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Abstract

Background: Developing control policies for zoonotic diseases is challenging, both because of the complex spread
dynamics exhibited by these diseases, and because of the need for implementing complex multi-species surveillance and
control efforts using limited resources. Mathematical models, and in particular network models, of disease spread are
promising as tools for control-policy design, because they can provide comprehensive quantitative representations of
disease transmission.

Methodology/Principal Findings: A layered dynamical network model for the transmission and control of zoonotic diseases
is introduced as a tool for analyzing disease spread and designing cost-effective surveillance and control. The model
development is achieved using brucellosis transmission among wildlife, cattle herds, and human sub-populations in an
agricultural system as a case study. Precisely, a model that tracks infection counts in interacting animal herds of multiple
species (e.g., cattle herds and groups of wildlife for brucellosis) and in human subpopulations is introduced. The model is
then abstracted to a form that permits comprehensive targeted design of multiple control capabilities as well as model
identification from data. Next, techniques are developed for such quantitative design of control policies (that are directed to
both the animal and human populations), and for model identification from snapshot and time-course data, by drawing on
recent results in the network control community.

Conclusions/Significance: The modeling approach is shown to provide quantitative insight into comprehensive control
policies for zoonotic diseases, and in turn to permit policy design for mitigation of these diseases. For the brucellosis-
transmission example in particular, numerous insights are obtained regarding the optimal distribution of resources among
available control capabilities (e.g., vaccination, surveillance and culling, pasteurization of milk) and points in the spread
network (e.g., transhumance vs. sedentary herds). In addition, a preliminary identification of the network model for
brucellosis is achieved using historical data, and the robustness of the obtained model is demonstrated. As a whole, our
results indicate that network modeling can aid in designing control policies for zoonotic diseases.
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Introduction

Zoonoses–infectious diseases that can be transmitted to humans

from other animals–incur significant cost though their impact on

both agricultural production and human communities. Zoonoses

have particular prevalence and impact in the developing world,

where low-cost yet effective strategies for their control and

eventual eradication are badly needed (e.g., [1,2]). Control of

these zoonoses can be quite challenging, requiring 1) understand-

ing (and sometimes new development) of the surveillance,

vaccination, and treatment capabilities of a particular zoonotic

agent in human and/or animal populations; 2) recognition/

modeling of the mechanisms and rates of spread in each species

and between species; 3) cooperation across animal- and public

health sectors; and 4) the ability to build the infrastructures needed

for control within the limitations imposed by the financial and

societal circumstances of the community. Historically, infectious

disease specialists in collaboration with governmental organiza-

tions have attempted to develop effective control and eradication

strategies gradually, using field experience that is unique to the

region and disease. A particular challenge in controlling zoonotic

infections in this way is to appropriately characterize the animal-

human interface that leads to spread, and in turn to appropriately

allocate resources in the multi-species system.

Recently, several studies have demonstrated that mathematical

modeling can aid practitioners in developing control strategies, by
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allowing a priori comparison of the effectiveness of various control

strategies and making explicit the roles played by various species in

the spread of the disease (e.g., [3–5]). However, efforts to study

control of zoonoses using mathematical models remain incomplete.

The models used are largely very abstract, often representing animal

and/or human populations as a single homogeneous group.

Additionally, the current efforts typically only compare a few

possible control strategies rather than suggesting a comprehensive

design for achieving optimal and robust surveillance and control.

Network modeling of infection spread has been a particular area

of burgeoning interest over the last few years, see the articles [6–12]

for a few representative samples. The network (or, equivalently

multi-group- or metapopulation-) modeling paradigm for infectious

diseases builds on the classical compartmental models for disease

spread in homogeneous populations (e.g., [13]); the network

viewpoint was motivated specifically by the recognition that spread

patterns are often structured and variable rather than homoge-

neous, and that control capabilities are targeted. Quite a wide range

of analyses have been achieved for network spread models, with a

particular focus on understanding the role played by the network’s

topological structure in its spread dynamics. The network spread

models have also served as a context for evaluating practical

targeted control schemes [8,14]. Recently, our group has studied

heterogeneous control resource allocation in multi-group (network)

models for virus spread [14]. This study, as well as analogous efforts

on controlling human-engineered networks such as traffic networks

[15], show how targeted controls can be designed for high

performance. That is, via analytical means, they identify certain

parts of networks (e.g., certain individuals, sub-populations, or

control capabilities) that have disproportionate impact on spread,

and so suggest concentration of control resources on these

components of the network. While such insights regarding control

seems germane to mitigation of zoonoses, our results as yet have

only been developed using generic models for transmission and

control and have only measured spread in terms of one measure (the

basic reproductive number), have not considered surveillance at all.

Models for zoonotic diseases (including for brucellosis) classi-

cally have been simple compartmental models rather than

network-structured models, with each compartment capturing

homogeneous transmission within an entire species, or perhaps for

an age group of that species (e.g., [3–5]). Very recently, models for

zoonotic infections that capture the detailed spatial or community

structure of transmission have been proposed (e.g., [10–12]).

These models have allowed characterization of the role of the

community structure in spread, as well as comparison of plausible

control strategies (largely via simulation); however, these efforts do

not permit systematic analytical design of high-performance

control strategies.

The purpose of this study is to give a comprehensive treatment

of the modeling, surveillance, and cost-effective control of

zoonoses, by bringing to bear and enhancing a network-control-

theory approach to virus-spread control. As a specific case study,

we explore modeling and design of surveillance and control for

brucellosis in a prototypical agricultural setting in a resource-

constrained area such as sub-Saharan Africa. To this end, a

network model for brucellosis transmission among animal herds

and to human populations is developed, that captures the

mechanism of transmission of this zoonotic bacterium, allows

repesentation of realistic surveillance and control mechanisms and

their costs, and measures the performance of the control scheme

with regard to the disease’s financial and societal impact. Once the

model has been formulated in a general way, we discuss

approaches for inferring important network-model parameters

from limited experimental data, which include both simple

heuristic approaches and new network-estimation tools from the

control sciences. Using the parametrized models, design of

surveillance and control capabilities is pursued, with the aim of

suggesting good targeted control/surveillance strategies as well as

improvements to existing strategies. A particular focus of the

design is to obtain simple insights into high-performance strategies

that do not rely on model details, so that the developed strategies

are in some measure robust to inaccuracies and limitations in the

models and available data.

This study advances the existing efforts on network modeling of

infection spread, including our own earlier work, in several ways.

First, it makes explicit the grapical modeling of spread in multiple

species/breeds using a layered network structure. Second, it

carefully models a family of surveillance and control capabilities

for zoonoses, and brings to bear a network control theory
methodology to comprehensively design the spread control

capabilities. This network control theory approach is valuable,

because it permits systematic design of multiple control and

surveillance capabilities in a multi-faceted network, to meet

multiple performance criteria or optimize a performance measure.

We believe that this comprehensive design capability is of central

importance for the zoonotic disease mitigation problems that are

studied here, because very limited and heterogeneous control

resources must be used in many zoonotic-disease control scenarios.

