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Abstract: Theimpact of digestive diseases, which include disorders af-
fecting the oropharynx and alimentary canal, ranges from the inconvenience
of a transient diarrhoea to dreaded conditions such as pancreatic cancer,
which are usually fatal. Currently, the major limitation for the diagnosis of
such diseases is sampling error because, even in the cases of rigorous adher-
ence to biopsy protocols, only a tiny fraction of the surface of the involved
gastrointestinal tract is sampled. Optical coherence tomography (OCT),
which is an interferometric imaging technique for the minimally invasive
measurement of biological samples, could decrease sampling error, increase
yield, and even eliminate the need for tissue sampling provided that an
automated, quick and reproducible tissue classification system is developed.
Segmentation and quantification of ophthalmologic pathologies using OCT
traditionally rely on the extraction of thickness and size measures from the
OCT images, but layers are often not observed in nonopthalmic OCT imag-
ing. Distinct mathematical methods, namely Principal Component Analysis
(PCA) and textural analyses including both spatial textural analysis derived
from the two-dimensional discrete Fourier transform (DFT) and statistical
texture analysis obtained independently from center-symmetric auto-
correlation (CSAC) and spatial grey-level dependency matrices (SGLDM),
have been previously reported to overcome this problem. We propose an
alternative approach consisting of a region segmentation according to the
intensity variation along the vertical axis and a pure statistical technique
for feature quantification, i.e. morphological analysis. Qualitative and
guantitative comparisons with traditional approaches are accomplished in
the discrimination of freshly-excised specimens of gastrointestinal tissues to
exhibit the feasibility of the proposed method for computer-aided diagnosis
(CAD) in the clinical setting.

© 2011 Optical Society of America
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1. Introduction

Opticalcoherence tomography (OCT) is an optical technique based on low-coherence interfer-
ometry that provides noninvasive, subsurface, high-resolution imaging of biological microstruc-
ture [1-3]. It was first described by Huang et al. [1] and is becoming an established technique
through posterior developments such as those in the spectral-domain (SD) [4] including the
use of swept-sources (SS) [5] that have considerably improved its sensitivity. These have also
helped to increase the speed of the analysis [6]. Traditionally, opthalmology has been the main
application of OCT, but new OCT applications that include noninvasive “optical biopsy” in
areas such as cardiology, pulmonology, skin imaging, orthopedics and gynecology are emerg-
ing. The generation of OCT images of the gastrointestinal (Gl) tract is another area where it
is predicted to be used in the following years since it could decrease sampling error, increase
yield, and ultimately it could even eliminate the need for tissue sampling [3]. This would solve
the limitation of current clinical management for patients with gastrointestinal diseases, such
as Barrett's esophagus (BE) and its associated adenocarcinoma, in terms of the reduced tis-
sue fraction sampled during standard endoscopic examinations. Previous works have reported
fiber-based OCT imaging systems that can be readily integrated with standard endoscopes for
minimally invasive diagnosis [7, 8] of Barrett's oesophagus [9] and oesophageal dysplasia [10]
and even detection of colon dysplasia [11] has been established. However, the need for tissue
sampling would only be eliminated if an automated tissue classification is developed that is
quicker than visually assessing images and likely to be more reproducible.

Computer analysis of ophthalmologic pathologies using OCT, such as segmentation and
guantification, traditionally relies on the extraction of thickness and size measures from the
OCT images. However, for imaging in the gastrointestinal tract, such defined layers are usu-
ally not observed. In this regard, texture analysis of OCT images has shown promising re-
sults [3, 12—-15]. These approaches are based on the assumption that the loss of structure as-
sociated with normal histological organization presumably resulting from the altered tissue
architecture of the dysplastic tissue can be quantified as texture features, such as smoothness,
coarseness and homogeneity, etc. in OCT images [15]. Therefore, these features could be em-
ployed for tissue classification at a later stage. Among these alternatives, feature extraction
derived from the two-dimensional discrete Fourier transform (DFT) has proved to be a fea-
sible option [13], since DFT features can detect texture periodicity and orientation. A region
of interest (ROI) is selected from the OCT images and the complex two-dimensional Fourier
transform of the region is obtained. The latter is divided into four concentric square rings based
on frequency (with the outermost ring representing the highest spatial frequency content) and
then the magnitudes of the spatial frequencies in each ring are integrated and normalized to the
total signal magnitude, such that each feature value represents the percentage of signal within
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a certain range of spatial frequencies. Images that contain large relatively homogenous areas,
suchas the epithelial region in normal oesophagus, would have high values for DFT features
associated with lower spatial rings while images with lots of smaller inhomogeneous areas as
the crypt-like glandular structures in Barrett’'s oesophagus, would have higher values in the
DFT features that correspond to higher spatial frequency rings [13, 14].

