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Abstract
Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) is a technique for genome-
wide profiling of DNA-binding proteins, histone modifications, or nucleosomes. Enabled by the
tremendous progress in next-generation sequencing technology, ChIP-Seq offers higher resolution,
less noise, and greater coverage than its array-based predecessor ChIP-chip. With the decreasing
cost of sequencing, ChIP-Seq has become an indispensable tool for studying gene regulation and
epigenetic mechanisms. In this review, we describe the benefits as well as the challenges in
harnessing this technique, with an emphasis on issues related to experimental design and data
analysis. ChIP-Seq experiments generate large quantities of data, and effective computational
analysis will be critical for uncovering biological mechanisms.

Introduction
Genome-wide mapping of protein-DNA interactions and epigenetic marks is essential for
full understanding of transcriptional regulation. A precise map of binding sites for
transcription factors, core transcriptional machinery and other DNA-binding proteins is vital
for deciphering gene regulatory networks that underlie various biological processes [1]. The
combination of nucleosome positioning and dynamic modification of DNA and histones
plays a key role in gene regulation [2–4] and guides development and differentiation [5].
Chromatin states can influence transcription directly by altering the packaging of DNA to
allow or prevent access to DNA-binding proteins; or they can modify the nucleosome
surface to enhance or impede recruitment of effector protein complexes. Recent advances
suggest that this interplay between chromatin and transcription is dynamic and more
complex than previously appreciated [6], and there has been a growing recognition that
systematic profiling of the epigenomes in multiple cell types and stages may be needed for
understanding developmental processes and disease states [7].

The main tool for investigating these mechanisms is chromatin immunoprecipitation (ChIP),
a technique that enriches DNA fragments to which a specific protein or a certain class of
nucleosomes is bound [8]. With the introduction of microarrays, fragments obtained from
ChIP could be identified by hybridization to a microarray (ChIP-chip), thus enabling a
genome-scale view of DNA-protein interactions [9, 10]. On high-density tiling arrays,
oligonucleotide probes can now be placed across an entire genome or across selected regions
of a genome - for instance, promoter regions, specific chromosomes, or gene families - at a
preferred resolution.

With the rapid technological developments in next-generation sequencing (NGS), the
arsenal of genomic assays available to the biologist has been transformed [11–13]. With the
ability to sequence tens or hundreds of millions of short DNA fragments in a single run, an
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increasingly large set of experiments, which could only be imagined a few years ago, is
becoming possible. NGS has already been applied in a number of areas including whole-
genome sequencing [14, 15], mRNA-sequencing for gene expression profiling[16–18],
characterization of structural variation [19], profiling of DNase I hypersensitive sites [20],
detection of fusion genes from mRNA transcripts [21], and discovery of new classes of
small RNAs [22]. If the ‘third-generation’ sequencing technologies that are under
development deliver as promised, they will enable another epoch of genome-scale
investigations [23].

Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) has been one of the
early applications of NGS, with the first publications in 2007 [24–27]. In ChIP-Seq, the
DNA fragments of interest are sequenced directly instead of being hybridized on an array.
With single base-pair resolution, fewer artifacts, greater coverage, and a larger dynamic
range, ChIP-Seq offers significantly improved data compared to ChIP-chip. Although the
short reads (~35 bp) generated on NGS platforms pose serious difficulties for certain
applications, for example de novo genome assembly, they are acceptable for ChIP-Seq. The
more precise mapping of protein binding sites provided by ChIP-Seq allows for a more
accurate list of targets for transcription factors and enhancers as well as better identification
of sequence motifs [24, 28]. Enhanced spatial resolution is particularly important for
profiling post-translational modifications of chromatin and histone variants, as well as
nucleosome positioning, and ChIP-Seq has enabled tremendous progress in these areas
already (see BOX 1).

BOX 1

The contribution of ChIP-Seqto mapping epigenomes
The enhanced spatial resolution afforded by next-generation sequencing improves the
characterization of binding sites for transcription factors and other DNA-binding
proteins, including identification of sequence motifs. The increased precision is
especially important for profiling nucleosome-level features and it now allows one to
systematically catalogue the patterns of histone modifications, histone variants, and
nucleosome positioning. Here, we briefly describe recent chromatin immunoprecipitation
(ChIP) studies that have enabled progress in characterizing epigenomes.

Histone modification maps

The first comprehensive genome-wide maps using ChIP-Seq were created in 2007.
Twenty histone methylation marks, as well as the histone variant H2A.Z, RNA
Polymerase II, and the DNA-binding protein CTCF, were profiled in human T cells [25],
with an average of ~8 million tags per sample using Solexa 1G. This was followed by a
map of 18 histone acetylation marks in the same cell type [90]. These studies suggested
novel functions for histone modification and the importance of combinatorial patterns of
modifications. To examine the role of histone modifications in differentiation, embryonic
stem (ES) cells have also been profiled. Several lysine trimethylation modifications were
profiled in mouse ES cells and two types of differentiated cells in 2007 [27]. This study
showed the role of bivalent domains [91] in lineage potential as well as marks for
imprinting control. Prior to ChIP-Seq, genome-wide modification profiles were available
for yeast using tiling arrays [92–94], but only selected regions had been profiled for
mouse and human. See Ref [35] for further description of the techniques used.

