s1dLIosnUBIA Joyny sispund DN 8doin3 g

s1dLosnuepy Joyny sispung DN adoin3 ¢

Europe PMC Funders Group
Author Manuscript
J Comput Graph Stat. Author manuscript; available in PMC 2011 October 12.

Published in final edited form as:
J Comput Graph Sat. 2010 December 1; 19(4): 769-789.

On the utility of graphics cards to perform massively parallel
simulation of advanced Monte Carlo methods

Anthony Lee"T, Christopher Yau®, Michael B. Giles**, Arnaud Doucet® ", and Christopher C.
Holmes™”

*Oxford-Man Institute, Eagle House, Walton Well Road, Oxford OX2 6ED, UK

TUniversity of Oxford, Department of Statistics, 1 South Parks Road, Oxford OX1 3TG, UK
*University of Oxford, Mathematical Institute, 24-29 St Giles, Oxford OX1 3LB, UK

SInstitute of Statistical Mathematics, 4-6-7 Minami-Azabu, Minato-ku, Tokyo 106-8569, Japan

TUniversity of British Columbia, Department of Statistics and Department of Computer Science,
2366 Main Mall, Vancouver, BC, V6T 174, Canada

Abstract

We present a case-study on the utility of graphics cards to perform massively parallel simulation of
advanced Monte Carlo methods. Graphics cards, containing multiple Graphics Processing Units
(GPUEs), are self-contained parallel computational devices that can be housed in conventional desktop
and laptop computers and can be thought of as prototypes of the next generation of many-core
processors. For certain classes of population-based Monte Carlo algorithms they offer massively
parallel simulation, with the added advantage over conventional distributed multi-core processors
that they are cheap, easily accessible, easy to maintain, easy to code, dedicated local devices with
low power consumption. On a canonical set of stochastic simulation examples including population-
based Markov chain Monte Carlo methods and Sequential Monte Carlo methods, we nd speedups
from 35 to 500 fold over conventional single-threaded computer code. Our findings suggest that
GPUs have the potential to facilitate the growth of statistical modelling into complex data rich
domains through the availability of cheap and accessible many-core computation. We believe the
speedup we observe should motivate wider use of parallelizable simulation methods and greater
methodological attention to their design.

Keywords

Sequential Monte Carlo; Population-Based Markov Chain Monte Carlo; General Purpose
Computation on Graphics Processing Units; Many-Core Architecture; Stochastic Simulation;
Parallel Processing

1 Introduction

We describe a case-study in the utility of graphics cards involving Graphics Processing Units
(GPUs) to perform local, dedicated, massively parallel stochastic simulation. GPUs were
originally developed as dedicated devices to aid in real-time graphics rendering. However

Supplementary Materials

The code and data used in the examples is available online, with detailed instructions for compilation and execution. (code.zip)
http://www.oxford-man.ox.ac.uk/gpuss/cuda_mc.html

The zip file is available at:

http://www.oxford-man.ox.ac.uk/gpuss/cuda_mc.html
http://www.oxford-man.ox.ac.uk/gpuss/cuda_mc.zip

s1duosnuBIA Joyiny sispund DN edoin3 g

s1dLIOSNUBIA JoLINy sispund DN 8doin3 ¢

Lee et al.

Page 2

recently there has been an emerging literature on their use for scientific computing as they
house multi-core processors. Examples include Stone et al. (2007) and Friedrichs et al.
(2009), which discuss their use in molecular modelling and dynamics. Suchard and Rambaut
(2009) investigate phylogenetic inference using MCMC on GPUs and Suchard et al. (2010)
investigate using GPUs for inference in mixture models. Here we show that many advanced
population-based Monte Carlo algorithms are ideally suited to GPU simulation and offer
significant speed up over single CPU implementation. The focus is therefore on the
parallelization of general sampling methods as opposed to the parallelization of the evaluation
of likelihoods within a standard sampling method such as Metropolis-Hastings as done in
Suchard and Rambaut (2009) and Suchard et al. (2010). Moreover, we show how the choice
of population-based Monte Carlo algorithm for a particular problem can depend on wheter one
is running the algorithm on a GPU or a CPU (see Section 4.1.3).

To gain an understanding of the potential benefits to statisticians we have investigated speedups
on a canonical set of examples taken from the population-based Monte Carlo literature. These
include Bayesian inference for a Gaussian mixture model computed using a population-based
MCMC method and a sequential Monte Carlo (SMC) sampler and sequential Bayesian
inference for a multivariate stochastic volatility model implemented using a standard SMC
method, also known as a particle filter in this context. In these examples we report substantial
speedups from the use of GPUs over conventional CPUSs.

The potential of parallel processing to aid in statistical computing is well documented (see e.g.
Kontoghiorghes (2006)). However, previous studies have relied on distributed multi-core
clusters of CPUs for implementation. In contrast, graphics cards for certain generic types of
computation offer parallel processing speedups with advantages on a number of fronts,
including:

» Cost: graphics cards are relatively cheap, being commaodity products.

