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Abstract: Indirect ophthalmoscopy (103 the standard of care for evalu-
ation of the neonatal retina. When recorded on video from a head-mounted
camera, 10 images have low quality and narrow Field of View (FOV). We
present an image fusion methodology for converting a video 10 recording
into a single, high quality, wide-FOV mosaic that seamlessly blends the
best frames in the video. To this end, we have developed fast and robust
algorithms for automatic evaluation of video quality, artifact detection and
removal, vessel mapping, registration, and multi-frame image fusion. Our
experiments show the effectiveness of the proposed methods.
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1. Introduction

Hardware improementsyield quickly diminishing returns when gathering useful information
from medical images, because the optical components necessary to captunegkiegyality

scans become prohibitively expensive for many practical applications. The image processing
community has developed several multi-frame image fusion algorithms [1, 2] that generate
high-quality imagery from lower-quality imaging detectors. In this paper, we develop fast and
robust multi-frame image fusion algorithms to produce wide Field of View (FOV) and artifact-
free images from a large collection of narrow FOV images of varying quality.

While the proposed algorithms are general and can be adapted to a variety of image enhance-
ment and analysis applications, this paper targets a very challenging medical imaging scenario.
We address the problem of generating high-quality images from non-sedated premature infants’
eyes captured during routine clinical evaluations of the severity of Retinopathy of Prematurity
(ROP). ROP is disorder of the retinal blood vessels which is a major cause of vision loss in
premature neonates, in spite of being preventable with timely treatment [3]. Important features
of the disease include increased diameter (dilation) as well as increased tortuosity (wiggliness)
of the retinal blood vessels in the portion of the retina centered on the optic nerve (the posterior
pole). Studies have shown that when the blood vessels in the posterior pole show increased
dilation and tortuosity (called pre-plus in intermediate, and plus in severe circumstances), this
correlates well with the severity of the ROP [4].

Thus, an important prognostic sign of severe ROP is the presence of plus disease, consisting
of dilation and tortuosity of retinal vessels. Plus disease is the primary factor in determining
whether an infant with ROP requires laser treatment. Unfortunately, human assessment of plus
disease is subjective and error-prone. A previous study showed that ophthalmologists disagree
on the presence or absence of plus disease in 40% of retinal images [4].

Semi-automated image analysis tools such as ROPtool [4] and RISA [5] show similar or even
superior sensitivity and specificity compared to individual pediatric ophthalmologists when
high-quality retinal photographs are obtained with the RetCam imaging system (Clarity Med-
ical Systems, Inc., Pleasanton, CA). The full details of the procedure for using ROPTool have
been previously published [6]. In summary, ROPTool displays the image to be analyzed and the
operator identifies the key anatomical parts of the retina, such as the optic nerve and the vessels
in each quadrant, by clicking on the image. However, RetCam is expensive and inconvenient
for imaging pediatric patients, and is not commonly used during routine examinations. Instead,
examination with the Indirect Ophthalmoscope (I0) is the standard of care for ROP evaluation
of neonate eyes. A Video Indirect Ophthalmoscope (VIO) is a relatively inexpensive imaging
system (about 6 times cheaper than RetCam) and much more convenient for capturing retinal
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Fig. 1. VIO frame artifacts: Three sample VIO frames, from three different videos, display a
number of common artifcts Each arrow’s number and color indicate the type of artifébt:
(white) black regions(2) (red) white spots(3) (magenta) artificial colorg4) (blue) saturation
near the lens’ rim(5) (yellow) interlacing artifacts. All but the interlacing artifacts are produced
by the optics of the hand-held condensing lens.

images during 10 examinations. In VIO, the physician wears a head-mounted video camera
during routine 10 evaluations. Unfortunately, many individual VIO frames have poor quality,
and a previous study reports that only 24% of these videos can be utilized for ROP evaluation
with ROPtool [7].

Several types of artifacts make the raw recorded VIO images difficult to analyze automati-
cally, including interlacing artifacts, brightness saturation, white or black spots, and distorted
colors. Frames often contain non-retinal objects, as shown in Fig. 4 (a), and have a narrow FOV.
Some of these problems are highlighted in Fig. 1. Furthermore, a raw VIO video indiscrimi-
nately records every part of an 10 examination, and therefore contains numerous spurious and
low quality frames that need to be removed prior to any form of automated analysis.

In this paper, we develop a framework for obtaining the relevant retinal data from a VIO
video in the form of a single, high quality image, suitable for analysis manually or with semi-
automated tools such as ROPTool. While multi-fundus image registration methods exist, such as
[8, 9], the VIO frames’ low quality and large number of artifacts and spurious objects adversely
affects the performance of these methods. Our proposed video processing pipeline (Fig. 2) in-
volves novel algorithms for: (1) rapid detection of the most relevant and highest-quality VIO
images, (2) detection and removal of VIO imaging artifacts, (3) extraction and enhancement
of retinal vessels, (4) registration of images with large non-translational displacement under
possibly varying illumination, and (5) seamless image fusion. We validated the diagnostic us-
ability of our technique for semi-automated analysis of plus disease by testing how well the
semi-automated diagnosis obtained using our mosaics matched an expert physician’s diagno-
sis.