More sophisticated approaches propose the employment of other texture analysis proce-
dures, specifically the spatial gray-level dependence matrices (SGLDM) [12,14] and the center-
symmetric auto-correlation method (CSAC) [3]. A SGLDM is a spatial histogram of an image
that quantifies the distribution of grey-scale values and allows the computation of the statistical
textural features for the selected region including energy, entropy, correlation, local homogene-
ity and inertia (also called contrast). On the other hand, CSAC texture features relate to local
intensity variations and can capture local structure variation because this method quantifies the
relationships between each pixel and its neighboring pixels [3]. The covariance of local centre-
symmetric patterns is measured employing two local center-symmetric auto-correlations, lin-
ear and rank-order (SAC and SRAC), together with a related covariance measure (SCOV) and
variance ratio (SVR), within-pair variance (WVAR) and between-pair variance (BVAR) [15].
Unlike SGLDM features these are rotation-invariant measures [16]. In the last years, several
publications have dealt with refinements of these techniques through the simultaneous compu-
tation of different types of texture features and the further processing of the combined features
using principal components analysis (PCA) [17] to reduce the variable dimensions and increase
the discriminative power. Then the scores of the principal components, i.e. the projections of the
original variables to the principal component space, are used as variables for linear discriminant
analysis (LDA) [14]. More recently a PCA- and LDA-based prediction algorithm constructed
directly from the depth intensity profiles in the OCT images has been proposed [18] as well as
the study of the skewness of the intensity distribution in distinct regions in the axial direction
using physiological information knowa priori [19]. Within the same framework, the perfor-
mance of diverse multivariate analysis for the automated classification of dysplasia in Barrett's
oesophagus has been compared yielding an accuracy of 84% by Qi et al. [15].

One of the key issues is that healthcare processes and decision making will be favored by near
real time computer-aided diagnosis (CAD) and, consequently, texture analysis procedures that
simultaneously perform feature quantification and data compression (each tomogram is in the
end represented by a short series of numbers depending on the particular textural approach em-
ployed) are preferable to a straightforward PCA analysis of the depth intensity profiles because
the latter has a much higher computational load. However, both the distinct textural analysis
techniques previously proposed and also the first attempt in a statistical study of the intensity
distribution are subject to the selection of an appropriate ROI for the quantification of the im-
age features or the disposal of physiological information for region segmentation. A two-step
methodology is reported to overcome this problem. First, an automated region segmentation of
every OCT image according to the intensity variation along the vertical direction is proposed. In
the second step, a morphological analysis of the segmented OCT images is employed for quan-
tifying the features that could serve for tissue classification. This way of extracting features
from the original images has been successfully employed for feature extraction for breast tissue
density classification in mammographic CAD systems [20] or automated segmentation based
upon remitted scatter spectra from pathologically distinct tumor regions [21]. To the authors’
knowledge, morphological analysis, however, has not previously been performed on OCT im-
ages. The proposed methodology will be qualitatively and quantitatively compared with textural
analyses to show that it surpasses their capabilities in gastrointestinal tissue discrimination.
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2. Materials and methods
2.1. OCT instrumentation

Surgical specimens were imaged employing a commercial SS-OCT system (OCS1300SS,
Thorlabs Incorporated, Newton, New Jersey), which incorporates a high-speed frequency swept
external cavity laser (1325 nm central wavelength) having a 3 dB spectral bandwid®0(>

nm) and an average output power of 10 mW. The frequency clock for the laser is provided by a
built-in Mach-Zehnder Interferometer (MZI, Thorlabs INT-MZI-1300) and the main output of
the laser is coupled into a fiber-based Michelson interferometer and split into the reference and
sample arm using a 50/50 coupler (Thorlabs FC1310-70-50-APC).

In the reference arm of the interferometer, the light is reflected back into the fiber by a
stationary mirror. In the sample arm, it is fiber coupled into the microscope head, collimated
and then directed by the XY galvo scanning mirrors towards the sample. The axial scans (A-
scans) are performed at 16 kHz, which is the sweeping frequency of the laser. The transverse
scan (B-scan) is controlled by the galvo scanning mirrors and determines the frame rate of the
OCT imaging. The sample is placed on a stage, providing XY and rotational translation. A pair
of XY galvo mirrors sequentially scans the probe beam across the sample surface area, and the
3D volume data set under this area is acquired (C-scan).

This OCT system produces high-resolution cross-sectional images of the gastrointestinal
tissues with axial and transverse resolution of 9 andubh respectively. The interference
signal is detected using a high-impedance gain balance photodetector having a provision for
noise correction. The fast Fourier transform (FFT) is used to convert the time to frequency of
the interference signal. However, raw OCT interference fringe signals in the time domain are
recorded using the software package within the SS-OCT system. Time to frequency domain
conversion to obtain the depth-dependent reflectivity profile for the OCT image is subsequently
performed with Matlab 7.9.0.529 (R2009b) that is also utilized off-line for image enhancement
and further processing.