» Accessibility: graphics cards are readily obtainable from consumer-level computer
stores or over the internet.

* Maintenance: the devices are self-contained and can be hosted on conventional
desktop and laptop computers.

e Speed: in line with multi-core CPU clusters, graphics cards offer significant speedup,
albeit for a restricted class of scientific computing algorithms.

» Power: GPUs are low energy consumption devices compared to clusters of traditional
computers, with a graphics card requiring around 200 Watts. While improvements in
energy efficiency are application-specific, it is reasonable in many situations to expect
a GPU to use around 10 per cent of the energy to that of an equivalent CPU cluster.

» Dedicated and local: the graphics cards slot into conventional computers offering the
user ownership without the need to transport data externally.

The idea of splitting the computational effort of parallelizable algorithms amongst processors
is certainly not new to statisticians. In fact, distributed systems and clusters of computers have
been around for decades. Previous work on parallelization of MCMC methods on a group of
networked computers include, among others, Rosenthal (2000) and Brockwell (2006).
Rosenthal (2000) discusses how to deal with computers running at different speeds and
potential computer failure while Brockwell (2006) discusses the parallel implementation of a
standard single chain MCMC algorithm by pre-computing acceptance ratios. The latency and
bandwidth of communication in these systems make them suitable only in cases where
communication between streams of computation, or threads, is infrequent and low in volume.
In other words, while many algorithms involve computation that could theoretically be

J Comput Graph Stat. Author manuscript; available in PMC 2011 October 12.

s1duosnuBIA Joyiny sispund DN edoin3 g

s1dLIOSNUBIA JoLINy sispund DN 8doin3 ¢

Lee et al.

Page 3

distributed amongst processors, the overhead associated with distributing the work erases any
speedup. In contrast, many-core processor communication has very low latency and very high
bandwidth due to high-speed memory that is shared amongst the cores. Low latency here means
the time for a unit of data to be accessed or written to memory by a processor is low whilst
high bandwidth means that the amount of data that can be sent in a unit of time is high. For
many algorithms, this makes parallelization viable where it previously was not. In addition,
the energy efficiency of a many-core computation compared to a single-core or distributed
computation can be improved. This is because the computation can both take less time and
require less overhead. Finally, we note that these features enable the use of parallel computing
for researchers outside traditional high-cost centres housing high-performance computing
clusters.

We choose to investigate the speed up for the simulation of random variates from complex
distributions, a common computational task when performing inference using Monte Carlo
(see e.g. Robert and Casella (2004)). In particular, we focus on population-based MCMC
methods and SMC methods for producing random variates as these are not algorithms that
typically see significant speedup on clusters due to the need for frequent, high-volume
communication between computing nodes. We emphasize that this work focuses on the
suitability of many-core computation for Monte Carlo algorithms whose structure is parallel,
since this is of broad theoretical interest, as opposed to a focusing on parallel computation of
application-specific likelihoods.

The algorithms are implemented for the Compute Uni ed Device Architecture (CUDA) and
make use of GPUs which support this architecture. CUDA offers a fairly mature development
environment via an extension to the C programming language. We estimate that a programmer
proficient in C should be able to code effectively in CUDA within a few weeks of dedicated
study. For our applications we use CUDA version 2.1 with an NVIDIA GTX 280 as well as
an NVIDIA 8800 GT. The GTX 280 has 30 multiprocessors while the 8800 GT has 14
multiprocessors. For all current NVIDIA cards, a multiprocessor comprises 8 arithmetic logic
units (ALUS), 2 special units for transcendental functions, a multithreaded instruction unit and
on-chip shared memory. For example, for single-precision floating point computation, one can
think of the GTX 280 as having 240 (30 x 8) single processors. At present, the retail price of
the GTX 280 is just over double that of the 8800GT and it requires just over twice the power.
The current generation of GPUs is 4-8 times faster at single precision arithmetic than double
precision. Fortunately, single precision seems perfectly sufficient for the applications in this
paper since the variance of the Monte Carlo estimates exceeds the perturbations due to finite
machine precision.

2 GPUs for Parallel Processing

GPUs have evolved into many-core processing units, currently with up to 30 multiprocessors
per card, in response to commercial demand for real-time graphics rendering, independently
of demand for many-core processors in the scientific computing community. As such, the
architecture of GPUs is very different to that of conventional central processing units (CPUS).
An important difference is that GPUs devote proportionally more transistors to ALUs and less
to caches and flow control in comparison to CPUs. This makes them less general purpose but
highly effective for data-parallel computation with high arithmetic intensity, i.e. computations
where the same instructions are executed on different data elements and where the ratio of
arithmetic operations to memory operations is high. This single instruction, multiple data
(SIMD) architecture puts a heavy restriction on the types of computation that optimally utilize
the GPU but in cases where the architecture is suitable it reduces overhead.