The rest of this paper is organized as follows: We select frames in Section 2. We then enhance
the image by removing artifacts in Section 3, and map vessels in Section 4. In Section 5, we fuse
the enhanced images through frame registration, color mapping, and pixel selection. We present
our experimental results in Section 6 and discuss future research and clinical applications in
Section 7.

2. Frame selection

Only a small fraction of the frames in raw VIO data is suitable for analysis: patient preparation
and switching from eye to eye result in numerous frames that do not feature the retina. In
addition, as Fig. 1 illustrates, a significant portion of retinal frames are poorly focused and are
marred by artifacts that arise from the condensing lens, sensor noise, and video compression.
Manually searching for the best frames in a VIO sequence is impractical. In our approach,
we find retinal frames by the percentage of pixels with retina-like colors, and we estimate the
degree of image focus by the ratio of the signal contents at intermediate and high bandpass
frequencies. We explain these two criteria in the following subsections.
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Fig. 2. Retinal mosaicing pipeline: Our proposed pipeline generates a single, high quality mosaic
from a rawVIO recording. We select frames based on a hue-saturation-value (HSV) quality
score, a spatial frequency measure, and a combination of the two measures. We then remove
artifacts present in the selected frames and compute a high contrast vessel map from each of

them. We register the selected frames based on these maps and fuse the registered frames into a
single mosaic, suitable for human and semi-automated analysis.

In our framework, we view each frame as Anx Y x 3 matrix |. The indexed set oN
frames is denoted ds= 11,12, ..., In. A pixel position inl is given by a two-dimensional vector
of integers,p = [x,y]". The set of valid pixel positions, such that [1,X] andy € [1,Y], is
denoted byP. The value at each pixel position for a given frame is given by a 3-dimensional
vectorv:

I(p) =v. (1)

Unless otherwise specifiedrepresents an RGB value with entries normalized between 0 and
1.

2.1. HSV classification

We classify pixels in the Hue-Saturation-Value (HSV) color space [10] to assign a retinal or
non-retinal label to every pixel. Classification in HSV space is more robust to highlights, shad-
ows, and texture variations than in other color spaces [11]. We use color for pixel classification
because we empirically determined that retinal pixels for a given patient exhibit a narrow and
consistent color distribution. Furthermore, the color distribution of any frame can be determined
reliably and efficiently.

In HSV classification, we specify a closed decision boun@&nyHSV space. Vectors within
Sare classified as retinal pixels, while those outsigge labeled non-retinal. We specBas
the Cartesian product of three intervelg, Ss, andS,. We eschew more complex boundaries
for computational efficiency. We construct the &gtof retinal pixels as those whose HSV
values lie withinS. A frame’s HSV score is given by the proportion of retinal pixels in the
image:

h() = ﬁ’ﬂ. @

where the barslenoteset cardinality. Fig. 3 shows a sample color distribution, and Fig. 4 (a)

displays a series of frames from a single video ranked by their HSV score, from highest to
lowest. For further processing, we retain only a fixed number of top-score frames.

2.2. Spatial frequency estimation

Only a fraction of VIO frames are properly focused. Camera and patient motion lead to blurry
frames and frames with interlacing artifacts, such as those in Fig. 1, both of which need to
be discarded prior to image fusion. HSV classification accurately identifies frames with high
retinal content, but does not account for these types of image degradation. We further refine the
selected frame sequenideby determining a spatial frequency score for each frame.

A number of approaches have tackled image focus [12, 13, 14, 15, 16]. Most focusing meth-
ods measure the quantity of high frequencies in an image using image gradients [13] or high-
pass filtering [12].

For our application, however, the presence of high frequency interlacing artifacts [17, 18]
precludes the direct use of these techniques. When the scene motion is fast relative to the frame
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Fig. 3. Frame HSV color distribution: (a) A sample VIO frame. (b) The scatter plot of the HSV
color values othe sample frame. Retinal pixels (green), exhibit a narrow color distribution in
HSV space relative to the rest of the image (blue). While the retinal pixels constitute 30% of the
image, they are more tightly clustered than the non-retinal pixels. (c) Color-coded frame: retinal
pixels are shown in green and non-retinal pixels in blue.

capture rate in interlaced video, a combing effect arises [19]. This interlacing artifact occurs
across adjacent rows of a single frame, so it has very high frequency.