2.2. Gastrointestinal tissue surgical specimens

Data was collected at St Mary’s Hospital, Paddington, London from February to September
2010. Patients undergoing elective gastrointestinal surgery, who where able to provide written
informed consent, were included in the study. Suitable patients were identified after liasing
with the surgical teams and written informed consent was obtained, and those under the age
of 18 were excluded from the study. The purpose of the research and its implications were
outlined during a pre-operative consultation. The suitability of both the patients and resected
tissue was assessed in conjunction with the surgeons and the histopathologists, to ensure that
external handling and OCT imaging did not adversely affect tissue quality for histopathological
investigation.

Specimens from gastrointestinal surgery are generally quite large, as they consist of large
parts of - or even whole - organs, such as the oesophagus, stomach, large bowel or rectum.
In advanced stages, where the tumour may have spread to neighbouring organs, they, or parts
thereof, may also be included, such as the tip of the pancreas or even the whole spleen. Nor-
mally, these specimens are placed in formalin as soon as they are excised, along with any other
tissues, such as lymph nodes, unless the surgeon wishes to open the specimen, for example to
visually assess the completeness of excision.

For the purposes of this study, specimens were collected from theaters in warm normal saline
(0.9% sodium chloride) to maintain hydration. Formalin was not used until after imaging, as it
is a fixative, causing cross-linking of proteins and effectively changing the structural properties
of tissues and, consequently, their optical properties too. The specimens were collected as soon
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as they were excised and immediately taken to the histology lab. There, they were gently rinsed
exposing the mucosa and any lesions. In order to stabilise them for imaging and mark sites of
interest, specimens were pinned onto corkboards. Large pins were used to secure the specimen
and smaller ones to mark areas from which OCT imaging was carried out, apart from tumour
sites, where the thickness of the wall and tumour would not allow the pins to reach the cork-
board. The specimens were then carried to the OCT lab in a closed tray. Since they are much
thicker than the penetration depth of the OCT beam, they do not require any special mounting
and were imaged directly on the corkboard. After imaging was complete (within 30 minutes
of resection), tissues were fixed with 10% formalin and returned to pathology within one hour
of excision, for routine histological processing, which included paraffin embedding, sectioning
and Hematoxylin/Eosin (H/E) staining.

For each site that was imaged, a letter was appended to a unique patient code, starting from
“A’ for the first site imaged and carrying on in alphabetical order. This allowed posterior corre-
lation with the histological and automated classification results, as well as any intended patient
per patient analysis. A total of 35 sites from 11 patients that weke 3mm in size were
imaged. Nine of them corresponded to tumour sites (belonging to 7 different patients), while
the remaining imaged sites included stomach (20 sites from 9 patients), and oesophagus (6
sites from 6 patients). The sample population is, therefore, unevenly distributed across patients,
meaning that not only the number of imaged sites per diagnostic category varied, but also the
tissue types imaged per patient. A 3D volume data set (C-scan) was obtained per imaged site.
The OCT software always generated data to a fixed depth of 3 mm, regardless of the on-screen
depth set by the user, which was for viewing purposes only. Consequently, the other two dimen-
sions were fixed to 3 mm length to obtain a cube-shaped C-scan. The lateral resolution was set
to 512 pixels which implies that each C-scan consists of 512 transverse OCT images (B-scans).
As the axial resolution of the system was also fixed at 512 pixels, the resulting OCT images
contains 512 axial scans (A-scans) each.

2.3. Image enhancement

Raw OCT images suffer from eventual outliers (e.g. reflection artifacts) that need to be cor-
rected or removed. Additionally, intensity information above the surface also has to be dis-
carded. Reflections caused by the beam angle provoke brighter pixels at certain depth positions
such as the top of the image as well as on the surface, and these were employed for detecting
and removing the intensity depth profiles at these pixel localizations. A ribbon of “air” at the
top of the image was considered and the mean intensity of this ribbon was calculated for ev-
ery A-scan. Only those A-scans whose mean intensity in the ribbon was higher than the 75th
quartile plus 15x the interquartile range of the mean intensities along the whole B-scan were
discarded as reflection artifacts but the rest of the axial scans that comprise the OCT image
were maintained. Regarding surface detection, there is no established method for unsupervised
surface recognition [18]. The highest intensity within one A-scan is not necessarily correlated
with the sample surface, and neither is the largest change in intensity if the first derivative is
taken. Consequently, a variety of methods for surface recognition in OCT have been previously
reported, such as erosion/dilation techniques based on a binary threshold image [3], shapelet-
based boundary recognition [22] or rotation kernel transformations [23]. A binary thresholding
approach as reported in [18] was selected because of its accuracy and simplicity. Again a rib-
bon of “air” above the surface was considered and its mean pits<Qts standard deviation

was used as the intensity threshold. This threshold cuts off low intensity signals from deeper
areas, therefore providing noise-free images. The 95th quartiles of these noise-free images were
determined and employed for surface detection. Finally, every OCT image was wrapped, i.e.
aligned with respect to the orientation of the extracted surface. Figure 1 summarizes the whole
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image preprocessing and shows the obtained enhanced image in a sample tomogram.