Nucleosome maps

Using ChIP-chip, nucleosome depletion at active promoters in yeast was described in
2004 [95]. This was followed by a high-resolution study [96] in 2005 and a complete
map of nucleosome positioning [97] in 2007. In C. elegans MNase digestion followed by
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sequencing was used in 2006 to map core nucleosomes [98]. ChIP-Seq with Roche 454
pyrosequencing was used to generate a map of the histone variant H2A.Z in yeast [99] in
2007, and in fly [100] in 2008. For human cells, epigenetically modified and bulk mono-
nucleosome positions were profiled for T cells in 2007 and 2008 [25, 30], with >140
million Illumina/Solexa reads per experiment, (see Ref [2] for a review). These studies
have revealed the role of nucleosomes in transcriptional regulation and hint at the
principles that guide nucleosome positioning.

In this review, we will describe advantages as well as challenges in applying the ChIP-Seq
technology. We will discuss various issues in experimental design, including sample quality,
controls, depth of sequencing, and the number of replicates. Given the large quantities of
data generated in ChIP-Seq, computational analysis, including identification of binding sites
and subsequent analysis, poses a significant challenge for most laboratories. We will discuss
the main issues in data processing and statistical analysis.

ChIP-Seq basics
In a ChIP experiment for DNA-binding proteins, DNA fragments associated with a protein
are enriched (Figure 1). First, the DNA-binding protein is crosslinked to DNA in vivo by
treating cells with formaldehyde and then the chromatin is sheared by sonication into small
fragments, generally in the 200–600 bp range. Then an antibody specific to the protein of
interest is used to immunoprecipitate the DNA-protein complex. Finally, the crosslinks are
reversed and the released DNA is assayed to determine the sequences bound by the protein.
In construction of a sequencing library, the immunoprecipitated DNA is subjected to size
selection (typically in the ~150–300 bp range), although there appears to be a bias toward
shorter fragments in sequencing.

In a ChIP experiment to map nucleosome positions or histone modifications, micrococcal
nuclease (MNase) digestion without crosslinking is most often used to fragment the
chromatin. Although sonication has been used in this context [29], MNase treatment is
generally preferred because it removes linker DNA more efficiently than sonication,
allowing more precise mapping of each nucleosome [30]. On the other hand, MNase
digestion is known to have a more pronounced sequence bias [31], as well as bias due to the
solubility of chromatin [32]. There may also be changes in nucleosome position and histone
modifications during the course of the experiment in the absence of crosslinking. ChIP with
and without crosslinking is sometimes referred to as X-ChIP [33] and N-ChIP [34],
respectively, with X denoting ‘crosslinking’ and N denoting ‘native.’

Nearly all ChIP-Seq data so far have been generated on the Illumina Genome Analyzer,
although other platforms such as Applied Biosystems’ SOLiD and the Helicos platform are
now available for ChIP-Seq (Figure 1). The Illumina and the SOLiD platforms currently
generate 100–400 million reads in a single run, typically with 60–80% of reads that can be
aligned uniquely to the genome.

Advantages and disadvantages
ChIP-Seq offers a number of advantages over ChIP-chip, as summarized in Table 1 (See
also Ref [35]). Its base-pair resolution is perhaps the greatest improvement compared to
ChIP-chip, as illustrated in Figure 2A. Although arrays could be tiled at high density, this
requires a large number of probes and remains expensive for mammalian genomes [36].
Arrays also have fundamental limitations in resolution due to the uncertainties in the
hybridization process. Second, ChIP-Seq does not suffer from noise due to the hybridization
step in ChIP-chip. Nucleic acid hybridization is complex and is dependent on many factors
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including the GC-content, length, concentration, and secondary structure of both the target
and probe sequences. Thus, cross-hybridization between imperfectly matched sequences
frequently occurs and contributes to the noise. Third, the intensity signal measured on arrays
may not be linear in its entire range and its dynamic range is limited below and above
saturation points. In a recent study, distinct and biologically meaningful peaks seen in ChIP-
Seq were obscured in the same experiment conducted with ChIP-chip [37]. Finally, the
fourth significant advantage is that the genome coverage is not limited by the probe
sequences fixed on the array. This is particularly important for analysis of repetitive regions
of the genome, which are typically masked out on arrays. Studies involving heterochromatin
or microsatellites, for instance, can be done much more effectively by ChIP-Seq. Sequence
variations within repeat elements can be captured by sequencing and be used to map to the
genome; unique sequences flanking repeats also are helpful in aligning the reads to the
genome. For example, only 48% of the human genome is non-repetitive, but 80% is
mappable with 30-bp reads and 89% is mappable with 70-bp reads [38].