To account for the simultaneous presence of interlacing and blurring, we observe that relevant
anatomical information in the frames is present at intermediate spatial frequencies. Very high
frequencies correspond to interlacing artifacts, while blurry images only contain low frequency
values. We employ differences of Gaussians [20] in the frequency domain to obtain two band-
pass filters at high and intermediate frequencies. We then estimate a ratio of the norms of
the intermediate and high band-pass frequencies. A high ratio reveals sharp frames with little
interlacing. The use of a ratio between higher and lower pass bands was shown by Kautsky et
al. [12] to be both robust and monotonic with respect to the degree of defocus. Unlike their
original ratio, however, we account for high frequency interlacing by using a band-pass, rather
than a low-pass image.

To obtain the band-pass filters, we first construct two low-pass Gaussianfiggrand. /5, :

o = e 2o v/l g Lo lm?/20P w207 (3)

N \/2mo?

The parameteo controls the amount of smoothing, and we egt= 20;. Note that 45, is
anisotropic, while#g, is isotropic. This is to account for the fact that interlacing only occurs
between image rows, not columns. We then compute the Fast Fourier Transform (FFT) of each
frame,F, = % {1}, and window it with.4g, :

Fm(u,v) =Fp(u,v) A5, (u,v). 4)

Aa,(U,V) attenuates the very high frequenciesgf and more so in thg direction. We then
window Fp, with the second Gaussian filtetg, :

Fi(u,v) =Fm(u,v)Ag (u,v). (5)
Our spatial frequency measure is given by the ratio of the differences of the two operations:
[Fm—Fill1
b(l)= —++—=. 6
O = 1R —Full: ®

The abovemeasurds a ratio of intermediate to high band-pass frequency norms, and ac-
counts for both interlacing artifacts and blurrirg(l) will only have a high value when the
frame contains significant intermediate frequencies (vessels) and few very high frequencies
(interlacing artifacts). As Fig. 4 (b) shows, our spatial frequency measure gives the highest
score to frames with high vessel content and minimal interlacing distortion. The successive
smoothing scheme described above is similar to a Laplacian pyramid [21], but we apply the
Gaussian filters in the frequency domain with no downsampling.

The cascade of selection steps based on color and spatial frequency criteria still leaves a large
number of frames for mosaicing. We reduce this number further by retaining only those frames
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Fig. 4. Frames classified by quality scores: Frames from a 2500-frame video ranked based on the
(a) HSV and (b)spatial frequency scores. Scores decrease from left to right and top to bottom.
The frames in (c) are ranked by the convex combination (7) of the two scores) with.3. The

convex combination score balances crispness with coverage. Each collage shows frames with
ranks 1 through 10. Images are best viewed on screen.

with a high value for the convex combination of the normalized HSV and spatial frequency
scores for each frame:

q(l) =uvh(l)+(1-v)b(), VIel. @)
This combined score balances retinal coverage with vessel crispness, as Fig. 4 (c) illustrates.

3. Artifact removal

Lens and compression artifacts are present in most, if not all, raw VIO frames, as noted in
Section 1 and as Fig. 1 illustrates. Furthermore, when frames are fused, each frame’s artifacts
accumulate in the resulting mosaic. Figure 5 shows how the existence of even a few white spots
per frame can overwhelm a naive fusion of several frames.

We address these problems by directly removing artifacts and non-retinal regions from the
source frames prior to further processing. To this end, we use directional local contrast filtering
to remove high-saliency lens artifacts. We then fully mask non-retinal regions using HSV color
classification.

Lens artifacts saturate the video’s luminance, resulting in regions of high contrast with re-
spect to the local background. We make use of this visual saliency to detect and remove these
artifacts. We model saliency based on Weber’'s measure of contrast [22]:

Mo — My

Co — (8)
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Fig. 5. Accumulating artifacts can overwhelm naive frame fusion: (a) A close-up of the naive
fusion of five frames with no artifact removal. White spots, speckles, distorted colors and other
artifacts from various frames accumulate in the mosaic. Following the labeling scheme of Fig. 1,
the colored arrows indicate the different types of artifa@¥{(red) white spots(3) (magenta)
distorted colors(4) (blue) saturation caused by the lens’ ri(6) (black) spurious inter-frame
borders. In (b) and (c), two of the originating frames are shown, which exhibit fewer artifacts in
the same region.

wheremy, is the median intensity of the object amy is the median intensity of the background.

We use the median value, as opposed to the mean, due to its greater robustness to outliers.
The Weber contrast measure is defined for grayscale images. We apply it to RGB images by
considering only the green channel, as is standard practice for retinal images [23, 24] because
of its stronger vessel contrast. We define a local Weber contrast measure for each individual
pixel p by determiningm, from a small, rectangular neighborhood aroynd

_ vI—mi(p)
Cp=——g 2, )
mp(p)
where theg superscript indicatethe green channel. The exact value rng(p) depends on
the size of the neighborhood window. In our experiments, results were robust to variations in
window size, as long as the window is larger than the targeted artifacts.