Raw OCT | | Correction of | | Surface
images eventual outliers| [recognition

Alignment

Fig. 1. Flow diagram of OCT image preprocessing stages and visualization of the full pro-
cesson a sample image.

2.4. Morphological analysis in optical coherence tomography images

Texture features such as smoothness, coarseness, homogeneity, etc. in OCT images have been
previously employed for quantifying a loss of structure associated with normal histological or-
ganization since this structure loss is a hallmark of dysplastic mucosa [15]. A morphological
analysis of OCT images is proposed in this work as an alternative for the quantification of image
features that could equally serve for the classification of gastrointestinal tissues. This morpho-
logical analysis consists in a statistical study of the intensity distribution of the tomograms.

A previous stage to the computation of intensity statistics is a region segmentation of every
B-scan according to the intensity variation along the vertical direction. The so-&aflexhns

method [24], which is a nonhierchical clustering procedure, is utilized in this regard. Although
different versions have been reported as implementation&-theans algorithm basically in-
volves three steps. An initial set &fclusters are first determined. Then each observation is
moved to the cluster whose centroid/mean is closest in distance and finally the cluster cen-
troids/means are recalculated and the second step is repeated until no observation is reassigned
to a new cluster. The segmentation performance of this algorithm, as any other partitioning clus-
tering procedure, depends on the initial seed centroids [20]. Additionally, random initialization

of cluster centroids could result in the creation of empty clusters at the first iteration, which
consequently implies that different OCT images would be segmented into different number of
regions in the vertical direction. To avoid these issues, a study of the intensity distribution of
all the pixels within the B-scan was performed dngercentiles (wheré is the number of
regions) evenly distributed across the intensity range were determined and employed as the
seed centroids. Corresponding percentiles are equally distributed across the intensity values de-
pending on the number of regions, since the tissue discrimination capability will be precisely
evaluated as a function of the number regions in this preliminary step. The employment of such
a segmentation strategy avoids the necessity of previously known information about the tissue
structure as in [19] and, therefore, makes the approach more extensible for tissue classification
in urology or gynecology for example, where OCT is expected to gain popularity. To study the
intensity distribution of the segmented regions, the first four statistical moments of the intensity
values per region are computed as follows:

1% statistical momentmean) = & yN . I,
2"d statistical momentstandard deviationgy = (£ 5N (1 —1)2)z,

1¢N .13
3'd statistical momentskewness§ = % @)

h foti . lzN (||._|_)4’
4" statistical momentkurtosis K, = N&=L 1~

b

wherel; is the intensity value of a pixel within the region aNdthe number of pixels of the
region. Along with the first four statistical moments of the intensity distribution, the relative
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area of the region with respect to the total area of the B-scan is employed as the fifth feature
of the region. Accordingly, the total number of extracted features from the OCT images for
tissue classification is five times the number of segmented regions. Figure 2 depicts a block
diagram of the proposed two-step methodology for the quantification of morphological features
of OCT images for tissue classification. The same tomogram is employed as a sample image
to illustrate the region segmentation procedure. Because of computational performance, the
optimum number of regions would be the smallest one that provides an assumable classification
error.

Region segmentation Morphological
Image . . ; L
reprocessin —laccording to intensity variation feature
prep 9 along the vertical direction extraction

2regions  3regions  4regions  5regions

Fig. 2. Schematic of the proposed two-step methodology for feature quantification of OCT
images.

The ability of the proposed morphological approach to extract the features that serve for
tissue classification is qualitatively and quantitatively compared with textural approaches pre-
viously reported in this regard. The qualitative comparison is accomplished in terms of the clus-
tering degree of the classes observed in the scatter plots. However, class separabilities measured
in terms of the quotient between the traces of the between- and within-class scatter matrices are
also indicated in the plots:

tr
3 Q) ’ @
tr(Qw)
where“tr” denotes the trace of a matrix, i.e. the sum of the diagonal eleméntss the
between-class scatter matrix, a@g is the within-class scatter matrix, estimated as follows:

Q=3 RV -V —V)T, @)
Qw=31 R Ty (i —vi) (i — i) T,

wherexi (k=1,...,n;) are the elements from thth class,v; is the mean of the vectors in the
ith class,v the mean of the centers afdthe number of classes which possagsriori class
probabilityR (i = 1,...,C) and cardinalityn; (i = 1,...,C).