Methods

We find most illustrative to introduce the proposed layered-

network modeling framework for zoonotic diseases using a case

study of brucellosis transmission, both to allow careful illustration

of how disease-specific characteristics can be captured using the

modeling framework, and to permit development of quantitative

control policies for this particular neglected zoonotic disease. To

begin, Let us briefly overview the methods for modeling brucellosis

spread and designing control strategies. In many communities with

high brucellosis prevalence (e.g. in West Africa), transmission

dynamics and control capabilities/costs vary significantly from

herd to herd, because of variabilities in agricultural system, herd

and pasture sizes, accessibility, and financial resources [16,17].

Author Summary

Zoonotic diseases (ones that infect both animals and
humans) exact a significant economic and human cost,
especially in developing economies. Developing effective
policies for mitigating zoonotic infections is often chal-
lenging, both because of the complexity of their spread
and because very limited resources must be allocated
among a range of control options. It is increasingly
becoming clear that mathematical modeling, and in
particular network modeling, of disease spread can aid in
analyzing and mitigating these spreads. Here, we develop
a network model for the spread and control of a zoonotic
infection, focusing particularly on a case study of
brucellosis transmission and control among wildlife, cattle
herds, and human subpopulations in an agricultural
community. After motivating and formulating the model,
we introduce tools for 1) parameterization of the model
from time-course and snapshot data, 2) simulation and
analysis of the model, and 3) optimal design of control
policies using the model. The study shows that the
network model can inform design of heterogeneous
control policies that mitigate zoonotic disease spread with
limited resources.

Network Modeling Approach to Zoonose Control
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Thus, a model for transmission at the herd level (that further

considers multiple distinct human subpopulations) is promising for

informing systematic surveillance and design of targeted control

strategies. Specifically, the herd and subpopulation-level contact-

network model that we propose is a linearized multi-group model

based on population-dynamics concepts (see e.g. [6,14]). We

enhance existing models of this form to 1) differentiate spatial

spread characteristics among multiple species and 2) explicitly

capture realistic multi-faceted control capabilities and costs as

network structure modifications and feedback controls. Based on

this formulation, we bring to bear and extend a family of recently-

developed methods for structure and controller design in complex

dynamical networks [14,15], to develop optimal policies for

allocating heterogeneous resources to mitigate zoonotic disease

spread in a way tht exploits community (network) structure.

Particular results include designs that are tailored to reflect

variabilities in agricultural practices, and ones that optimally trade

off infection costs in the human and animal populations.

Additionally, we apply system identification techniques to infer

parameters of the spread model from snapshot and time-course

data. In particular, these methods are used to parameterize the

brucellosis spread model, using snapshot data on bovine

brucellosis in West Africa, and time-course data from the Jackson

bison herd.

The section is organized as follows. After a brief overview of the

brucellosis case study, we present the nominal network model for

brucellosis transmission among multiple animal herds and human

subpopulations that was developed. Subsequently, we present the

modeling of control efforts and costs. Finally, methods for control

design and model identification are discussed briefly.

Case Study Overview: A Model for Brucellosis
Transmission and Control

Brucellosis is a zoonotic bacterium with several species that

cause illness in livestock (including cattle, small ruminants, pigs,

camels, and bison, see e.g. [16–19]), wildlife (including bison, elk,

and caribou), and humans. The disease in animals is chronic and

impacts the reproductive system, with abortion, reduction in

fertility, reduced milk yield, and abscess formation as typical signs

(that may be temporary or long-term). Brucellosis may also be

transmitted from these species to humans, in whom the disease is

manifested in severe intermittent fever and extreme fatigue and

malaise over a period of weeks or even months, sometimes

progressing to a chronic disease with possibility of relapse and

numerous complications (including joint/bone problems, gastro-

intestinal problems, and abortion, among others). Where the

disease is prevalent, it may have significant societal and economic

impact due to both reduced yield in livestock agriculture and loss

of human life and productivity.

The most common strain of Brucella in cattle and various wildlife

is B. abortus. Transmission of B. abortus is primarily through contact

with aborted fetuses or, in humans, ingestion of raw products from

the livestock (such as unpasteurized milk). Pastoralists are often

subject to both means of transmission, while a broader segment of

the community in developing countries may be subject to infection

from consumption of raw products, see e.g. [1] for details.

Modeling the Nominal Transmission of Brucellosis
The developed model tracks brucellosis prevalence (numbers of

infectives) in individual herds for multiple animal species and

prevalence in human subpopulations (divided by susceptibility).

Specifically, brucellosis infection is modeled in N types of animals

(i.e. N species, or possibly subspecies or breeds if transmission

characteristics are different), labeled 1, . . . ,N, which may include

both livestock and wildlife. For species i, let us assume that Mi

herds or groups are present, labeled 1, . . . ,Mi. Because the disease

is typically chronic in livestock, and dominantly impacts the

reproductive system, we believe that considering a single infection

class for each herd is sufficient for the initial controller design

being pursued here. Specifically, the number of infected

individuals in herd j of species i at a time t, denoted by xij(t)
for i~1, . . . ,N , j~1, . . . ,Mi, is tracked oer time. The total

number of individuals in the herd is assumed constant with the

motivation that, over the time horizon of interest, economic and

resource-limit determinants typically keep herd sizes relatively

stable; the herd size is denoted by Nij . Additionally, the number of

people zw(t) infected with brucellosis is tracked in P human sub-

populations, labeled w~1, . . . ,P, that have different interaction

characteristics with livestock.

Here, we first develop a predictive mathematical model for the

dynamics of the infection counts xij(t) and zw(t), in the nominal

case without application of designable controls. Infection-spread

dynamics at the scale of herds or sub-populations are often

represented using deterministic differential-equation models (known

as multi-group models) in the mathematical epidemiology literature

[6,14], and we use and enhance this modeling paradigm here.

Given the above-described mechanisms of transmission, it is clear

that both transmission between individuals within a herd and

transmission among herds (of one or several species) whose

members commingle is possible, and we model both means of

transmission here. (We note that inter-herd transmission may be

especially common for transhumance herds, or ones that share a

confined space with other herds in a production system.) Within the

herd j of species i, the infection rate due to inter-herd interactions is

modeled as proportional to the product of the infected population

and the non-infected population, i.e xij(Nij{xij); this classical

quadratic model is appropriate since the frequency of sexual contact

and/or contact with infected birth material (and hence the infection

rate) should roughly scale with the pairwise interactions between

infectives and non-infected herd members. Even in areas with high

brucellosis prevalence, the infected population is typically relatively

small (25%) compared to the total population (see e.g. [17]). Thus,

the approximation that the non-infected population is approxi-

mately equal to the (constant) total herd population Nij is usually

apt. Under these conditions, the rate of infection at time t due to

transmission within the herd can be modeled by the linear function

aijNijxij(t), where 0ƒaijƒ1 is a breed-specific and herd-specific

scaling constant that captures likelihood of spread through

interaction (and reflects, for instance, duration of the disease’s

survival in an aborted fetus, the prevalence of the bacteria in

excretion, or the size of the pasture for grazing). Such linear

approximations for transmission have been routinely used in

network models of spread, and are well-motivated for use in

controller design [6,13,14]. Here, the linear approximation was

used for surveillance and control design, while the nonlinear

population-dynamics models was used to verify designs and in

identification of model parameters.