As with any technology, ChIP-Seq is not free from artifacts. Although sequencing errors
have been reduced substantially, they are still present, especially toward the end of each
read. This problem can be ameliorated by improvement in alignment algorithms (see below)
and computational analysis. There is a bias toward high GC-rich content in fragment
selection, both in library preparation and in amplification prior to sequencing [14, 39],
although significant improvements have been made recently. When an insufficient number
of reads are generated, there is loss of sensitivity or specificity (see the discussion below).
There are also technical issues in performing the experiment, such as loading the correct
amount of sample: too little sample will result in too few tags; too much sample will result
in fluorescent labels too close to one another, causing lower data quality.

The main disadvantage for ChIP-Seq so far, however, has been cost and availability. Several
groups have successfully developed and applied their own protocols for library construction,
lowering this cost significantly. But the overall cost of ChIP-Seq, which includes machine
depreciation and reagent cost, will have to be lowered furtherfor it to be comparable to
ChIP-chipin every case. For high-resolution profiling of an entire large genome, ChIP-Seq is
already less expensive than ChIP-chip; but depending on the genome size and the depth of
sequencing needed, a ChIP-chip experiment on carefully selected regions using a
customized microarray may yield as much biological understanding. The recent decrease in
sequencing cost per base pair has not affected ChIP-seq as significantly as other
applications, as it has come more from increased read lengths than the number of sequenced
fragments. The gain in the fraction of reads that can be uniquely aligned to the genome
decreases noticeably after ~25–35 bp and it is marginal beyond 70–100 nucleotides [40].
However, as the sequencing cost continues to decline and institutional support for
sequencing platforms grows, ChIP-Seq will become the method of choice for most
experiments in the near future.

Issues in experimental design
Antibody quality

The value of any ChIP data, including ChIP-Seq, depends critically on the quality of the
antibody. A sensitive yet specific antibody will give a high level of enrichment compared to
the background, making it easier to detect binding events. Many antibodies are
commercially available, some noted as ChIP-grade, but their quality is highly variable,
including lot-to-lot variation. Rigorous validation is a laborious process: for histone
modifications, for instance, reactivity of the antibody with unmodified histones or non-
histone proteins should be checked by Western blotting. Furthermore, cross-reactivity with
similar histone modifications (for example, di- vs. tri-methylation at the same residue)
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should be checked by using two independent antibodies, combined with RNAi against
enzymes predicted to deposit the modification or mass spectrometry of the precipitated
peptides. As part of the model organism ENCODE project [41], the author has been
involved in a large scale profiling of histone modifications for D. melanogaster. Our
validation procedure with the steps described above has resulted in unsatisfactory findings
for 20–35% of the commercially produced antibodies tested.

Sample quantity
One advantage of ChIP-Seq over ChIP-chip is the smaller amount of sample material
needed. A typical ChIP experiment yields 10–100 ng of DNA, requiring on the order of 107

cells. Several ChIP protocols have been developed for a smaller number of cells, 104–105

for genome-wide profiling [42] or 102–103 for PCR quantification at specific loci [43–45],
but so far they have been shown to work for abundant transcription factors or histone
modifications (for example, RNA Polymerase II or histone H3 trimethylated at lysine 27,
H3K27me3) pulled down by a high-quality antibody. For ChIP-chip, the ChIP sample is
usually amplified to generate >2μg of DNA per array. In contrast, on the Illumina platform,
10–50 ng of ChIP DNA is recommended. With fewer rounds of amplification, the potential
for artifacts due to PCR bias decreases for ChIP-Seq. The precise amount of ChIP DNA and
the number of cells needed depend on the abundance of the chromatin-associated protein
targets or histone modification, as well as the quality of the antibody. ChIP-Seq without
amplification is possible on the Helicos Single-Molecule Sequencing platform [46] and
other ‘third-generation’ platforms in development (see Figure 1).

Control experiment
The experimental steps in ChIP involve several potential sources of artifacts. Shearing of
DNA, for example, does not result in uniform fragmentation of the genome: open chromatin
regions tend to be fragmented more easily than closed regions, creating an uneven
distribution of sequence tags across the genome. Also, repetitive sequences may appear
enriched because the number of copies of the repeats is not accurately reflected in the
calculation. Therefore, a peak in the ChIP-Seq profile must be compared to the same region
in a matched control sample to determine its significance. There are three commonly used
choices for this control: input DNA (that is, DNA prior to immunoprecipitation, IP); mock
IP (treated the same as the IP but without any antibody); and non-specific IP (that is, using
an antibody against a protein not known to be involved in DNA binding or chromatin
modification, such as IgG). These controls test for different types of artifacts and there is no
consensus on which is most appropriate. Input DNA has been used in nearly all ChIP-Seq
studies so far; it corrects mainly for bias related to the variable solubility of different
regions, shearing of the DNA, and amplification. One problem with mock IP is that very
little material may be pulled down in the absence of an antibody and therefore results of
multiple mock IPs may not be consistent. In one set of ChIP-chip experiments, mock IP was
found to contribute little to the overall result when data are properly normalized [47]. For
histone modifications, using the ratio between ChIP sample and bulk nucleosomes is also
informative, as this ratio corresponds to the fraction of nucleosomes with the particular
modification at that location, averaged over all the cells assayed.