Separability measures based on scatter matrices are normally preferable to probabilistic dis-
tances because they do not require an estimation of the probability density function of the
classes or that those probability density functions are knavpniori. The average distance
between the elements of the classes can be expressed as the sum of the traces of their between-
and within-class scatter matrices [25]. However, the quotient between the traces is employed
instead of their sum because it reflects more the intuitive notion of maximizing the trace of the
between-class matrix while simultaneously minimizing the trace of the within-class matrix [26].
The quantitative comparison is based on a classification criterion, i.e. the objective function is
the classification accuracy attained with a pattern recognition algorithm, as described in Section
2.5.
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2.5. Classification and validation

A KNN classifier [27] is employed for ready discrimination between gastrointestinal tissues
employing the morphological features of the segmented OCT images. For comparison, textural
features are also interpreted for tissue characterization. In both cases, an unclassified tomogram
(herein referred to as the query point) represented by a vectad-imensional space, where

d depends on the number of segmented regions if morphological features are employed or
on the number of concatenated textural features, is assigned to the majority diagnosis of its
K-nearest vectors found in the feature space. This approach can naturally deal with multiclass
data while some of the more advanced classifiers, such as support vector machines (SVM) [28],
require the bridging of results from a combinatorial set of such classifiers to simulate multiclass
parameters [20]. Accuracy of the&NN classifier mostly depends on the metric used to compute
distances between the query point and all training pixels in the feature space. Extracted features
varied greatly and, therefore, they were normalized to prevent some features from being more
strongly weighted than others. All features were statistically normalized to zero mean and unit
variance employing a combined mean feature vegiQrand a combined standard deviation
vector () from the training data set. The employment of the Euclidean distance,

D(x,y)* = (y—x)"M(y—X), (4)

wherex andy are the two compared tomograms awdis the identity matrix, is the most
common and simplest approach for measuring the separation between the query point and the
training data when no prior knowledge about the probability density function of a particular
class (tissue type) is available. Since it assumes that all features that define a tomogram are
equally important and independent from others [29], it will not be the ideal metric when di-
agnostic categories are, for example, elongated in some directions. This difficulty has been
overcome alternatively employing the Mahalanobis distance which is given in Eq. 4, WMhere

is the covariance matrix for the extracted features. If all the features were uncorrelated and they
had the same variance, the computation of the Mahalanobis distance would be equivalent to the
Euclidean metric.

Apart from the distance criterion, the behaviour of the classifier depends on the number of
nearest neighbors {KClassification accuracy should be expected to increasekiiitbcause
this reduces the influence of training data points assigned to a wrong diagnostic category. How-
ever, the error percentage is also influenced by the spreading of the extracted features within
classes [21].

In order to accurately estimate the performance of the feature extraction methodology
in comparison with textural approaches a threefold cross-validation technique or procedure
[30, 31] was applied. B-scans across the whole data set were randomly divided into three
nonoverlapping sets, with roughly equal size. Two of these sets were employed as a training set
(used to populate feature space), and the other was employed as a validation set (query points)
to compute the accuracy, sensitivity, specificity, negative predictive value (NPV) and positive
predictive value (PPV) per diagnostic category from all others. This procedure is repeated three
times, each time with different training and validation sets. Finally, the estimated performance
of the classifier was calculated by averaging the three resulting errors. This approach elimi-
nates the dependency of classification results on the training or test sets. Additionally, a leave-
one-patient-out procedure is accomplished to show that the proposed disease markers, i.e. the
morphological features, are greater than interpatient variation and the approach is feasible for
gastrointestinal tissue classification in the clinical setting. Because of the moderate sample size,
the validation set consists of all the C-scans from one patient while C-scans from other patients
populate the feature space. Therefore, B-scans pertaining to the same C-scan were split across
training and validation sets in the cross-validation while all B-scans comprising all C-scans
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from one patient were kept together and classified using all C-scans from other patients in
the leave-one-patient-out procedure. As in the aforementioned cross-validation analysis, the
leave-one-patient-procedure is, however, repeated as many times as the number of patients and
reported measures were calculated by averaging the resulting sensitivity and specificity values
per tissue type. In this second validation process, B-scans are not equally distributed in either the
training or testing sets. Classification measures are, therefore, influenced by the heterogeneity
of the sample population, but it is more realistic in a clinical scenario than the cross-validation
employed in the comparison of image parameter extraction approaches.

3. Results

3.1. Qualitative comparison of feature extraction strategies

Morphological analysis of OCT images is initially compared with the multiple image feature
guantification approaches previously reported in a pilot study using a restricted patient popu-
lation, i.e. all B-scans belonging to the same patient across the distinct diagnostic categories.
This comparison is accomplished in a semi-qualitative manner, i.e. their capabilities to mini-
mize the within-class variance and to maximize the between-class variance. The aim of this is to
estimate the ability of the proposed methodology to deal with intrapatient variability (tissue be-
longing to the same patient but different diagnostic types) and it first requires the determination
of the number of regions for OCT image segmentation. As depicted in Figure 3 higher cluster-
ing degrees within the same tissue type and greater separation among types are obtained when
the tomograms are divided in 3 axial regions. This number will later be confirmed in terms of
the tissue discrimination accuracy obtained with KiéN classifier and the computational ex-
pensiveness of the methodology. For visualization purposes only, the extracted morphological
features are further processed with PCA to allow the presentation of the discriminative power
of the features but in fewer dimensions. Figure 4 finally depicts a qualitative comparison in
terms of the clustering degree between the proposed methodology (3 segmented regions) and
previous textural alternatives and indicates that the morphological approach surpasses the tradi-
tional ones when dealing with the intrapatient variability, i.e. data from the same type are better
grouped together and the distance between different classes is also higher.