Next, the model captures transmission from other herds of the

same species. Specifically, consider transmission from a herd k of

species i to the herd j of species i, where j=k. For this pair, the

transmission rate is governed by the uninfected population of herd

j and the infected population of herd k, and is modulated by the

extent of commingling of the two herds (or, more specifically,

interaction of herd k’s individuals with herd j through mixing of

the herds or other means, such as purchase of an animal). This

extent of interaction is captured in the model using an

interaction scaling parameter gik,ij , where gij,ik~1 repre-

sents identical commingling as would happen within a single herd,

Network Modeling Approach to Zoonose Control
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and gij,ik is typically much smaller than 1. Using the same

assumptions on populations that yield a linear model for within-

herd tranmission (from k to j), the inter-herd infection rate is

modeled as aijgik,ijNijxik(t). Thus, the total rate of infection for

herd j due to transmission from other herds of the same breed isP
k=j aijgik,ijNijxik(t).

The rate of infection from herd k of species r to herd j of species

i is modeled analogously with the intra-species transmission, but

with allowance for varying infectivities. Specifically, the linearized

model for this infection rate is brigrk,ijNijxrk(t). Thus, the total

infection rate due to transmission from other species/breeds isP
r=i

P
k brigrk,ijNijxrk(t).

The model also captures changes in infection counts in a herd

due to 1) natural death or (rarely) remission, and 2) incorporation

of infected animals from outside the modeled system (e.g., through

purchase of the animals by a pastoralist). The rate of decrease in

infectives due to death/remission is well-modeled as proportional

to the number of infectives in the herd. Specifically, in herd j of

species i, the rate at which infectives decrease through natural

death is given by cixij in the model, where ci is a species-

dependent death/remission rate. Secondly, the infection rate due

to injection of infected animals from outside is represented as an

input uij(t) for each herd j of breed i. (These additions to a herd are

not viewed as changing the size of the herds significantly, but

rather reflect e.g. purchase of a few animals to replace losses.)

In the case where the linear model is in force, the following

family of differential equations for nominal brucellosis transmis-

sion in the livestock/wildlife population is obtained, by summing

the transmission rates to each herd and subtracting the natural

death rate:

_xxij~(aiNij{ci)xij(t)z
X

k=j

aigik,ijNijxik(t)

z
X

r=i

X

k

brigrk,ijNijxrk(t)zuij(t),
ð1Þ

for i~1, . . . ,N and j~1, . . . ,Mi. The above model is highly

abstracted, in the sense that only one infection state is assumed for

each species and the stochastics of transmission are ignored

entirely. The model dynamics are in general nonlinear (and we

can use the nonlinear approximations as needed), even though our

focus has been on the linear approximation with the assumption

that the infection fractions are relatively small. This simplistic

model for the dynamics is compelling in that it 1) allows systematic

controller design and development of simple insights about

resource allocation (whereupon a detailed simulation model can

be used to test the design) and 2) exposes the role played by the

network structure in spread and spread control.

A second core aspect of the nominal model is the representation

of brucellosis transmission from livestock to the human population

prior to control. As with the animal model, infection of the human

population is captured through representation of the infection rate

at each time, thus yielding differential-equation models of

transmission. To roughly capture these infectivity characteristics

in a way that permits control design, a linearized population-

dynamics model is again used to describe the spread. In particular,

each subpopulation is assumed to have an infection rate that is a

linear combination of the infective counts in various herds, i.e. the

infection rate for human subpopulation i at time t isP
j

P
k djk,ixjk(t), where djk,i captures the rate of infection caused

by herd k of species j. In addition to infection from livestock, the

number of infected individuals in each human subpopulation w
are modeled as declining due to death or remission at time t, at a

rate fwzw(t). Combining these rates, the number of infected

individuals in the human subpopulations are modeled by the

following differential equations:

_zzw(t)~
X

j

X

k

djk,wxjk(t){fwzw(t) ð2Þ

The nominal model for brucellosis transmission described above

can be viewed as a network model. In particular, viewing the

herds and human subpopulations as components in a contact

network, we see that there are interactions between pairs of these

components if and only if commingling and transmission occur for

that pair (with the stength of the interaction reflected in the weight

of associated coefficient in the differential equation). To facilitate

analysis and design, it is worthwhile to define a weighted and

directed nominal spread graph or simply spread graph that

captures the contact network structure. In particular, the spread

graph is defined to have
PN

i~1 MizP vertices or nodes, representing

each livestock herd and human subpopulation. An arrow or edge is

drawn from one vertex to another, if and only if the herd/

subpopulation corresponding to the first vertex directly impacts

the infection rate in the herd/subpopulation corresponding to the

second vertex (i.e., if the first herd’s infection level is present on the

right side of the differential equation for the second herd). The

weight of the edge is set equal the corresponding coefficient in the

linearized differential equation, since this coefficient captures the

strength of the interaction. This formulation of a graph includes

self-loops, or edges from vertices back to themselves, whose weights

are chosen in the same way as for other edges (equal to the

coefficient of the herd’s infection level in its differential equation).

The self-loop weights will be negative, in the case that the rate of

remission/death is larger than the spread rate in a herd. The

spread graph never has arrows leading out from a vertex

representing a human subpopulation, and the self-loops for these

vertices are always negatively weighted, since humans do not

transmit the bacteria. An illustration of a spread graph is given in

Figure 1.

In that the spread graph specifies the contact network (i.e., the

transmission rates) among modeled populations, we note that

specifying the spread graph accurately for examples of interest is of

critical importance. Let us stress that, in general, three different

approaches may be used to specify the spread graph: 1) the

Figure 1. Spread graph illustration. A spread graph for brucellosis
transmission is illustrated, for an example with several cattle herds,
wildlife that serve as a reservoir for the bacterium, and two human
subpopulations.
doi:10.1371/journal.pntd.0001259.g001
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control-strategy planner may use intimate knowledge of an

agricultural system to identify herd contacts and postulate

transmission rates; 2) a formal system-identification methodology

may be used to infer the spread graph; or 3) for large-scale

networks, existing characterizations of typical network topologies

(for instance, ‘‘small-world topologies’’ wherein all subunits are

within a few steps of each other in the graph despite relatively

spare connectivity) can be used to generate plausible spread

graphs. In the illustrative example presented in the results, we will

motivate and describe the specification of the spread graph that we

have used for this example.

Modeling Control Capabilities and Disease Costs
Next, the nominal multi-group model for brucellosis transmis-

sion is enhanced to explicitly represent surveillance and control

capabilities 1) within the animal population and 2) for transmission

from animals to humans.

In the animal population, control of spread is achieved through

several means, including 1) vaccination, 2) surveillance for and

culling of diseased animals, 3) limitation of herd commingling

(through restriction of trade or movement of livestock), and 4)

improvement in sanitation at farms (e.g., [18]). Broadly, these

various control capabilities can be viewed as impacting the

dynamics of the model in two ways: 1) they alter the rate at which

one herd/subpopulation causes brucellosis infection in another

herd, or in other words change the model parameters (equiva-

lently, the edge weights in the nominal graph); and 2) they cause

removal of infected individuals at particular times, i.e. they serve to

change the state variables xij and zw. These changes can be

captured as modifications and feedback control terms in Equations

1 and 2.

Vaccination. Vaccines for brucellosis have been developed

for cattle and small ruminants. Application of a vaccine to a herd

serves to make the members of the herd less susceptible to the

disease. Vaccination capabilities are abstractly incorporated into

our model as follows: vaccination of a particular herd j of species i
is viewed as scaling all the nominal transmission rates to the herd

by a constant vij between 0 and 1. That is, the transmission

coefficient from herd k of species r to the herd of interest is

changed to vijNijgij,rk, in Equation 1. The constant vij , which

reflects the effectiveness of the vaccination strategy, in general may

be one of several discrete values (with vij~1 corresponding to no

vaccination, and smaller vij corresponding to stronger vaccination

strategies).