One of the difficulties for a ChIP-Seq control experiment is the amount of sequencing
necessary. For input DNA or bulk nucleosomes, many of the sequenced tags would be
spread out evenly across the genome. To obtain accurate estimates along the genome,
sufficient numbers of tags are needed at each point; otherwise, fold enrichment at the peaks
will be have large errors due to sampling bias. Thus the total number of tags to be sequenced
is potentially very large. Alternatively, it is possible to avoid sequencing of a control sample
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if one is only interested in differential binding patterns between conditions or time points
and the variation in chromatin preparations is small.

Depth of sequencing
One critical difference between ChIP-chip and ChIP-Seq is that the number of tiling arrays
used in a ChIP-chip experiment is the same regardless of the protein or modification of
interest, whereas the number of fragments to be sequenced in ChIP-Seq is determined by the
investigator. In published ChIP-Seq experiments, a single lane of the Illumina Genome
Analyzer was the basic unit of sequencing. Initially, a single lane generated 4–6 million
reads prior to alignment but now a lane generates 8–15 million or more. Given the cost of
each experiment, many early data sets contained reads from a single lane regardless of what
the specific experiment was. Intuitively, when a large number of binding sites are present in
the genome for a DNA-binding protein or when a histone modification covers a large
fraction of the genome, a correspondingly large number of tags are needed to cover each
bound region at the same tag density. One reasonable criterion for determining sufficient
sequencing depth would be that the results of a given analysis do not change when more
reads are obtained. In terms of the number of binding sites, this criterion translates to the
presence of a ‘saturation’ point after which no further binding sites are discovered with
additional reads.

The issue of saturation points has been examined in a recent manuscript through simulation
studies [48]. In three example data sets, a reference set of sites was generated based on the
full set of sequencing reads in each case. Then, a wide range of different read counts was
sampled (with multiple random selections for each sample size) from the complete data set,
binding sites were determined for each sample with a threshold p-value, and the results for
each sample size averaged. The fraction of the reference set recovered as a function of
number of reads is shown in Figure 3A. If there were a saturation point, the number of sites
found would increase up to a certain point and then plateau, signifying that the rate at which
new sites are discovered has slowed down sufficiently to make any further increase in the
number of reads inefficient. When the simulation was performed, however, the results
indicated that more and more sites continued to be found at a steady pace with additional
sequencing (the lower curve). In another study [38], human RNA polymerase II targets were
shown to saturate quickly while for the transcription factor STAT1 the number targets
continued to rise steadily. This suggests that, at least in some cases, there may not be a
saturation point that can be used to determine the number of tags to be sequenced if peaks
are found based on statistical significance.

A saturation point does exist, however, if a fixed threshold is imposed on the fold
enrichment between the peaks in the ChIP experiment and the control experiment. That is,
when only prominent peaks (as defined by minimum fold enrichment) are considered,
saturation is likely to occur. When all peaks are considered, even peaks with small
enrichment can become statistically significant as more tags are accumulated, as illustrated
in Figure 3B. This is similar to what happens in genome-wide association studies and other
genomic investigations where a large sample size increases the statistical power and causes
features of small effect sizes to attain statistical significance. The authors [48] proposed that
each ChIP-Seq data set can be annotated with a Minimal Saturated Enrichment Ratio
(MSER) at which saturation occurs to give a sense of the sequencing depth achieved. They
also found that there is a linear relationship between the number of reads and MSER when
properly scaled. This makes it possible to predict how many more reads are needed when a
particular level of MSER is desired. While these concepts and tools should be tested on
more data sets, they provide a framework for understanding depth-of-sequencing issues in
ChIP-Seq experiments.
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Multiplexing
For small genomes, including S. cerevisiae, C. elegans and D. melanogaster, the number of
reads generated in a sequencing unit (for example, one of eight lanes on an Illumina
Genome Analyzer) may be several times greater than the number of reads needed to provide
sufficient coverage of the genome at a suitable depth for the ChIP-Seq experiment. As the
number of reads per run continues to increase, the ability to sequence multiple samples at
the same time (referred to as ‘multiplexing’) becomes important for cost-effectiveness. In
theory, multiplexing of samples is not difficult, only requiring different barcode adaptors to
be ligated to different samples during sample preparation. Even allowing for sequencing
error, a few bases are sufficient to serve as unique identifiers for many samples. In practice,
however, multiplexing has not been widely used so far on the Illumina platform, due to
uneven coverage of the samples and other technical problems. Some recent protocols,
however, show promise [49] and multiplexing is likely to be utilized frequently in the future.

Paired-ends sequencing
The ChIP fragments are generally sequenced at the 5′ ends, but they can also sequenced at
both ends, as is frequently done for detection of structural variations in the genome [19].
Paired-ends sequencing can be used in conjunction with ChIP for additional specificity in
mapping, especially to repetitive regions, and to map long-range chromatin interactions [50].