The technique employed in the quantification of features also needs to deal with interpatient
variability because these features need to serve for tissue classification in the clinical setting.
As shown in Fig. 4 (a and c), individual spatial frequency texture analysis, i.e. based on the
DFT, and CSAC-based statistical texture analysis exhibit limited performance when dealing
with the intrapatient variability and, consequently, different types are combined before their
employment in computer-aided diagnosis of Gl diseases as described in the Introduction. The
behaviour of SGLDM-based statistical texture analysis was significantly bette®(@8) and
it approaches to the interclass separability attained with morphological feature$307),
which maximize the ratio between the within-class and between-class variances in this pilot
study using a restricted patient population. Therefore, it is expected that they will have a better
performance when data from different patients are considered. The validity of this intuitive
assumption is demonstrated in a clinical investigation with a larger population of patients, i.e.
the whole data set described above, and the results of this investigation are depicted in Figure
5. Atendency to group is still observed in the scatter plot, indicating the ability of the approach
to reasonably differentiate diagnostic categories. Although the overlap among these categories
is also noticeable, and, as a consequence, the interclass separability drops significantly, the
gquantitative comparison in the following section will demonstrate that the further processing
of the morphological features with th&\N classifier provides reliable tissue categorization in
clinical settings.
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Fig. 3. Grouped scatter plots and interclass separabili)dsi(the distinct gastrointestinal
tissues depending on the number of segmented regions (only B-scans comprising all C-
scans from a sample patient are included).
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Fig. 4. Grouped scatter plots and interclass separabilities the distinct gastrointestinal
tissues depending on the approach employed for image feature quantification (The map is
populated with all data points from a sample patient).
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Fig. 5. 3D feature space assembled with the PCA-processed morphological features (3
segmented regions) from all B-scans that comprise the whole data set and its corresponding
interclass separability {J

3.2. Quantitative comparison of feature extraction strategies

The accuracy of the proposed morphological approach for the quantification of OCT image
features fundamentally depends on the number of segmented regions in the axial direction. If
KNN classification is applied to the extracted features to understand the relationship between
the image parameters, and to classify new data, there is an additional tunable variable that
influences tissue discrimination capability, i.e. the number of neighbote Kfferentiate it

from the number of regions for axial segmentatio).(Rhe best choice of the number of
neighbors depends upon the data; generally, larger values of neighbors reduce the effect of
noise on the classification, but make boundaries between classes less distinct [15]. As shown in
the grouped scatter plot in Fig. 5, different gastrointestinal tissues exhibit a tendency to group
but their degree of overlap is also relevant. Therefore, a multivariate analysis that establishes
sharp boundaries among classes is sought and, accordingly, one nearest neighbor is employed.
Once the number of neighbors is fixed, a direct comparison of the number of segmented regions
can be accomplished.

Figure 6 graphically compares the attained specificity and sensitivity values for varying num-
ber of segmented regions. As described previously, these measures are based on the ability to
discriminate a given tissue type from all other categories evaluated and were averaged for all
possible permutations of training and test sets in the cross validation procedure. Classification
accuracy first increases when OCT images are vertically segmented into two regions since these
predictions are closer to the representation of the perfect classifier (sensitivity:specificity of
100%:100%). Differences in tissue discrimination capability are hardly noticeable for a num-
ber of segmented regions varying between 2 and 5, and then accuracy decreases again for a
higher number of regions. In terms of the computational load, a reduced number of regions is
preferable, because this indicates that accurate classification is performed with a smaller num-
ber of image parameters. Consequently, only two regions will be further considered for the
comparison with textural approaches.

An identical approach is followed for comparing morphological analysis with previously re-
ported textural approaches and this comparison is shown in Figure 7. SGLDM features offer the
best discrimination capability of gastrointestinal tissues among textural approaches but all of
them are greatly surpassed by the proposed two-step methodology. Table 1 presents the com-
plete results of this quantitative comparison measured as the obtained sensitivity, specificity,
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Fig. 6. Specificity and sensitivity values per tissue type as a function of the number of
segmented regions.

PPV, NPV and accuracy for discriminating a tissue type from all others.