Surveillance and culling. Surveillance for brucellosis is non-

trivial, since the signs of the disease are non-specific. Very broadly,

to test for brucellosis with high fidelity requires either identification

of the organism cultured from fluid or tissue samples, or

identification of infected animals through serological tests; these

tests typically trade off specificity and sensitivity, and may be

costly. Typically, surveillance is used for control by depopulating

livestock that are identified as infected. Thus, a surveillance and

culling program is abstractly modeled as one that removes

infectives from herds at some rate. Specifically, the rate at which

infectives are removed from herd j of breed i in Equation 1 is

modeled as being the nominal rate scaled by a constant sij that is

larger than 1, i.e. as sijcixij . Here, sij~1 represents the situation

that no surveillance/culling is used (so that removal is at the

nominal rate, due to death and remission). Meanwhile, larger sij

represents an increasingly effective surveillance/culling policy,

with arbitrarily large sij corresponding to perfectly effective and

immediate surveillance and culling. As with vaccination, the

variables sij often should be modeled as taking one of several

possible values, which represent surveillance/culling programs of

different levels of effectiveness. From the network-graph

perspective, applying the control in our model serves to change

the self-loop weights.

Reducing commingling and improving sanitation. Two

further methods for mitigating brucellosis spread among livestock

are 1) limitation of commingling among herds, and 2) improved

sanitation. Like vaccination and surveillance/culling controls,

these further control methods can be naturally modeled as altering

the nominal model and so the nominal interaction graph in

various ways. Specifically, reducing commingling among herds will

serve to reduce the interaction weights gij,rk and hence to reduce

the transmission rates between herds (or in other words reduce the

edge weights between different vertices in the interaction graph).

Depending on the manner in which commingling is limited,

interaction weights throughout the network may be limited, or

only certain tranhumance herds may be affected. Meanwhile,

improved sanitation and housing for livestock will reduce the

infection rates within herds in Equation 1, and hence can be

modeled as scaling these infection rates.

Controlling Transmission from livestock to

humans. Brucellosis is a severe and in many cases incapacitating

disease in humans, whose prevention is paramount. No vaccine for

brucellosis exists for humans. Instead, transmission from livestock to

humans is primarily limited in three ways: 1) pasteurization of milk

products and proper preparation of meat products; 2) brucellosis

surveillance and control programs; and 3) reduction of transmission

to those handling livestock products through improved sanitation and

training in safe handling of livestock products. These control methods

fundamentally serve to reduce the transmission rates to one or more

human subpopulations from some (or possibly all) of the animal

herds. That is, the controls serve to scale the nominal rates of

transmission djk,wxjk(t) in Equation 2 by weights between 0 and 1.

For instance, proper pasteurization of milk will scale the transmission

coefficients from all milk-producing herds to populations that

traditionally have unpasteurized products, in particular changing

the coefficients from djk,w to hdjk,w where h reflects the effectiveness of

the pasteurization process. It is worth noting that the methods for

preventing transmission to humans, while seemingly basic, may

require significant investment in developing countries (e.g., requiring

development of a cold chain from source to distribution).

Modeling costs and posing the control design

problem. Broadly, designing effective control strategies requires

achieving a proper tradeoff between the costs resulting from disease

prevalence and the costs of control. Altenatively, control design can

be viewed as an effort to minimize disease prevalence or associated

costs, while using limited control resources. Thus, to properly design

control strategies, models are needed for the cost of infection as well

as the costs associated with using the various control actions. As a

framework for cost modeling, each infected individual in each herd

and human subpopulation at each particular time is viewed as

incurring a cost, and these costs are summed to obtain the full

infection cost. Precisely, the infection cost at a particular time t is

obtained as C(t)~
PN

i~1

PMi

j~1 cijxij(t)z
PP

w~1 cwzw(t), where

the weights cij and cw represent the incremental (per-animal) cost

of infection for each herd and human subpopulation. It is worth

stressing that the incremental cost of infection may be different for

each herd and human sub-population, for instance infection of

milking cows/sheep may incur greater cost. The total infection cost

over a period of time, Cinf ~
Ð T

0
C(t)dt, is often of most interest.

In addition to the costs incurred by brucellosis spread, the cost of

control is modeled. For each possible control action (e.g., surveillance

using serological tests followed by culling), the cost is assumed to have

three parts: 1) a global overhead cost for the infrastructure needed to

implement the control strategy, 2) a per-herd (or per- human
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subpopulation) cost representing the additional cost of providing

controls to the herd (which may depend on the size and type of herd),

and 3) a cost per infected individual in the herd. For instance, for a

testing and culling strategy, there is a fixed cost for developing the

laboratory infrastructure for testing, a cost associated with testing

each herd, and a cost to the farmer for each culled animal. Finally, the

total cost of control is calculated as the sum of the costs for each

implemented control action. The total cost of control during a period

of time is denoted by Ccont.

A control strategy’s overall performance is captured by the sum

of the infection and control costs over a period of time,

Cinf zCcont, which is denoted as the full cost Cfull . An effective

control strategy is one for which the full cost is minimized or at

least sufficiently small, over a (finite or infinite) time-horizon of

interest. The goal of control design is to achieve such a low-cost or

high performance control strategy. Alternately, controls often must

be designed to reduce the infection cost, subject to a bound on the

cost of control (as specified by the limits on resources available for

this specific disease). In either formulation, we stress that achieving

a basic reproductive number R0 less than 1 is required in addition

to (and usually as a prerequisite for) cost minimization, and this

further constraint is systematically observed in our design.

The dynamics of the spread and control model, and associated

cost model, are illustrated in the following examples.

Methods for Analysis, Design, and Parameterization
The layered network model for zoonotic disease transmission

that we have introduced above, using brucellosis as a case study, is

promising as a tool for systematic design of mulitfaceted control

capabilities. Precisely, the formulation permits application of some

new methodologies for network control theory, for the systematic

design of limited control resources to achieve high performance

(low spread cost), or equivalently to reduce totaled resource and

spread cost. The approach is also promising in that the simple

model structure can permit determination of model parameters

(parameterization) from sparse historical data, and hence the

approach is potentially applicable in the limited-data settings that

are common in zoonotic disease spread. In this section, we

overview the network-control-theory methodologies for high-

performance design and model parameterizaton. We aim to

present the methods in sufficient detail that the reader understands

the concepts and essential methodologies underlying design/

parameterization; to allow wide readership, we exclude technical

justifications and algorithmic details, and refer the reader to

specific results in the engineering literature for these.

Before describing the methodologies for control design and

parameterization, let us stress that the modeling framework

permits simple simulation and analysis of the spread dynamics,

for a specified control policy. In particular, we note that both the

linear and nonlinear differential-equation models can be solved

numerically using standard derivative-approximation methods,

and can be implemented readily using e.g. the Matlab software.

The linearized model also readily permits analysis of the dynamics,

including closed-form computation of steady-state and transient

dynamics, and computation of features of the dynamics such as the

basic reproductive number. This analysis is based directly on the

classical analysis of linear systems or linear differential equations;

we kindly refer readers who are not familiar with the classical

methodology to see [20].