Number of replicates
Replicate experiments are needed for ensuring reproducibility of the data. For microarrays,
platforms and protocols have improved substantially so that technical replicates of the same
samples are generally not done anymore. While this is likely to be the case for ChIP-Seq
[51], biological replicates are still strongly recommended to account for variation between
samples and to verify the fidelity of experimental steps. Assuming that they are sequenced
deeply, two concordant replicates would generally be sufficient, as a third replicate appears
to add little value [38].

Challenges in Data Analysis
As NGS platforms and ChIP-Seq protocols mature, data generation is gradually becoming
routine and the limiting factor in a study is shifting to computational analysis of the data and
validation experiments. In this section, we discuss the key issues and concepts involved in
data analysis. These will serve as a basis for a full range of ChIP-Seq analyses, which are
too varied and complex to be discussed in this review. A flowchart of the steps involved in
ChIP-Seq analysis is shown in Figure 4.

Data management
NGS produces an unprecedented amount of data. Raw data and images are on the order of
terabytes per machine run, making data storage a challenge even for facilities with
considerable expertise in management of genomic data. Data can be stored at three levels:
image data, sequence tags, and alignment data. Ideally, one would like to keep the raw data
so that if a new base-caller is developed, one can re-process the raw data. Sequence tags can
be used to map the data when an improved aligner is available or when a reference genome
assembly is updated. Alignment data can be useful for generating summary statistics and can
be used to generate SNP or copy number variation calls. There is no consensus in the
community regarding which data type must be stored, but many feel that the image data are
too expensive to maintain and that a reasonable approach at this point is to discard the raw
data after a short period of time and keep only the sequence-level data.
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In microarray-based studies, investigators are encouraged, and often required, to submit
their data upon publication to a public database such as Gene Expression Omnibus [52]. For
NGS data, data transfer and maintenance are more complicated due to the large file sizes.
Depositing data via standard ftp or http protocols, for instance, is likely to fail when many
gigabytes are to be uploaded. To meet this challenge, National Center for Biotechnology
Information (NCBI) in the US, the European Bioinformatics Institute and the DNA
Databank of Japan havedeveloped the Sequence Read Archive (SRA) [53, 54]. Meta-data
describing all experimental details should be submitted at the same time for the data in the
repositories to be useful to the community.

Genome Alignment
Image processing and base-calling are platform-specific and are mostly done using the
software provided by the manufacturer, although some new base callers have been proposed
recently [55, 56] for the Illumina platform. More important is the choice of strategy for
[54]genome alignment, as all subsequent results are based on the aligned reads. Due to the
large number of reads, the use of conventional alignment algorithms can take hundreds or
thousands of processor hours. Thus, a new generation of aligners has been developed
recently [57] and more are expected soon. Every aligner is a balance between accuracy,
speed, memory, and flexibility, and no aligner can be best suited for all applications.
Alignment for ChIP-Seq should allow for a small number of mismatches due to sequencing
errors, single nucleotide polymorphism (SNPs) and indels, or the difference between the
genome of interest and the reference genome. This is simpler than in RNA-seq, for example,
where large gaps corresponding to introns must be considered. Currently, popular aligners
include: Eland, an efficient and fast aligner for short reads that was developed by Illumina
and is the default on that platform; MAQ [58], a widely-used aligner with a more exhaustive
algorithm and excellent capabilities for detecting SNPs; and Bowtie [59], an extremely fast
mapper based on an algorithm originally developed for file compression. These methods
utilize the quality score that accompanies each base call to indicate its reliability. For the
SOLiD dibase sequencing technology, in which two consecutive bases are read at a time,
modified aligners have been developed [60, 61]. Many current analysis pipelines discard
non-unique tags, but studies involving the repetitive regions of the genome [27, 62–64]
require careful handling of these non-unique tags.

Identification of enriched regions
After sequenced reads are aligned to the genome, the next step is to identify regions that are
enriched in the sample relative to the control with statistical significance. Several ‘peak
callers’ that scan along the genome to identify the enriched regions are currently available
[24, 26, 38, 48, 65–70]. In early algorithms, regions were scored firstly by the number of
tags in a window of given size, and then assessed by a set of criteria on such factors as
enrichment over the control and minimum tag density. Subsequent algorithms take
advantage of the directionality of the reads [71]. As illustrated in Figure 5, the fragments are
sequenced at the 5′ end, and the locations of mapped reads should form two distributions,
one on the positive strand and the other on the negative strand, with a consistent distance
between the peaks of the distributions. In these methods, a smoothed profile on each strand
is first constructed [65, 72] and then the combined profile is calculated, either by shifting
each distribution toward the center or by extending each mapped position into a ‘fragment’
with appropriate orientation and then summing the fragments. The latter approach should
result in a more accurate profile with respect to the width of the binding, but it requires an
estimate of the fragment size as well as the assumption that fragment size is uniform.