Table 2 finally summarizes the classification efficacy, in terms of the sensitivity:specificity
values, when performing leave-one-patient-out cross-validation. This means that training and
validation datasets are not randomly generated anymore, as in the cross-validation procedure
described above, but all C-scans from each patient are intentionally left out as the validation
set. Then classification measures from the different patients are averaged. This is the relevant
situation in a clinical setting, because data from a patient is classified using a feature space pop-
ulated by data from other patients, and whose C-scans where acquired at different time points.
The latter means that variations due to system artifacts are also taken into account. Still, the
enhancement in tissue discrimination capability provided by the proposed two-methodology
is noticeable and consequently it is more suited to clinical investigations than previous ap-
proaches.

4. Discussion and conclusions

In this contribution, we propose a novel two-step methodology for feature extraction from OCT
images that solves the limitations of previously reported strategies in this regard and demon-
strates that gastrointestinal tissue types may be ascertained from the extracted image parame-
ters. OCT images are first segmented in the axial direction in an automated manner according
to intensity. Therefore, there is no need for previous physiological information for region seg-
mentation or any uncertainty regarding the selection of the ROI for the quantification of the
image features as in previous textural approaches found in the literature. Then, the parameters
that serve for tissue classification are the relative area of each segmented region with respect to
the total area of the B-scan along with the first four statistical moments (mean, standard devi-
ation, skewness and kurtosis) of the intensity distribution within the region. The validity of this
morphological analysis for feature quantification has been previously demonstrated for breast
tissue density classification in mammographic CAD systems and scattering image analysis, but,
according to the authors’ knowledge, it has not been previously performed on OCT images.
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Fig. 7. Comparison of morphological and textural prediction in terms of their sensitivity
andspecificity values in the discrimination of each tissue type.

The feasibility of texture analysis of optical coherence tomography images for tissue classi-
fication relies on the quantification of the loss of structure associated with normal histological
organization. Meanwhile, the proposed method is based on an evaluation of the intensity dis-
tribution in different regions along the vertical axis, which allows a statistical comparison of
the extent of signal in different tissue types. Recent studies have proposed to employ the atten-
uation coefficient ), which describes the decay of detected light intensity with depth [32,33].

In malignant tissue displaying larger and irregularly shaped nuclei compared with normal tis-
sue, light scattering is expected to be larger resulting in changas 8tatistically significant
differences between normal renal tissue and renal cell carcinoma were reported in [33], but the
differences encountered between benign bladder tissue and bladder urothelial carcinoma [32]
were not significant. Several environmental factors (orientation of the biopsy, cauterization ef-
fects, etc.) that might account for this lack of differenceiramong the different pathological

types are mentioned. In this study, we assessed signal attenuation using a more sophisticated
approach that is independent of environmental artifacts.

This ability to discriminate different tissue types is achieved without requiring theori
information required for previous techniques. In fact, classification efficacy even clearly sur-
passes that obtained with textural analysis both in cross-validation comparisons, which have
been accomplished to eliminate the dependence on biased sample populations, as well as leave-
one-patient-out procedures. Sensitivity and specificity values higher than 99.97%:99.85% are
achieved in the discrimination of all tissue types in the validation set from all other categories
evaluated in the cross validation procedure wheéfNIN classifier (one nearest neighbor) is
employed in the further processing of the extracted features. Correlation coefficients among
extracted features as high as 0.98 were experienced and, consequently, the Mahalanobis dis-
tance metric was employed instead of the Euclidean distance to account for correlations among
extracted features. A significant improvement is expected ilkKtiN classifier's performance
using the Mahalanobis metric instead of the Euclidean for distance calculations. However, a
full comparison of the classifier's performance using both distance criteria, such as the one
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Table 1. Summary of the quantitative comparison between morphological and textural ap-
proachedor feature quantification of OCT images in the classification of gastrointestinal

tissues.
Feature extraction approach Sensitvity Specificity PPV NPV Accuracy
Tumor
Morphological (2 segmented regions) 99.97%  99.85% 99.57%  99.99% 99.88%
DFT features 58.02% 46.81% 27.30%  76.40% 49.69%
CSAC features 94.20% 70.08% 52.06%  97.25% 76.27%
SGLDM features 89.58% 88.95% 73.64%  96.12% 89.11%
DFT + CSAC features 96.17% 50.95% 40.35%  97.55% 62.53%
DFT + SGLDM features 91.14% 69.34% 50.58%  95.78% 74.91%
Stomach
Morphological (2 segmented regions) 100% 99.74% 99.87%  100% 99.91%
DFT features 55.64% 55.77% 72.14% 37.92% 55.67%
CSAC features 88.17% 84.20% 92.11%  77.98% 86.86%
SGLDM features 93.53% 87.92% 94.09%  86.85% 91.70%
DFT + CSAC features 78.89% 83.75% 90.90%  65.83% 80.48%
DFT + SGLDM features 83.16% 85.60% 92.24%  71.18% 83.96%
Oesophagus
Morphological (2 segmented regions) 100% 99.97% 99.64%  100% 99.97%
DFT features 80.80% 33.36% 8.47% 95.80% 36.72%
CSAC features 99.63% 77.85% 25.66%  99.96% 79.39%
SGLDM features 100% 90.23% 43.82%  100% 90.92%
DFT + CSAC features 99.89% 53.00% 13.95%  99.98% 56.32%
DFT + SGLDM features 100% 61.14% 16.42% 100% 63.90%