Control and surveillance design overview. Control-

systems engineers have recently engaged in a major effort to

design surveillance and control capabilities in networks [21,22].

This body of controls-engineering research is deeply connected

with the ‘‘science of networks’’ that natural scientists have become

familiar with [23–25], but extends this effort toward control

design. Here, we pursue extension and application of the new

network control methods to address the brucellosis control

problem introduced above, as an illustration more generally of

zoonosis-control design.

Previous work has already applied network controller design

methods to spread-control problems, albeit for simpler models

than the one considered here [14,26,27]. The methods used for

designing controls for the zoonotic-disease models are similar to

those used in previous work. However, the cost measure and set of

available control capabilities are more intricate than in previous

work, because of the wide range of control capabilities considered

and significant differences in spread charcteristcs in the human

and animal populatons. The network control theory approach

used here combines optimization machinery with graph-theory

concepts and a structural understanding of linear systems. Here is

a brief description of the procedure:

1) Initially, classical optimization machinery is applied to the

design problem. That is, we consider the problem of

minimizing the full cost Cfull with regard to the design

parameters (e.g., vij , sij ) subject to constraints on these

parameters. This minimization problem can be resolved

using the classical Lagrange-multiplier methodology, where-

upon finding the optimal design reduces to solving a system of

(nonlinear) equations. It is worth noting that the cost function

often is expressed in terms of implicitly-defined functions,

most notably eigenvalues of the linearized system’s state

matrix (e.g., the basic reproductive number). In these cases,

computation of the partial derivatives of Cfull with respect to

the design parameters requires us to invoke implicit

differentiation methods and in particular eigenvalue-sensitivity

equations: we kindly ask the reader to see [28] for a review.

Once the Lagrangian formulation has been obtained, we

progress in two tracks: numerical solution and structural

characterization of the optimum.

2) Numerical solution of the Lagrangian can be achieved via

numerous standard recursive solvers, such as are available in

the Matlab software suite (or can easily be developed by

hand). Under certain broad conditions on the network

topology and cost definition (which guarantee convexity of

the optimization problem), these methods can be shown to

obtain a globally optimal design.

3) Often, it is much more instructive to determine structural

characteristics of high-performance or optimal designs, rather

than to obtain a numerical design. This is especially true of

the zoonotic disease control problems considered here, for

which socio-political and geographic concerns may make

implementation of a precise policy difficult and model

parameterization difficult, so that an optimal design may

only serve as a guideline rather than an implementable

routine. Additionally, by understanding characteristics of

high-performance designs, we can make explicit the role

played by the network’s graph topology in achieving control.

For reasons such as these ones, a primary focus of our

ongoing work has been to been characterize the system/

graph structure of high-performance designs. This structural

characterization of high-performance design can be achieved

as follows: from the Lagrangian, relationships between the

optimal design parameters and the state matrix of the

linearized dynamics can be obtained: that is, the dynamics

imposes a structure on the optimal resource allocation.

Noting that the dynamics of the infection spread are specified

using the network graph, we can thus immediately connect
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the optimal values of the design parameters with the structure

of the network graph (e.g., the degrees of the vertices, etc).

Further, we can in turn relate the dynamics upon application

of the optimal controller to the nominal graph’s structure. In

this way, we obtain very simple graphical insights into high-

performance control designs, that are robust to implementa-

tion and modeling limitations. We will present the outcomes

of this design methodology in the Results section.

In the interest of conciseness and readability, we have not

included many details of the mathematical techniques used and

especially their justifications: we kindly ask the reader to see

[14,15,29,30] for these specifics.
Identification and validation of network models for

zoonoses. As we will describe in detail in the Results section,

the design methodology suggests that high-performance spread

mitigation is highly targeted: particular herds or subpopulations

require disproportionate control resources because they

disproportionately affect spread (or spread cost), either because

of their local dynamics or their network interactions. While the

focus here has been on obtaining simple insights into such targeted

resource allocations, accurate modeling of zoonotic-agent spread

can permit increasingly refined design of spread control strategies,

by permitting more accurate characterization of the spread impact

of the network components (herds or subpopulations). To obtain

accurate models for spread control, additional research is needed

to on identifying the model’s parameters from data.

We have considered the model-identification task for the

brucellosis spread application, from two viewpoints: first, from the

viewpoint of identifying a model for a single herd using which a

network model can be constructed; and, second, from the viewpoint

of directly identifying the full network dynamics or important

statistics thereof. In particular, a single-herd model has been

parameterized using time-snapshot herd-size and seroprevalence

data from several countries in West Africa and the Jackon bison

herd, as well as using temporal data from the Jackson Bison herd

[31–33]. Specifically, the data used for parameterization includes: 1)

average prevalence vs. average size for small, medium, and large

herds for several districts in West Africa, as well as 2) time-course

prevalence and herd-size data over a 10-year period for the Jackson

bison herd. This parameterization effort uses rather standard

heuristic tools from the field of system identification, see e.g. [34].

We note that these individual-herd models also provide indication of

the spread-impact of a herd (though not the specific topological

structure of this impact), and so permit us to apply many of the

results on spread-control design obtained above. Finally, with

regard to full parameterization of a network model, new techniques

for network identification can be applied [35], once ample data on

brucellosis spread within an agricultural network has been obtained.

This full network identification to left to future work.

Results

We find it most illustrative to present the results of the modeling

and control design methodology introduced here, in the context of a

specific example of brucellosis spread. Specifically, model dynamics

and control design are illustrated in an example that is

representative at a small scale of largely agricultural communities

with both transhumance and sedentary herding (such as in Ethiopia

or the Sudan). Specifically, a non-intensive agricultural system with

one breed of cattle, comprising 10 transhumance herds with an

average of 75 cattle each and 10 sedentary herds with an average of

40 cattle each, is modeled. Farming practices (including cattle

density on grazing lands) are assumed to be similar for the herds,

and so within-herd transmission rates are modeled as identical:

these transmission rates are obtained through model-identification,

as detailed below. Further, in this illustrative example, each

transhumance herd is assumed to commingle with 6 other herds

(4 other transhumance herds and 2 sedentary herds), for a fraction

of the year (specifically, 3 months). The human population is

subdivided into two subgroups that are subject to infection, 1)

pastoralists with a high rate of infection from the cattle and 2) non-

pastoralist consumers of raw milk products with a lower but still

significant rate. The human-population groups are assumed to be

equally impacted by each herd.

The Nominal Model
The nominal spread graph, which illustrates the contact

network prior to control, is shown in Figures 2 and 3. Simulations

of spread among the cattle herds are shown for two different initial

conditions, one with a single infective in a transhumance herd and

the other with a single infective in a sedentary herd (Figures 2 and

3). The basic reproductive number R0 for the nominal model in

the animal population is greater than 1, and as expected the

infection becomes widespread for both initial conditions. The

infection spreads much more rapidly when it initiates in a

transhumance herd. Interestingly, even when the infection initiates

in a sedentary herd, it eventually becomes more prevalent in the

transhumance herds. We note in these examples that we have

initiated the infection in the largest sedentary and transhumance

herds. We did so because the larger herds display a faster initial

growth of the infection, leading to a more rapid (and easier to

display) spread in the network. We stress that, qualitatively, the

response characteristics would be similar if the infections were

initiated in smaller herds, though the progression would be slower.