The sign ofc, is different for bright (¢ > 0) and dark (g < 0) contrast. Regions of dark
contrast include the vessels. Therefore, we do not modify these pixels. The only anatomical
region in VIO frames with bright contrast is the optic nerve head, which is not diagnostically
relevant for ROP. We therefore identify pixels with bright contrast that exceed a threshold value
tc and replace them with the corresponding median value:

Cp >t = 1(p) < my(p) . (10)
Figure 6 illustrates the effects of these operations. The threshold t¢ak#s determined em-

pirically in our experiments. In multi-frame fusion, bright contrast pixels can also be replaced
with the corresponding pixel values from overlapping frames instead of the local median value.

3.1. Distorted color adjustment

The condensing lens of the ophthalmoscope often produces saturation near its rim, clearly visi-
ble in all three samples in Fig. 1. Pixels around the edges of these regions (see magenta arrows
in Fig. 1) have their hue values distorted, particularly towards magenta, because of the nearby
saturation. Directly incorporating these regions into the mosaic creates novel artifacts, as Fig. 5
shows.

We minimize the hue distortion around saturated regions by replacing the hue of these pixels
with the nearest hue value that lies inside the color classification siBfaffectively enlarging
the frame’s retinal area. We identify the affected pixels by expanding the hue interval into
S = [Stmin — tp> SHinax + tp), Where 2, is the extent of expansion. Wit§;, we construct a new
closed boundar$ in HSV space. We then determine the set of distorted color pixels by taking
the difference of the sets:

g=8\s (11)
We adjust the pixels that belong $ by shifting their hue values so that they lie wittsn
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Fig. 6. The steps of directional local contrast filtering: (a) The original frame. (b) The local
median for a 50< 50 pixel filtering windowV,,. (c) Pixels that far exceed the local median
brightness are marked as invalid (black in the image). (d) Invalid pixels are replaced with the
local median values. This removes white spots and speckles.

Vhsy € §' = Visy — Wisy £ tp. (12)
Figure 7 illustrates this adjustment. After artifact removal, we mask any pixels which fall out-

side the HSV boundar$ to remove the remaining spurious objects such as the physician’s
hands, the condensing lens’ disk, and other surrounding objects, as shown in Fig. 8.

4. Vessel mapping

In VIO frames, the vessels are often too faint to be detected reliably. In this section, we propose
a two-step algorithm to maximize the contrast between vascular and non-vascular pixels. Gen-
eral contrast enhancement methods [25, 26] are insufficient to address this issue because we
wish to selectively enhance only the vessels in the image and not other parts of the retina. We
enhance the detectability of retinal vessels through a multi-scale approach using Laplacian-of-
Gaussian (LoG) filters and Gabor wavelets [27]. Filtering kernels are widely used to enhance
retinal vessels [28, 24, 29, 30, 31] due to the vessels’ marked elongation and their narrow in-
tensity distribution relative to the surrounding tissue.

4.1. LoG filter bank

The LoG filter convolves the image with a LoG operator, which is the result of convolving a
low-pass Gaussian filter with a contrast-sensitive Laplace operator:

Lo(p;0) = (024 (p; 0))  1g(p). (13)
wherelg is a grayscale version of“+” is the convolution operator, and’ (p; o) is an isotropic,
zero-mean Gaussian kernel with variarce To enhance vessels at different scales, we con-
volve the original image with filters that vary in the value of their scale paranseterd retain
the maximum response at every pixel:

L(p) = maxL4(p; 0). (14)
4.2. Gabor wavelet bank

To enhance vessel connectivity, we make use of Gabor wavelets, defined by multiplying a com-
plex sinusoid by an Gaussian kernel [27]:

B(p;A,Z,0) =s(piA).A4"(p; 2, 60), (15)
wheres(+) is the sinusoidal component andl’(+) is an anisotropic, scaled, and rotated Gaus-
sian function. We convolve the LoG filtered image with filters of varying wavelengthscale
(%), and orientation®), and keep the maximum response at each pixel:

G(p) = ;nzag(L(p) *B(p;A,Z,0)). (16)
5. Image mosaicing

Image mosaicing refers to the process of fusing two or more partially overlapping images into a
composite whole with a larger FOV [32]. Mosaicing consists of three distinct steps: (1) spatial
registration, (2) color mapping, and (3) pixel selection or blending. We address each subprob-
lem in the following subsections in turn.

#152575 - $15.00 USD  Received 8 Aug 2011; revised 16 Sep 2011; accepted 17 Sep 2011; published 29 Sep 2011
(C) 2011 OSA 1 October 2011 / Vol. 2, No. 10/ BIOMEDICAL OPTICS EXPRESS 2879



Fig. 7. Distorted color adjustment: (a) Frame affected by distorted colors arising from the lens’s
optics. (b) HSVmaking without distorted color adjustment (c) HSV masking with distorted
color adjustment. Note that the retinal area is significantly larger in (c) than in (b).