Table 2. Summary of the efficacy of the&NN classifier (K= 1) to understand the rela-
tionship between the image features, and to predict new data. Reported measures are the
sensitivity:specificity values in the discrimination of a given gastrointestinal tissue type
from all other evaluated types.

Feature extraction approach Tumor Stomach Oesophagus
Morphological (2 segmented regions) 86.9%:73.0%  93.4%:75.0%  100%:72.0%
DFT features 56.1%:45.0%  54.3%:56.4%  76.3%:31.9%
CSAC features 67.4%:45% 75.6%:62.6%  88.5%:68.3%
SGLDM features 55.7%:81.8%  82.8%:72.5%  98.6%:76.2%
DFT + CSAC features 79.39%0:39.8%  66.8%:68.3%  99.7%:49.6%
DFT + SGLDM features 67.9%:62.0% 72.7%:76.2%  100%:35.0%

accomplished in [34], would be required to conclude the real necessity of the Mahalanobis dis-
tance. Textural features, specifically SGLDM features, provide the best sensitivity and speci-
ficity values of 100% and 90.23%, respectively, for oesophagus identification when the same
multivariate algorithm is used for classify new data. But oesophagus is precisely the easiest
one to identify because it is brighter in comparison to other considered tissue types. B-scans
belonging to the same C-scan are split between training/test sets in this cross validation pro-
cedure to attain an even distribution of tissue categories among these sets. In this way, the
dependence of classification on training and test sets is removed but it could incur over-training
of the classifier. However, if the nearly perfect sensitivity and specificity values attained were
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only due to this fact and not to the suitability of the extracted features to be employed as tis-
suemarkers, near-perfect classification would also have been attained with textural features
because the cross-validation is also performed across the same training and validation sets. The
performance of textural approaches is however much worse, which demonstrates the significant
improvement attained using morphological features as compared to textural.

This better performance when using morphological features can also be appreciated in the re-
sults presented in Table 2 from the ‘clinical’ investigation. This has been accomplished through
a leave-one-patient-out procedure and, consequently, is more relevant for establishing the va-
lidity of the proposal for the clinical environment. A sensitivity and specificity of 86.9% and
73.0% is obtained, which again greatly enhances that attained with textural approaches. The
clinical reliability of the approach could be limited by the employment ofkINN classifier as
the multivariate analysis to understand the relationship between the image parameters, and to
predict new data. More sophisticated classification algorithms for the further processing of the
extracted parameters, such as artificial neural networks (ANN) or classification trees, could aid
to enhance achieved sensitivity and specificity values. How&N is sufficient to demon-
strate the enhanced behaviour of morphological analysis with respect to textural strategies in
extracting the OCT image parameters for tissue classification, as demonstrated both in the qual-
itative and quantitative comparisons accomplished in this study. This enhanced behaviour is
presumably due to a greater sensitivity of the extent of light penetration into tissues to the mor-
phological changes occurring in malignant tissue than the loss of structure quantified by texture
features. This sensibility is strengthened by the region segmentation performed in the first stage
of the proposed method. While texture features only quantify the loss of structure in a previ-
ously determined ROI, the variation of signal strength with depth is quantified independently in
all the segmented regions allowing more detailed signal attenuation information to be retained.
The benefit of this might be barely noticeable in the sensitivity and specificity values attained
in the cross-validation procedure as a consequence of the overfitting of the algorithm, but it
is particularly relevant, however, for the ’clinical’ investigation, i.e. the leave-one-patient-out
study. If no segmentation of the OCT images is accomplished specificity:sensitivity values of
69.74%:42.6% (tumor), 77.02%:59.97% (stomach) and 100%:36% (oesophagus) are obtained,
which are much worse than if the OCT images are segmented into two regions, as indicated in
Table 2. This confirms the necessity of segmenting the tomograms in the vertical direction to
enhance the effect of smaller light penetration in tumours, or the brightness of oesophagus on
the extracted features beyond the inter-patient variability.

Ongoing studies are further investigating the clinical validity of the methodology. This in-
cludes the accomplishment of a blind study with a much larger population of patients. Apart
from that, the discrimination capability has only been assessed for gastrointestinal tissues. Ac-
cordingly, future research lines are also intended to demonstrate the suitability of the proposed
feature extraction approach from OCT images for tissue classification in other medical appli-
cations, specifically urology.
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