The model also shows that the infection rate in the human

subpopulation that is responsible for animal husbandry grows

rapidly in the early stages of the infection. A couple remarks about

the nominal model are worthwhile.

Remark 1. In the 20-herd example chosen above, we note that

the graph topology of the contact network is one where half of the

vertices have high degree, while the remaining vertices have low

degree: the graph is generated to enforce a degree distribution, but

chosen randomly within this constraint; the particular transmission

rates used in the example are obtained through identification of

the brucellosis spread model. Such random graphs with enforced

low- and high- degree vertices have some properties in common

with the common small-world graphs when they are of sufficient size,

and in this sense our results for the example may be indicative of

results when the topology is a small world. We stress, however, that

our analysis methods (and subequent control design and

identification methods) can be applied regardless of the graph

topology, and that the specific topology that we have chosen is

guided by our understanding of the agricultural practices

governing brucellosis spread rather than by the typical model

classes considered in the complex-systems literature.

Remark 2: In the above example, we have excluded transmission

to and from wildlife, because of the difficulty in parameterizing

wildlife-related transmission rates. Model simulation and analysis

when transmission to wildlife is considered is straightforward. For

instance, we have completed simulations in which an identical rate

of transmission between each herd and wildlife is assumed: as

expected, disease prevalence increases with increasing transmis-

sion rate to and from the wildlife reservoir. In practice, we

conjecture that the transmission rates between each herd and the

wildlife reservoir are better modeled as random quantities,

reflecting variability in the extent of contact with wildlife. We

leave further development to future work.
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Figure 2. Simulation of nominal spread model from an initial infection in a transhumance herd. Brucellosis among herds of cattle is
simulated in a non-intensive agricultural system, in the nominal case that controls are not used. In this small example, a network of 10 transhumance herds
(shown as circles) and 10 stationary herds (shown as squares) are considered, with varying herd sizes but otherwise comparable intra-herd transmission
conditions. Tranhumance herds commingle with other transhumance and sedentary herds, as indicated by the spread graph (which is overlayed on the
dynamics). In this example, the possibility for and frequency of spread between herds is specified based on a distance measure between the herds, although
other models can be used alternatively. The simulation is initiated with a small number of infected cattle in the largest transhumance herd (Herd 1). The
dynamics of the spread with time is shown (with the time axis representing months), with the extent of infection in each herd indicated by the intensity of the
red color for that herd. As expected, since the basic reproductive number R0 for the spread is greater than 1, the infection becomes widespread quickly.
doi:10.1371/journal.pntd.0001259.g002
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Figure 3. Simulation of nominal spread model from an initial infection in a sedentary herd. The nominal model for brucellosis spread is
again simulated for the 20-herd example, without control, but the disease is initiated in a small and sedentary herd (herd 20). The disease again
becomes prevalent, but the spread is much slower. Interestingly, brucellosis becomes more prevalent in the large nomadic herds than the small or
sedentary ones even though the infection was initiated in a small sedentary herd. This model characteristic matches with field measurements for
brucellosis prevalence in pastoralist communities, e.g. in the Tigray region of Ethiopia [17].
doi:10.1371/journal.pntd.0001259.g003
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Modeling of Control Strategies
Several strategies for vaccination, namely ones that are targeted to

tranhumance herds vs. ones that distribute resources between

tranhumance and sedentary herds, are compared in the 20-herd

example. In particular, herds are modeled as being vaccinated at a

certain frequency, with the cost needed for each vaccination of a herd

assumed identical in this illustrative example. (The relative cost of

vaccinating sedentary and transhumance herds may sometimes be

rather varied in practice: in some settings, transhumance herds may

be incredibly difficult to reach for vaccination, while in other cases

medical personnel may be able to take advantage of their mobility by

placing vaccination capabilities at a location frequented by these

herds. We take the simplest assumption of identical cost for ease in

illustration, but the design can be achieved for other cost structures

also.) Three strategies with identical total resource cost are compared:

one that vaccinates only the transhumance herds, one that vaccinates

sedentary and transhumance herds, and one that vaccinates only the

sedentary herds. For the three vaccination strategies, the basic

reproductive ratio R0, which can be calculated from the spectrum of

the state matrix of the linearized model dynamics (see [6,14] for details),

is compared. The results are shown in Figure 4. When resource limits

are low, vaccination of transhumance herds can reduce the basic

reproductive number below 1 while a uniform vaccination strategy or

a sedentary-herd vaccination strategy cannot. When more resources

become available, uniform vaccination becomes comparable and

eventually preferable to only transhumance-herd vaccination (and

reduces R0 to 1). However persistent infections still tend to be

common in the tranhumance herds.

It is hypothesized that improved surveillance techniques that

permit fast and cheap decentralized surveillance/culling could

significantly improve brucellosis control. The model permits

evaluation of the benefits of faster surveillance/culling. Here, a

uniform surveillance/culling policy at all herds is considered for

the 20-herd example. Specifically, the dependence of an infection

cost (specifically, the infected animal population integrated over

time) on the surveillance/culling rate is identified. This depen-

dence, shown in Figure 5, indicates the improvement in spread

mitigation due to faster surveillance/culling. Using this type of

characterization, a practitioner can evaluate whether the addi-

tional cost to design new surveillance/culling techniques is worth

the improvement in spread cost due to these advances.

Here, we consider a homogeneous surveillance/culling proce-

dure for all herds, and calculate the integrated infection size (the

number of infected animals integrated over the duration of the

infection) for the 20-herd network, for a random initial condition.

In this example, a culling rate of at least 0.43 (43% of the infected

population per annum) is needed to make R0 less than 1; however,

higher culling rates beyond this threshold significantly reduce the

total infection size.

Optimized Strategies
The modeling methodology that we have introduced permits

systematic optimization of control resources, according to the

methods outlined above. For illustration, we have found the optimal

allocation of vaccination resources to minimize the basic reproduc-

tive number in the illustrative example, as a function of the level of

available resources. The optimal basic reproductive number, and

the fraction of the resources that are allocated to the transhumance

herds, are plotted in Figure 6. The impact of the vaccination policy

on the rate of infection in human pastoralists is also shown (Figure 7).

As a comparison with the optimal vaccination strategies (Figure 6),

the performance of an optimal surveillance and culling strategy (in

terms of the achieved basic reproductive number R0) is also shown

(Figure 8). Finally, concurrent design of surveillance/vaccination

capabilities and pasteurization to prevent transmission to humans is

considered in the 20-herd network. In this simple example, the costs

of vaccinating each herd and of pasteurizing the milk from each

herd are all assumed to be identical, and the optimal design (with

respect to a total infection size measure) is examined for different

human vs. animal infection costs. The results are shown in Figure 9.

Parameterization
The techniques described above for identification of the bovine

brucellosis model from snapshot and time-course described were

applied. The results of the identification are displayed in Figures 10 and

Figure 11. The identified parameters have been used to specify nominal

intra-herd and inter-herd transmission rates in the illustrative example.