Given a combined profile, peaks can be scored in a number of ways. A simple fold ratio of
the signal for the ChIP sample relative to that of the control sample around the peak (Figure
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3B) provides important information, but it is not adequate. A fold ratio of 5 estimated from
50 and 10 tags (ChIP/control) has a different statistical significance from the same ratio
estimated from 500 and 100 tags, for example. A Poisson model for the tag distribution is an
effective approach that accounts for the ratio as well as the absolute tag numbers [27],
especially with a correction for regional bias in tag density due to chromatin structure, copy
number variation, or amplification bias [67]. A binomial distribution or other models can
also be used [38]. In another approach, the peaks are scored before a combined profile is
generated, by considering how well the tag distributions on the two strands resemble each
other and whether the distance between the peaks is close to the expected number of base
pairs [48]. Another important local correction, regardless of the peak detection method, is to
adjust for sequence alignability. Depending on how the non-uniquely mapped reads are
processed, regions of the genome containing repetitive elements will have a different
expected tag count. By keeping track of how many times each k-mer along a segment
appears in the rest of the genome, one can correct for the variation in mappability among
segments [27, 38].

A major difficulty in identification of enriched regions is that there are three types: sharp,
broad, and mixed (Figure 2B). Sharp peaks are generally found for protein-DNA binding or
histone modifications at regulatory elements, whereas broad regions are often associated
with histone modifications marking domains, for example, transcribed or repressed regions.
Most current algorithms have been designed for sharp peaks, with coalescing of adjacent
peaks post hoc for broad regions, but many techniques from ChIP-chip and DNA copy
number analysis [73] will soon be modified for ChIP-seq as well as new ones developed [74,
75]. A powerful method would incorporate elements of both types of methods and apply a
technique appropriate for the features found without knowing the type of enrichment a
priori.

The performance of a peak caller can be tested by validating a large set of sites via qPCR or
by computing the distribution of distances from each peak to a nearby known protein-
binding sequence motif. While a careful comparison of the algorithms is still being carried
out, it is clear that the best methods should at least take advantage of the strand-specific
pattern expected at a binding location and adjust for local variation as measured by input
DNA and, to a lesser extent, correct for sequence alignability. Statistical significance of
enriched sites is generally measured by false discovery rate (FDR) [76, 77], which is the
expected proportion of incorrectly identified sites among those found to be significant.
Determining significance for a multitude of features in the data results in a ‘multiple
hypothesis problem,’ in which features that appear to be significant arise simply due to the
large number of features being considered. The q-value of a peak is the minimum FDR at
which the peak is deemed significant and is analogous of the p-value in a single hypothesis
test setting. As in analysis of other genomic data types, it is important to note that the
accuracy of statistical significance computed in these algorithms depends on how realistic
the underlying null distribution is. For ChIP-Seq, an FDR derived from a null distribution
based on randomization of ChIP reads can be off by an order of magnitude [48], because
tags in the same or neighboring positions are not completely independent even without true
binding, as can be seen in the input control profile.

Downstream analysis
For protein-DNA binding, the most common follow-up analysis is discovery of binding
sequence motifs [78]. The sequences of the top-scoring sites can be entered into motif-
finding algorithm programs such as MEME [79], MDScan [80], Weeder [81] and TAMO
[82], and potential motifs are returned along with their statistical significance. In some
cases, a single motif clearly stands out with much higher statistical significance than the
subsequent matches and is largely insensitive to the number of the sites used to search. In
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other cases, there is a series of motifs with gradual decrease in statistical significance, and
further analysis on combinatorial occurrences of the motifs may be informative in
identifying cooperative interactions among transcription factors or other more complex
relationships among the motifs. The process of computing statistical significance is not
straightforward and algorithms that are available use different null models and multiple-
testing adjustment; thus it is important to validate functionally any motifs that are found.
While ChIP-chip has been used successfully in numerous occasions for motif discovery,
analysis of the distances between ChIP-Seq peaks and the nearby motifs clearly demonstrate
that ChIP-Seq data are superior for this application [48, 65]. For some factors, most of the
ChIP-Seq peaks are within 10–30bp of the known motif [48]. After a motif is found,
searching for the sequence in the genome generally reveals that there are many more sites
with the motif than those identified by ChIP-Seq. Why some occurrences of a motif are
functional and others are not is at least partially related to presence or absence of
nucleosomes or a specific histone modification; this can be explored with nucleosome
profiles obtained by sequencing [29, 37].