5.1. Frame registration

Standard registration techniques [1, 33, 34, 35, 36, 37] produce significant alignment errors
when applied to VIO frames directly: dense methods fare poorly due to low contrast and
large inter-frame motion, and feature-based methods can be biased by more visually salient but
anatomically irrelevant parts of the raw images, such as the lens’ rim and the various speckles.
To address these problems, we developed a three stage registration method that takes advan-
tage of the high contrast and lack of artifacts in the Gabor vessel maps. As discussed in detail
in the following paragraphs, in the first stage a globgihorm fit computes an approximate
rigid transformation between source and target Gabor images. The second stage refines this
initial estimate by matching pixels locally in high-contrast, anatomically relevant regions of the
Gabor image using local rigid transformations. Finally, from the set of matched point pairs,
we estimate a full affine transformation using roblusthhorm minimization. Unlike ICP-based
approaches [38, 39], our method requires only a single execution of the three stages, without
any iteration. The three stages are described next.

5.1.1. Global fit
In this stage, two Gabor filtered imag@sandGs are aligned through a rigid transformation
dp, 6, = argminSSD, a7
d,0 d,0
where the sum-of-squared differences (SSD) for a transldtenmd rotatiorg is given by:

B _ 2 _ |cosB —sinB
S5P= 3 (G(0) - GRP+ ) R [Sine s ] |

We efficiently minimize the SSD in the frequency domain [40, 41]. Specifically, we expand
Eqg. (18) into three components:

SSD= p;(a@))z + p;(esmm d))? - 2pgpet<p>es<Rp+ d). (19)

The first term does not depend on eitlteor 6, so we ignore it. The last term is a cross-
correlation, and the second is the sum of squares of the pixels in the w@giedt overlap

G;. For a fixedd, we determine the last two terms for every possible translation using phase
correlation:

PSSD=7"H{F{(Gs(Rp)}7{U(p)}} 27 HF{G(P)}Z{Gs(Rp)}},  (20)

where.7 is the Fourier transform aridl is an uniform weighing function ove;. Due to frame
heterogeneity, using polar or log-polar coordinates to estimate the rotation between frames
[42, 43] does not yield good results in VIO. Instead, we minimize the above equation for a set
of possible rotation® = {61, 6, ..., 6o }:

6 = argminP%SD i€1,Q], (21)
6 |

(18)

from which we obtairdy, = argminy PSSDQ,.
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Fig. 8. HSV masking: Pixels in (a) that fall outside the HSV boun&aye flagged and disirded
from further processing. Non-retinal pixels are shown as black in (b).

5.1.2. Localfit

The optimal SSD rigid-body warping removes large differences between the two frames. How-
ever, other deformations between the two vascular networks remain due to the condensing lens’s
optics and eye motion. We use a feature-based approach to refine the rigid-body warping into a
full affine transformation. This refinement consists of two steps: correspondence point matching
and transform estimation. Inferring a rigid transformation requires at least two matched pixel
pairs [1]; we determine between 20 and 30 pairs for both accuracy and robustness. Our initial
rigid-body estimate provides a good starting value that reduces the likelihood of converging to
a local optimum.

To estimate the set of matching pixel pairs, we use the Gabor responses to determine a set
of K small pixel windowsw® = {Wp,Wz, ..., W} in the source image. We then find a match-
ing windowW in the target image for eadh$ in the source image. These windows act as
corresponding features between the two images [44].

Gabor-filtered images are highly simplified: non-vessel pixels are smoothed to a uniform
value and vessels are highly concentrated near an intensity extremum. This lack of texture
reduces the effectiveness of dense pixel methods and general-purpose feature detectors, such as
SIFT [20]. However, Gabor-filtered images encode the maximum filter response at each pixel.
The pixels with the strongest responses consistently belong to the most prominent vessels in
the image. Because of this, we proceed as follows to find good locations in the source image:

The center pixet3 of the first windowW; is the pixel with the strongest Gabor response:

¢ = argn;axss(p). (22)
pe

For subsequent window centers, and to ensure that windows are not clustered together, we mask
out from further consideration pixels that lie too close to previously selected centers:

f(p) <tg= Gs(p) — @. (23)

Here,
f(p) = min|[p—c||2 (24)
ceCs

is the shortest Euclidean distance from a previously chosen window déster(cs, ..., ;}

is the current set of window center pixetg,is a distance threshold, arglis a value that
indicates that a pixel is invalid. We then determine subsequent center pixels from the part of
image that has not been masked away:

¢ = argmaGs(p), (25)
pEP?
whereP? is the set of masked pixels. As Fig. 9 (c) shows, this procedure distributes the points
throughout the image, and places them mainly along the most prominent vessels.
For each source windoWy$ thus found, we compute the best corresponding wind¢jvin
the target image by the FFT SSD method outlined in Subsection 5.1.1, thereby determining the
most likely rotation and translation for each window pair:
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Fig. 9. Registration between two frames: (a) Source frame. (b) Target frame. (c) Source corre-
spondence points oBaborimage. (d) Matched points on target image. Poorly matched source
points are discarded. (e) Registered green channel overlay. The source frame is correctly aligned
with the target frame.