Figure 4. Quantitative comparison of vaccination policies. A
uniform vaccination policy is compared with one that targets only the
transhumance herds and one that only targets the sedentary herds. At
low resource levels, the vaccination policy targeted to the transhu-
mance herds outperforms the uniform one, while the uniform policy
becomes more effective at higher resource levels. Both outperform
sedentary-herd vaccination.
doi:10.1371/journal.pntd.0001259.g004

Figure 5. Analysis of a surveillance and control policy.
Improvement of brucellosis surveillance procedures so as to permit
fast/cheap distributed surveillance and culling is an important policy
goal. The model permits computation of infection costs as a function of
the surveillance and culling rate, and hence indicates the cost benefit of
improving surveillance/culling techniques.
doi:10.1371/journal.pntd.0001259.g005
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Discussion

We have found it convenient to illustrate the results of our

methodology using an example. Let us stress, however, that the

methodology has much broader application: the developed network

modeling framework can be used to quantitatively capture

transmission of a zoonotic disease within a particular agricultural

system or community, and in turn can be used for control and

surveillance policy design for such transmission. In addition to

permitting concrete designs for examples, the tractability of the

model also allows us to obtain broad insights into control and

surveillance design for brucellosis (and other zoonotic diseases), and

conceptual insight into model parameterization from historical data.

Let us discuss some broader insights obtained using the modeling

methodology, drawing on the example developed in the Results

section as needed to make the insights precise. We note that some of

these insights admit formal justifications using the model optimiza-

tion methodology; we omit these mathematical details since they are

not central to our development. After this discussion, we also briefly

summarize the article.

Broad Insights into High-Performance Control
The network control methods allow a comprehensive study of

the brucellosis controller design problem, and more generally of

zooonotic-disease control. Below is a list of several aspects of the

control design task that can be addressed using these methods, as

well as a few of the key insights obtained through the design. These

insights are envisioned as informing policy decision-making.

1) Optimal or high-performance sub-divisions of control resources among the

animal herds can be determined, based on the spread graph’s structure. When

resource allocation costs and infection costs due to prevalence in a

herd are relatively homogeneous, then high-performance designs

Figure 6. Designing an optimal vaccination policy. In the upper
plot, The basic reproductive number when the optimal vaccination
policy is used is shown, for the twenty-herd example. Here, the three
light, solid lines indicate the performance of the only-transhumance,
only-sedentary, and uniform vaccination policies as developed in
Figure 4. The performance of the optimal resource allocation is
highlighted as a bold, dashed line. Also, the fraction of resources
allocated to the sedentary herds at the optimum is shown.
doi:10.1371/journal.pntd.0001259.g006

Figure 7. Human infection rate determined by the spread
model. The rate of infection in the human pastoralist subpopulation in
a brucellosis outbreak with an initial low level of infection in the cattle
population is shown. The upper figure shows the case where no control
is used, and the lower shows the case where an optimal animal-
vaccination policy is applied. It is worth noting that the nonlinear model
for spread was used to simulate the infection rate, since the linear
model quickly becomes inaccurate in the no-control case.
doi:10.1371/journal.pntd.0001259.g007
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tend to equalize the spread-impacts of the herds, to within the

extent allowed by the constraints on resources and on the control.

Thus, limited resources (whether for vaccination, surveillance/

culling, or other purposes) should be allocated to herds with high

spread impact (sum of outgoing edge weights from that herd’s

vertex on the graph), until the spread impacts are equalized. If

further resources are available, they should be equally distributed

among the herds, if possible. When constraints prevent allocation

of resources (or further resources) to some herds, the design

becomes somewhat more intricate: some herds must be allocated

extra resources so as to limit the spread-impact of their constrained

neighbors. These characteristics of resource allocation are

indicated in the optimal-vaccination design for the illustrative

example, see Figure 7. As expected, the available resources are

devoted to the tranhumance herds (which have higher spread

impact in this example), until enough resources are available to

achieve equal spread impact. The optimal resource allocation

significantly outperforms a uniform, transhumance-only, or

sedentary-only resource allocation program. Very similar results

are also obtained when an integrated infection size measure is used

instead (details not shown).

2) The design method permits comparison of multiple spread-control

strategies in the animal population (e.g., vaccination vs. surveillance/culling),

and concurrent design of multiple strategies. For instance, we have

pursued a comparison of an optimal vaccination strategy (Figure 6)

and an optimal surveillance and culling strategy (Figure 8) for the

illustrative example. A careful comparison of multiple strategies

(for instance, the two strategies in the example) requires precise

knowledge of control and cost parameters, for instance vaccine

efficacy and relative-cost information. However, even from simple

comparison of Figures 6 and 8, some differences between the two

strategies become evident. In particular, one finds that a

vaccination strategy can only reduce the basic reproductive

number to a particular threshold, while a surveillance and culling

strategy can reduce the basic reproductive number arbitrarily near

to 0, i.e. it can eliminate the infection quickly. Thus, if sufficiently

fast reduction of spread is needed (for instance, in a case where the

zoonotic infection is especially dangerous to humans and also an

efficient transmitter), surveillance and culling will need to be used,

albeit perhaps at much higher cost. As cost and effectiveness

parameters become available, this tradeoff between vaccination

and surveillance/control strategies can be made explicit. Concur-

rent design of these and other strategies can also be pursued, upon

a slight extension of the methodology given in [14].

3) The design methodology can identify the tradeoff between allocating

resources to human population groups rather than to the animal population, as

a function of resource and infection costs. Given the significant

heterogeneity in transmission of brucellosis (and other zoonotic

diseases) in the human and animal populations, comparing policies

that assign control resources to stop transmission among animals

with those that prevent transmission to humans is of importance.

The newly-developed network design methods permit such

comparison, and in turn allow appropriate subdivision of resources

for animal-level control and animal-to-human transmission

control. As an illustration, let us interpret the concurrent design

of surveillance/vaccination capabilities and pasteurization to

prevent transmission that we presented for the 20-herd example

network. In this example, a bulk of the resources are devoted to

animal-level control, which prevents infection in both the human

and animal populations; however, as expected, the fraction of

resources devoted to pasteurization increases as the cost of human

illness is assumed to be higher relative to the cost of disease in

cattle. The strong benefit of control in the animal popolation is not

surprising, since such control effectively reduces disease prevalence

in both the animal and human populations. While the specifics of

the subdivision will vary with the specifics of the design problem,

the design methodology allows for concurrent design of human-

and animal- level strategies and characterization of these designs

over a range of unknown parameters.

4) The core resource-allocation designs can be enriched to obtain dynamic or

reactive strategies for mitigating zoonotic diseases. As real-time measure-

ments of trends in infection counts (or costs) become available,

strategies that dynamically allocate resources based on these trends

can be developed. The reader is referred to [27] for a first effort in

this direction. In particular, the article [27] provides a systematic

approach to dynamic resource allocation based on use of current

Figure 8. Basic reproductive ratio for optimal design. The basic
reproductive number for the optimal surveillance/control policy is
shown as a function of the resource level, for the twenty-herd example.
doi:10.1371/journal.pntd.0001259.g008

Figure 9. Comparison of animal-level and animal-to-human
controls. The subdivision of resources between animal-level control
policies and animal-to-human control policies is examined, in the 2-
herd example. In particular, assuming a particular relative cost of
human infection vs. animal infection (per individual), the optimal
division of resources between ainimal surveillance/control and pasteur-
ization is determined. This resource allocation is plotted against the
relative cost. If human illness costs are higher, additional resource
allocation in pasteurization is beneficial, but the bulk of resources
should still be allocated to animal control.
doi:10.1371/journal.pntd.0001259.g009
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and past data, and demonstrates the advantage of such a design

over a static allocation in a multi-group SIR example.

