχ(3) signals with different phase matching conditions provides
information about intracellular structures at the sub-µmscale.

3.4. Label-free multimodal THG-FWM-SHG-2PEF imaging of live Caenorhabditis elegans
worms

In addition to THG and FWM, other nonlinear signals can be produced with femtosecond
pulses in biological tissues. We recorded simultaneous THG-FWM-SHG-2PEF images of live
unlabeledC. elegansworms, shown in Fig. 5. Young adult worms from the wild type strain
N2 were transferred to a microscope slide coated with a thin layer of agarose gel and were
immobilized using sodium azide and levamisole. Coherent THG, FWM, and SHG signals
were detected in the forward direction and separated with two dichroics, while 2PEF was
epidetected. Signals were detected using standard pixel accumulation times, i.e. 5-10µs. We
note that coherent nonlinear signals (THG, SHG, FWM) are emitted over spectrally separated
narrow bandwidths (a few nanometers), so that independent detection of multiple coherent
signals is relatively simpler than multicolor fluorescence detection.

Strongest signals in both THG and FWM images were obtained from vesicles in the intesti-
nal cells and in the epithelium. These compartments are mostly lipidic and have been imaged
previously using coherent Raman microscopies in various physiological contexts [27, 28, 29].
Apart from these lipid-related signals, THG and FWM signals provided complementary
information, as in the zebrafish embryo. THG revealed optical variations(∆χ(3))2 such as
interfaces over a dark background, while FWM revealed the distribution of(χ(3))2 levels
within the sample. For example contrasted THG signals delineated interfaces in the pharynx
and vulva, corresponding to signal level variations in the FWM image. Epithelial lipids not
easily accessible to staining [28] are visible in FWM images and produce contrasted THG
signals.

2PEF from fluorescent vesicles was simultaneously produced by the Ti:S beam and detected
on a fourth channel. This signal identifies a particular subset of lysosome-related gut vesicles
[30, 28], and is not observed frome.g. the epithelial lipid vesicles visible in the THG/FWM
images. Finally, SHG was also simultaneously obtained from the pharynx, body wall, and vulva
muscles with remarkable specificity [2]. A small amount of 2PEF was detected in the SHG
channel due to imperfect filtering, and was removed by linear combination of the raw images.

4. Discussion

Far from resonance, THG and FWM probe a similar parameter (the real part of the third-order
nonlinear susceptibility, even ifχ(THG) andχ(FWM) are generally different). However the two
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Fig. 5. Simultaneous THG-FWM-SHG-2PEF imaging of live unstainedC. elegansworms.
The four signals were detected simultaneously from the pharynx (a-e) and the midbody
(f-j) of young adults. THG/FWM provide complementary morphological information from
the pharynx, intestinal cells, embryos, and lipid stores. Additionally, SHG reveals pharynx,
vulva, and crawling muscles, and 2PEF reveals fluorescent gut vesicles. pha: pharynx; int:
intestine; bwm: body wall muscles; emb: embryo; vul: vulva; vm: vulva muscles. Scale
bars: 20µm. See alsoMedia 2.

signalsresult from different phase-matching conditions and therefore provide different infor-
mation. Practical implementation of THG imaging is much simpler because it requires a sin-
gle excitation beam and no spatio-temporal synchronization. As such, it is easily combined
with e.g. SHG imaging. Moreover, THG highlights heterogeneities and produce contrasted,
background-free images amenable to algorithmic analysis [5]. However THG image interpre-
tation is complex, so that when working on a new application, THG contrast often needs to be
characterized. FWM images provideχ(3) maps and are therefore useful for THG image inter-
pretation. Moreover, we have shown that combined THG-FWM imaging has the potential to
provide additional size information in the sub-wavelength range.
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We note that with the experimental conditions used here (250 fs pulses), FWM signals were
significantlyhigher than THG signals. This is related to the fact that the coherence length is
shorter for THG than for FWM with focused beams, and that coherent signals scale as the
square of the effectively probed volume. However balancing between the signals could be
achieved by adjusting the relative power or temporal characteristics of the OPO and TiS pulses.

We also point out that wave-mixing processes such as FWM are sensitive to chromatic aber-
ration induced by the microscope and the sample. Any mismatch between the foci results in
efficiency drop and dark artefacts in the images - a difficulty common to imaging techniques
combining two laser beams.

Our experiments show that, despite these technical difficulties, efficient multimodal imaging
combining simultaneous 2PEF, THG, FWM and SHG signals is possible in live organisms, and
illustrate the complementary information provided by these modalities.
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