di, 6= argmin 5 (WE(p) — W (Rp+d))?. (26)

d,@ peWi;S
The matching center pixel in the target image is then
¢l = ReC + di. (27)

5.1.3. Global affine match

The third stage estimates the global affine transformation between the two images by packaging
theK point matches into two 8 K matricesC; andC; containing the homogeneous coordinates
¢ =[c,1]" of the points to be aligned, and solving the following optimization problem:

A, = argmin||AC; — Cy|1. (28)
A

Image noise, poor contrast and the occasional absence of corresponding retinal structures
in the target image can cause poor feature matching. These outliers preclude the use of ordi-
nary least squares minimization for Eq. (28) [45, 46]. Instead, we employ a rbpusirm
minimization to obtairA,,. We iteratively converge oA, by using the biconjugate gradient
stabilized method [47, 48] on the absolute differefjée&C, — C{||1 to solve for the unknown
affine parameters in thex33 matrix A, [49].

5.2. Color mapping

VIO frames exhibit global variations in illumination that need to be compensated for prior to the
final mosaicing. As illustrated in Fig. 5 (a), without color adjustment, inter-frame boundaries
can form artificial border artifacts. To address this problem, we align the color space of each
framel to that of the current mosait by solving an absolute orientation problem in color
space. Absolute orientation seeks the translatipand rotation matrix}, that minimize the

SSD between two matched point set®Rihispace under rigid body transformations [50]:
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Fig. 10. VIO mosaic: A mosaic generated from five frames selected from a single VIO video. (a)-
(e): each original framgf): the five-frame mosaic. Note the larger FOV of the mosaic relative
to each individual frame, and the lack of artifacts in the final image. All images are at the same
scale, and are best viewed on screen.

da, Ra = argmin’y’ [[3(p) - (RI(p) +d)| 5. (29)
dR ge
Equation (29) has a similar form to Eq. (18), but with two key differences: FRsgnd
d, are applied to the image values (three-dimensional vectors), not the positions. Second, the
operation is on the RGB color imagesndJ, not the grayscale Gabor filtered imaGe We
use Horn's closed form solution [51] to align the color spaces between two frames.

5.3. Pixel selection

Spatial registration and color mapping minimize geometric and photometric inter-frame differ-

ences, placing all pixel positions and values in a common frame of reference. We select the
actual mosaic pixel values by a two step process consisting of feathering the pixels close to
each frame's retinal boundary followed by Gabor-weighted color maximization, as described
next.

5.3.1. Retinal boundary feathering

A successful mosaic minimizes inter-image seams. To reduce the visual impact of image bor-
ders, we attenuate pixel values near the edge of the valid retinal data by weights related to their
Euclidean distance to the closest non-retinal pixel:

We(p) prT%iQRHp—pin, (30)

where Py is the set of retinal pixels ih. This weighting is also known as feathering [32].
However, using the Euclidean distances as weights directly produces excessive gradation. We
apply a logistic sigmoid function tee to enforce feathering only near the retinal boundary:

W(D) — 1
(p) - 1+e_)‘WE(p) ’

whereA controls the speed of weight decay. Singgp) is non-negativew(p) € [0.5,1].

A>0 (31)

5.3.2. Gabor-weighted color maximization

For the final pixel value selection, we weigh the color data from each frame by the corre-
sponding Gabor responses. We determine the final mosaic in two steps. First, we compute the
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Fig. 11. VIO mosaic: A mosaic generated from six frames selected from a single VIO video. (a)-
(f): each original frame(g): the six-frame mosaic. Note the larger FOV of the mosaic relative
to each individual frame, and the lack of artifacts in the final image. All images are at the same
scale, and are best viewed on screen.

brightest value of each color vector's components independently at each pixel position, and
across alN’ images to be merged:

ME(p) = maxin(p). ne LN, (32)

Here,| has been spatially and photometrically registered, anchthgperscript indicates an
RGB color channel. We then construct a complement Gabor mosaic separately:

Mg(p) = mninén(p), ne [1,N]. (33)

As noted in Section 4, in a complement image, the image values are inversely proportional to
the filter responses. We use the complement Gabor images in order to keep vessels darker than
the surrounding tissue. The final mosaic is a convex combination of the two mosaics:

M = aMc + (1-a)Mg. (34)

In Section 6, we empirically determined the best valuedbr the quantitative experiments.
Figures 10 and 11 show two mosaics constructed using this method. They illustrate that our
proposed pipeline can convert raw videos of the quality represented by Fig. 4 into seamless
mosaics of a neonate’s retina. These mosaics not only extend the FOV of the original frames,
but significantly reduce the artifacts and spurious data found in the constituent images.