Discussion of Model Parameterization
Let us present some insights on the model identification

methodology, using the results displayed in Figures 10, 11, and

12 as a context for the discussion:

1) The snapshot data permits characterization of the ratio

between the per-individual infection rate and the remission

rate (through recovery or death and replacement), for a

single herd. As seen in Figure 10, the obtained model

provides a reasonably accurate representation of an average-

herd-size vs. average-prevalence curve for bovine brucellosis

for districts in West Africa and for the Jackson Bison herd.

2) The time-course data further permits inference of the

absolute per-individual infection rate, so that (together with

the snapshot data-based analysis) a full single-herd model

can be identified. Figure 11 demonstrate the ability of the

model to describe time-course data for the Jackson bison

herd. We note that we have used the parameterized model

in the 20-herd example.

Figure 10. Model identification from snapshot data. Using a heuristic method, a nonlinear SIR model for brucellosis transmission within a herd
has been developed, using snapshot herd-size and seroprevalence data from several West-African countries as well as from the Jackson Bison Herd
(JBH). The ability of the model to predict seroprevalence vs. herd size is shown (top). Also, for two non-intensive farming districts in Guinea which
have similar herd sizes, the amount of inter-herd interaction and hence the comparative rate of outside-herd infection can roughly be guessed, from
a description of the prevalent agricultural practices. The model is shown to provide a better indication of prevalence, once this variation is accounted
for (bottom).
doi:10.1371/journal.pntd.0001259.g010
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3) In parameterizing the single-herd model, we did not have any

quantitative data on the rates of infection in each herd from

outside the herd: thus, the parameterization has been done

assuming an identical rate of interaction/infection from

outside the herd. This crude assumption clearly yields error

in the parameterization result. For the data from West African

herds, we have some qualitative insight into herds that have

more significant interactions with other ones (e.g., share

common feed lots) and hence are more susceptible to infection

from outside the herd. In Figure 10, we also demonstrate that

further information on outside infection rates can yield a more

accurate parameterization of the model.

4) Given the very limited and highly variable data available for

model parameterization, the robustness of the model to

parameter variations is of importance. As a first step in this

direction, we have studied the ability of the model to predict

single-herd brucellosis prevalence, when there is up to 50%
error in each identified model parameter. Figure 11 shows

that the model remains accurate in predicting single-herd

brucellosis prevalences despite such variability.

5) The uncertainty inherent to the data used for model

parameterization highlights the importance of considering

stochastics in modeling disease spread. Both intrinsic

variability in transmission and uncertainties/variability in

model parameters may significantly impact the model

dynamics and hence modulate control design (see e.g.

[36]). The design approaches that we have pursued display

significant robustness to uncertainty (see [14] for details),

and so we are confident that the core insights obtained

through the design methodology will remain valid even in

the presence of uncertainty. Nevertheless, we view enhanc-

ing the model to represent uncertainties in dynamics and

parameters, and using such models for refined analysis and

design, as a critical next step.

Summary and Conclusions
A network modeling methodology for capturing the spread of

zoonotic agents at a herd/subpopulation granularity has been

introduced, and used to compare and design control strategies for

stopping the spread of zoonoses. The introduced methodology has

been developed in detail in the context of a case study, namely

modeling and control of brucellosis spread in animal and human

populations. Parameter identification of the model from historical

data has been pursued.

This modeling and controller design effort should be viewed as a

foundational step toward obtaining comprehensive policies for

controlling zoonoses from mathematical models: the policies

suggested by our methodology must be tested in experimental

herds, and the social and political ramifications of control policies

and spread mitigation must be considered carefully in defining

costs for a zoonosis of interest. It is also important to stress that a

wide range of experimental and conceptual methodologies from

outside the mathematical-modeling domain must be brought to

bear to address policy design for zoonotic diseases, and that

mathematical modeling efforts (and policy design more generally)

are complementary to core advances in epidemiological methods.

Nevertheless, we believe that some promising outcomes have been

obtained through this foundational study.

1. Network modeling can give a clear pictorial representation of

the spread of a zoonotic disease among subgroups of one or

more species. The layered network model that we have

developed also permits simulation and simple quantitative

analysis of the spread dynamics. Also, a variety of control

measures can naturally be captured in the layered network

modeling framework.

2. The network modeling approach that we have put forth here

also permits systematic and quantitative comprehensive design

of resources for control in the animal and human population.

Specifically, for the linearized network model studied here,

recently-developed tools from the network control theory

literature can be applied to design heterogeneous control

capabilities to minimize a resource and spread cost. We stress

that much work still needs to be done to verify that the abstract

controls suggested by the design can be implemented in reality,

and can achieve performance similar to that predicted by the

model.

Figure 11. Model identification from time-course data. An SIR
model for brucellosis transmission is identified, based on time-course
data from the Jackson bison herd upon initiation of a vaccination
program. This simple model is not as accurate as the multi-state model
described in [31], but is sufficient for the broad policy-design efforts
undertaken in this research.
doi:10.1371/journal.pntd.0001259.g011

Figure 12. Robustness. Given the very limited and uncertain data
available for model parameterization, the robustness of the model to
parameter variations is of importance. As a first step in this direction, we
have studied the ability of the model to predict single-herd brucellosis
prevalence, when there is up to 50% error in each identified model
parameter. The above plot shows that the model remains accurate in
predicting single-herd brucellosis prevalences despite such variability.
doi:10.1371/journal.pntd.0001259.g012
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3. Network modeling approaches provide sufficient detail to

permit comparison and design of heterogeneous control

strategies, for instance ones that use surveillance and culling

vs. ones that use vaccination, as well as ones that cater to the

topology of interactions among the herds. Both qualitative and

quantitative predictions and designs can be obtained.

4. Although optimal controller design requires a precise model of

spread dynamics and of costs, our design methodology can

provide useful insights even when such precise models are

unavailable. First, the methodology provides simple insights

into good designs–for instance, that more resources should be

placed in large and tightly-connected herds–that do not require

a precise model to implement. Second, the designs obtained

through the methodology show some degree of robustness to

variations in model parameters.

5. We have given some preliminary results on parameterizing the

network model from data, and have also identified some

challenges in fully addressing the parameterization problem.

Given the very limited data available on the spread of various

zoonotic diseases, model parameterization remains a significant

challenge in using methods such as the ones proposed here.

Nevertheless, our preliminary efforts on parameterization show

promise, and also the model displays a degree of robustness to

inaccuracies in parameterization.

6. Clearly, when transmission among small heterogeneous groups

is considered (as in our model), stochastics in transmission very

significantly impact the spread dynamics. In particular, both

intrinsic variabilities in the interactions among individuals that

cause spread, and also environmental uncertainties that modify

transmission patterns, can critically impact the spread dynam-

ics. Not surprisingly, prevalences of zoonotic diseases such as

brucellosis show a large herd-to-herd variability, that can only

be explained by considering stochastics in transmission. We

have chosen to exclude consideration of stochastics in

transmission in this first design effort, 1) because of the great

difficulty in parameterizing such stochastic models with limited

data, and 2) because our key focus here is on gaining very

simple insights into policy design for which even the

deterministic multi-group model may be sufficient. We

consider the development of stochastic models for transmission

to be an outstanding research task of critical importance.
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