Another basic analysis that can be performed using ChIP-Seq data is to annotate the location
of the peaks on the genome in relation to known genomic features, such as the
transcriptional start site (TSS), exon/intron boundaries, and the 3′ ends of genes. TSS of
active genes, for instance, are known to be enriched with histone H3 trimethylated at lysine
4 (H3K4me3) and while enhancers are enriched with lysine 4 monomethylation (H3K4me1)
[25, 83]. It is generally informative to view this type of data both in absolute and relative
scale, for example, by rescaling all genes to have the same length so that the average profile
over the gene body can be viewed. To find relationships between the profiles, correlation
analysis can be performed, as well as more advanced clustering methods [84]. ChIP-chip
and ChIP-Seq data from the same experiments are generally comparable but have subtle
differences; thus, combining both platforms requires careful attention, especially to the
amount of smoothing applied to profiles. Incorporating other data types into the analysis is
alsonecessary for biological interpretation. Classifying the ChIP-Seq patterns by their
relationship to expression data, for example, is an important first step. Expression levels
correlated with the binding status of a transcriptional activator would indicate that the gene
may be a target of the activator; a chromatin mark with enrichment at the promoter of genes
with high expression can be inferred to be related to transcriptional activation. For a group
of genes with a common feature - for example, binding of the same transcription factor or
presence of the same modification - Gene Ontology analysis [85] can be performed to see
whether a particular molecular function or biological process is over-represented in those
genes [86]. More advanced analysis includes discovery of novel elements based on ChIP-
Seq data. For example, the location of H3K4me3 and H3K36me3, which are known to be
found at promoters and over transcribed regions, respectively, can be used to identify large
non-coding RNAs [87]. Combined with SNP information, ChIP-Seq data can also be used to
investigate allele-specific binding and modification [27].

Available software
Many of the algorithms for alignment and peak detection discussed earlier are accompanied
by software. Some are available as a plug-in package for the statistical language R, a
powerful system for data analysis that is popular among bioinformaticians [88], while others
are based on standard compiled languages such as C/C++. Most programs generate a list of
enriched sites as well as the binding profile to be viewed on a genome browser. One
program with a menu-driven user interface is CisGenome [69], featuring a ChIP-chip and
ChIP-Seq analysis pipeline with support for interactive analysis and visualization. More
user-friendly software tools designed for biologists will be developed in the future, but it is
unlikely that tools available in a single software package will meet all analysis needs. This is
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particularly the case when the experimental design is more complicated or advanced
analysis involving integration of other data types is needed. Thus, as is in most genomics
projects, it is imperative to have a bioinformatics expert as a member of the research team.