6. Clinical experiments

The mosaics of Fig. 10 and 11 verify that our pipeline produces wide FOV mosaics with min-
imal artifacts that are suitable for human visual inspection. Nevertheless, while manual IO is
the standard of care for ROP, quantitative approaches to ROP and plus disease diagnosis are
becoming increasingly important. It is therefore crucial for our methodology to be suitable for
automated and semi-automated processing as well. As a motivating example, we first examined
both of these mosaics and the best, hand-picked frame for each source video with ROPTool.
As Fig. 12 shows, the mosaics allowed us extract longer, more numerous vessels in less time
compared to the single frames.

To more broadly verify the clinical usefulness of our proposed approach, we carried out a
pilot study using ROPTool [6] in which we compared our automatic mosaicing pipeline to the
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Fig. 12. ROPTool analysis comparison: ROPTool analysis of the mosaics of Fig. 10 and 11 as
well as the betshand-picked frames from the corresponding videos: (a), (c) Hand-picked frames;
(b), (d) Mosaics. Images are best viewed on screen. The blue lines inside the large blue circle
indicate the vessel paths obtained with ROPTool. At least one, but preferably two major vessels
from each quadrant are needed to provide a full ROP diagnosis. ROPTool is able to extract
longer and more numerous vessels when analyzing the mosaics than the hand-picked frames.
Furthermore, ROPTool analysis of the mosaics is faster due to fewer ROPTool mistakes. The
examination times (in minutes) were: (a) 2:45, 2H)0, (c) 2:35, (d)1:30

current state-of-the-art procedure for semi-automatic ROP analysis. This procedure relies on
manually selected frames captured from a live feed during the actual IO examination. First,
while the physician carries out the 10 examination, the recorded video feed is displayed on a
bedside computer. Meanwhile, an assistant observes the live feed and manually selects a few
dozen potentially good frames by clicking on a frame capture button. The physician later sifts
through the captured frames and selects the two best frames, one for each eye. Finally, the
physician performs the ROPTool analysis on the two selected frames.

There are a number of drawback to this procedure. The first is that it requires careful manual
examination of the recorded video feed. Any loss of concentration by the assistant can result in
valuable frames been overlooked. Second, the frame capture operation is approximate due to
two sources of lag: (1) the time between when the assistant sees a good frame and when he or
she clicks the screen capture button, and (2) the time between which the computer registers the
mouse click and when it performs the frame grabbing operation. Furthermore, even if the assis-
tant manages to select the single best frame in a video, it can still be affected by limited FOV
and numerous imaging artifacts. Finally, even in this best-case scenario, most of the video’s
information is discarded. In the following three subsections, we first detail the methods used to
obtain and analyze the VIO data, then describe the exact mosaicing steps and parameters used,
and finally present and discuss the ROPTool results.

6.1. Methods

We obtained 31 VIO videos from six ROP examination sessions performed by two expert pedi-
atric ophthalmologists on 15 different patients at the Neonatal Intensive Care Unit at the Duke
University Medical Center in Durham, NC. All the videos were recorded using a Keeler Wire-
less Digital Indirect Ophthalmoscope (Keeler, Instruments Inc, Broomall, PA). The videos in
all the sessions were captured at a resolution ofx7806 pixels in 24-bit color and saved as
Audio Video Interleaved (AVI) files. During each 10 examination, an assistant observed a live
version of the video feed at 30 fps and manually selected several dozen frames per video. After
the 10 examination, we then separately constructed a full mosaic from each video with our pro-
posed method. For consistency, all manually selected images and mosaics are of each patient’s
right eye.

Dr. Cabrera, an expert pediatric ophthalmologist, independently carried out a ROPTool anal-
ysis of both types of images. She first selected the best manual frame for each right eye from the
several dozen captured by the assistant and then performed the ROPTool analysis on this frame
and the corresponding mosaic. She first located the optic nerve. Based on its location, ROPTool
divided the image into four quadrants. She then clicked on a point within each visible vessel in
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Table 1. Quantitative ROPTool analysis of 31 mosaics and their corresponding best
hand-picked frames

Image type Traceable  Diagnosisagreement  Tracing time (in minutes)
Mosaics 30(96.8%F 24(80.0%)P(77.4%) 1:41 (+0.03)
Handpicked images  2@3.9%} 19(73.1%)(61.3%} 2:42 (+0.04)

a percentage of total framg31).
b percentagef traceable frames.

the image and ROPTool traced the rest of the selected vessel. She then determined if the image
was traceable, based on the criteria detailed in [6]. In summary, a vessel is deemed traceable if
it can be traced for a distance of at least one optic disc diameter outward from its junction with
the edge of the optic nerve and a quadrant is traceable if there is at least one traceable vessel in
it. Animage as awhole is traceable if at least three out of four quadrants are traceable. ROPTool
then provided a diagnosis based on the tortuosity and dilation of the traced vessels. She then
recorded the examination time and compared ROPTool’s diagnosis based on the image with the
diagnosis given by either Dr. Wallace or Dr. Freedman during the 10 examination.