Conclusion and future directions
ChIP has become a principal tool for understanding transcriptional cascades and for
deciphering information encoded in chromatin. With the remarkable progress in high-
throughput sequencing platforms in the recent years, ChIP-Seq is poised to become the
dominant approach in the coming years. The cost of sequencing and lack of easy access to
platforms are still the limiting factors for most investigators, but the situation is expected to
improve in the near future. ChIP-Seq already offers higher-resolution and cleaner data at
lower cost than the array-based alternatives for genome-wide profiling of large genomes.
Improved spatial resolution has already resulted in significant progress in several areas, most
notably in genome-wide characterization of chromatin modifications at the nucleosome level
and in accurate identification of DNA sequence elements involved in transcriptional
regulation. Enhanced sequencing capabilities in the future will allow profiling of a large
number of DNA-binding proteins as well as a more complete set of chromatin marks in a
myriad of epigenomes across multiple tissues, cell types, conditions, and developmental
stages. The human Encyclopedia of DNA Elements (ENCODE) [89], the model organism
ENCODE [41], and the NIH Epigenome Roadmap Program are a first step in large-scale
profiling, and lessons from these projects will spur more detailed characterizations in
specific systems. To extract most information from ChIP-Seq data, integrative analysis with
other data types will be essential. Integrated with RNA-Seq data, for example, ChIP-Seq
data may result in elucidation of gene regulatory networks and characterization of the
interplay between the transcriptome and the epigenome. Experimental challenges for the
future include careful validation of antibodies, development of methods for working with a
small number of cells, and single-cell level characterization. Even greater challenges for
many laboratories are likely to be effective management and analysis of the immense
amount of sequencing data. This will require development of user-friendly and robust
software tools for data analysis and closer interaction between experimentalists and
bioinformaticians.
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Figure 1. Overview of a ChIP-Seq experiment
Specific DNA sites that interact with transcription factors or other chromatin-associated
proteins as well as sites that correspond to modified chromatin can be profiled using
chromatin immunoprecipitation (ChIP) followed by massively parallel sequencing. The
ChIP process enriches crosslinked proteins or modified chromatin of interest using an
antibody specific to the protein or the histone modification. Purified DNA can be sequenced
on any of the next-generation platforms [12]. The basic concepts are similar on these
platforms: common adaptors are ligated to the ChIP DNA, and clonally clustered amplicons
are generated. The sequencing step involves enzyme-driven extension of all templates in
parallel, alternating with detection of florescent labels incorporated with each extension by
high-resolution imaging. On the Illumina/Solexa Genome Analyzer (bottom left), clusters of
clonal sequences are generated by bridge PCR, and sequencing is performed by sequencing-
by-synthesis. On the 454 and SOLiD platforms (bottom middle), clonal sequencing features
are generated by emulsion PCR, with amplicons captured to the surface of μm-scale beads.
Beads with amplicons are then recovered and immobilized to a planar substrate to be
sequenced by pyrosequencing (454) or by DNA ligase-driven synthesis (SOLiD). On single-
molecular sequencing platforms such as the HeliScope by Helicos (bottom right),
fluorescent nucleotides incorporated into templates can be imaged at the level of single
molecules, thus making clonal amplification unnecessary.
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Figure 2. ChIP profiles
A) An example of ChIP-Seq and ChIP-chip profiles. The figure shows a section of the
binding profiles of the chromodomain protein Chromator measured by ChIP-chip (unlogged
intensity ratio, blue) and ChIP-Seq (tag density, red) in the D. melanogaster S2 cell line. The
tag density profile obtained by ChIP-Seq reveals specific positions of Chromator binding
with higher spatial resolution and sensitivity. The ChIP-Seq input DNA (control experiment)
tag density is shown (gray) for comparison. B) Examples of different types of ChIP-Seq tag
density profiles. Profiles for different types of proteins and histone marks can have different
types of features. For example: sharp binding sites, as shown for the insulator binding
protein CTCF (red); a mixture of shapes, as shown for RNA Polymerase II (orange), which
has a sharp peak followed by a broad region of enrichment; medium size broad peaks, as
illustrated by H3K36me3 (green), which is associated with transcription elongation over the
gene body; and large domains, as illustrated by H3K27me3 (blue), a repressive
markindicative of Polycomb-mediated silencing. Data for part B are from human T-cells,
from REF 20.
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Figure 3. Depth of Sequencing
(A) To determine whether enough tags have been sequenced, simulation can be carried out
to characterize the fraction of the peaks that would be recovered if a smaller number of tags
had been sequenced. In many cases, new statistically significant peaks are discovered at a
steady rate with an increasing number of tags (solid curve), i.e., there is no saturation of
binding sites. However, when a minimum threshold is imposed for the enrichment ratio
between ChIP and input DNA peaks, the rate at which new peaks are discovered slows
down (dashed curve). That is, saturation of detected binding sites can occur when
sufficiently prominent binding positions are considered. For a given data set, multiple curves
corresponding to different thresholds can be examined to identify the threshold at which the
curve becomes sufficiently flat to meet the desired saturation criteria (upper right box
defined by the red lines). We refer to such threshold as the Minimum Saturation Enrichment
Ratio (MSER). MSER can serve as a measure for the depth of sequencing achieved in a data
set: A high MSER, for example, indicates that the data set may be under-sampled, as only
the more prominent peaks were saturated. See REF Kharchenko et al for details. (B) There
are two ways in which a peak can be more statistically significant than another (lower panels
compared to upper panels): higher enrichment ratio in ChIP compared to control for the
same number of tags (shown under the curve in each case) (lower left) or the same
enrichment ratio but a larger number of tag counts (lower right). As the latter case illustrates,
there may not be saturation of binding sites when more sequencing leads to less prominent
peaks becoming more statistically significant.
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Figure 4. Overview of ChIP-Seq analysis
The raw data for ChIP-Seq analysis are images from the next generation sequencing
platform (top left). A base-caller converts the image data to sequence tags, which are then
aligned to the genome, on some platforms with the aid of quality scores that indicate the
reliability of each base call. Peak calling using the ChIP and a control profile (usually input
DNA) are used to generate a list of enriched regions ordered by false discovery rate as a
statistical measure. Subsequently, the profiles of enriched regions are viewed with a browser
and a variety of advanced analyses are performed.
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Figure 5. Strand-specific profile at enriched sites
DNA fragments from a chromatin immunoprecipitation experiment are sequenced from the
5′ end. Thus, alignment of these tags to the genome results in two peaks, one on each strand,
flanking the location where the protein or nucleosome of interest was bound. This strand-
specific pattern can be used for optimal detection of enriched regions. To approximate the
distribution of all fragments, each tag location can be extended by an estimated fragment
size in the appropriate orientation and the number of fragments is counted
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Table 1

Comparison of ChIP-chip and ChIP-Seq

ChIP-chip ChIP-Seq

Resolution Array-specific, generally 30–100bp Single nucleotide

Coverage Limited by sequences on the array; repetitive regions usually
masked out

Limited only by alignability of reads to the
genome; increases with read length; many
repetitive regions can be covered

Cost $400–$800 per array (1–6 million probes); multiple arrays may
be needed for large genomes

$1000–$2000 per Illumina lane (6–15
million readsprior to alignment)

Source of platform noise Cross-hybridization between probes and non-specific targets Some GC-biasmay be present

Experimental design Single- or double-channel, depending on platform Single channel

Cost-effective cases Large fraction enriched (broad binding), profiling of selected
regions

Small fraction enriched (sharp binding),
large genomes

Required amount of ChIP
DNA

High (few μg) Low (10–50 ng)

Dynamic range Lower detection limit, saturation at high signal Not limited

Amplification More required Less required; single molecule sequencing
without amplification is available

Multiplexing Not possible Possible
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