6.2. Implementation details

To obtain a mosaic from a VIO video, we first empirically determined suitable parameter values
for the dataset based on the mosaics in Fig. 10 and 11. We used the same set of parameters
for all videos. For every video, we then applied HSV classification to every frame using an
interactively chosen retinal pixel value We converted this RGB pixel value into HSYsy
and set it as the center of the closed surfacé/e only needed one pixel for every video. We
constructeds by forming three intervalsivfisy — th, Viigy + thl, [Viigy — ts, Visy +tsl, [Visy —
tv, Vlisy + tv]. The value fotty,, ts andty, was 01.

The frames with the highest 10% of HSV scores (generally 100 to 300 frames per video)
were then analyzed using the spatial frequency measure. We used smoothing parameters
0.25 andg; = 0.1. We obtained a convex combination score of the two measures using
0.3, in Eq. (7). The top 20% to 50% of those frames—2% to 5% of total frames, about 20
frames per video—were saved as TIFF files. Retaining a higher percentage of frames was not
needed since frames with lower percentile scores were rarely of interest. From these 20 images,
a small number (usually 4 to 6) were manually selected per video, in order to ensure that
they all corresponded to the right eye. For each of the selected frames, we applied directional
local contrast filtering with a removal threshold ofllabove the frame’s median value. We
applied multiscale LoGd = [0.11,0.51], with step-sizegy = 0.1) and Gabor wavelet filtering
(a=10,b = 10,u = 0.05,v = 0.05,8 = 30,6 = [0,170], with step-sizefy = 10) for vessel
mapping. The most central frame was selected as the target frame and the remaining frames
were registered in two stages. We determined a global fit by iteratively searching over a range
of r rotations withr stepsize. We used values- [—/12,11/12] andr, = 3. For each rotation,
we determined the optimal translation using phase correlation. We selected 30 control points
on the source image, each with a 20 pixel buffer zone, and locally registered.Qpixel
windows around each one. We estimated the full affine matrix by applying gradient descent on
the sum of absolute differences between the matched pixel pairs. We used an update/weight
of 0.01 and a maximum of 5000 iterations. We used absolute orientation to map every source
frame’s color to the same target frame. We used af 0.1 for feathering the borders of the
valid retinal regions in each frame. Finally, the mosaic was composed using Gabor-weighted
color maximization, treating each channel separately. To determine the optimal vatyeor
Cabrera analyzed a number of mosaics using ROPTool for three settiog$0025,0.5,0.75).
Her analysis established that= 0.75 produced the best results.
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6.3. Results

Table 1 presentheresults from our pilot ROPTool study, in which we analyzed 31 hand-picked
frames and 31 corresponding mosaics from the right eyes of 15 neonate patients. As Dr. Cabr-
era observed, the automatically constructed mosaics allowed ROPTool to extract longer vessels
with fewer tracing errors compared to even the best hand-picked frames. Most importantly,
ROPTool's diagnosis was more often in agreement with the ROP experts’ diagnosis for our
mosaics than for the hand-picked frames. The difference is particularly striking for the percent-
age of correctly diagnosed images relative to the total number of images (77.4% vs. 61.3%);
the total number of images was 31 in both cases. This value represents how often ROPTool is
clinically valuable and suggests that our mosaicing pipeline improves the diagnostic accuracy
of semi-automated ROP analysis by almost 20%. Finally, in spite of being able to trace more
vessels, our mosaics allow the operator to reduce the tracing time by an average of 37%.

7. Conclusions

We have developed an effective and efficient pipeline for constructing a high quality, large FOV
mosaic from a raw VIO video. The mosaic is suitable for human or machine analysis and diag-
nosis. Our initial results suggest that the use of mosaics allows semi-automated ROP analysis
programs such as ROPTool to better match the diagnostic assessments of human experts. By re-
moving artifacts, mapping vessels in different frames and fusing the automatically selected best
frames, we were able to overcome the numerous complications that arise from VIO recording.

The next step in our research will involve further validating the diagnostic utility of these mo-
saics by means of a larger scale clinical study. We will more precisely determine the statistical
significance of using our mosaics for accurate human and semi-automated ROP diagnoses.

The algorithms presented in this paper were mainly discussed for the specific task of VIO
retinal imaging. However, the mathematical techniques are general and can be modified to
enhance the quality of other en-face imaging modalities. Moreover, the 2-D methodology pre-
sented here may be generalized for creating 3-D mosaic. Generalizing our methods to confocal
scanning laser ophthalmoscopy and spectral domain optical coherence tomography is part of
our ongoing work [52].
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