J Comput Graph Stat. Author manuscript; available in PMC 2011 October 12.

s1duosnuBIA Joyiny sispund DN edoin3 g

s1dLIOSNUBIA JoLINy sispund DN 8doin3 ¢

Lee et al.

Page 4

Figure 1 gives a visualization of the link between a host machine and the graphics card,
emphasizing the data bandwidth characteristics of the links and the number of processing cores.
A program utilizing a GPU is hosted on a CPU with both the CPU and the GPU having their
own memory. Data is passed between the host and the device via a standard memory bus,
similar to how data is passed between main memory and the CPU. The memory bus between
GPU memory and the GPU cores is both wider and has a higher clock rate than a standard bus,
enabling much more data to be sent to the cores than the equivalent link on the host allows.
This type of architecture is ideally suited to data-parallel computation since large quantities of
data can be loaded into registers for the cores to process in parallel. In contrast, typical computer
architectures use a cache to speed up memory accesses using locality principles that are
generally good but do not fully apply to data-parallel computations, with the absence of
temporal locality most notable.

2.1 Programming with Graphics Cards

CUDA provides the interface to compliant GPUs by extending the C programming language.
Programs compiled with CUDA allow computation to be split between the CPU and the GPU.
In this sense, the GPU can be treated as an additional, specialized processor for data-parallel
computation. In the following text, host code refers to code that is executed on the CPU whilst
device code is code that is executed on the GPU. We present a simple example in Figures 2-4,
explained below, that computes a classical importance sampling estimate (see Section 3). In
the code snippets, keywords in the C language are in bold face whilst CUDA keywords are
both bold and italicized. A line beginning with a“//” is a comment and is ignored by the
compiler.

CUDA allows users to de ne special functions, called kernels, that are called by the host code
to be executed in parallel on the GPU by a collection of threads. Figure 2 shows an example
of a kernel function, which can be invoked in host code using the syntax

importance_sample<<<nb,nt>>>(N, d_array, d_array_out);

where nb is the number of blocks of threads and nt is the number of threads per block. The
total number of threads created by this call is the product of nb and nt and one can think of a
threads as being a single stream of computation. For most kernels, the numbers of threads and
blocks can be changed to tune performance on different cards or with different data. A more
detailed description of blocks and threads and their relation to the hardware is given in Section
2.2.

A kernel is defined with the __global __ qualifier. Kernels are special in that they are always
invoked in parallel with the numbers of blocks and threads specified and have a void return
type. In Figure 2, a kernel is defined that takes as input an array of random values sampled
from a proposal distribution and places, for each value, the product of the test function and the
importance weight at that value in a separate array. One can see that each thread is responsible
for N/tt values, assuming N is a multiple of tt. Within a kernel, special functions can be called
that have been defined with the __device__ qualifier. These functions can only be called by
__global__ functions or __device__ functions themselves. In Figure 2, target_pdf,
proposal_pdf and phi are examples of this, and their definitions are provided in Figure 3. In
this particular kernel we see that each thread first computes its absolute thread identifier tid
and the total number of threads tt. It then computes an importance weight and evaluates the
test function for each value in d_array it is responsible for and stores the resultind_array _out.
Since there is no thread interaction in this example kernel, it is reasonably straightforward to
verify its correctness.

Figure 4 gives a snippet of code that is run on the host and completes our example. First,
memory is allocated on both the host and the graphics card using the malloc and cudaMalloc

J Comput Graph Stat. Author manuscript; available in PMC 2011 October 12.

s1duosnuBIA Joyiny sispund DN edoin3 g

s1dLIOSNUBIA JoLINy sispund DN 8doin3 ¢

Lee et al.

Page 5

functions respectively. The host function populate_randn then puts N standard normal random
variates in array. These values are copied into the GPU array, d_array, via the cudaMemcpy
function. In Figure 1, this is a transfer along the memory bus that connects host and graphics
card memory. At this point, the kernel is called with 64 blocks of 128 threads per block. The
reduce function is a CPU function that returns the sum of the elements in a GPU array. Of
course, this function can itself invoke a GPU kernel. Finally, the importance sampling estimate
is obtained by dividing this sum by N and memory is freed. Note that this code has been written
S0 as to expose the most common functions that are used in GPU programming using CUDA.
For example, it would be faster to create the random variates on the GPU itself but this would
not have allowed any memory transfer operations to be shown here.

This basic example highlights the most important characteristics of CUDA programs: memory
management, kernel specification and kernel invocation. Memory management is a key
component in algorithm design using graphics cards since there is often need for transfer
between CPU and GPU memory as standard host functions can only access CPU memory and
kernels can only access GPU memory. With respect to kernel specification and invocation, the
level of abstraction provided by CUDA is close to the hardware operations on the device. This
ensures that programmers are acutely aware of the benefits of writing kernels that can be
mapped cleanly to the hardware.

2.2 Blocks and Threads

CUDA abstracts the hardware of the GPU into blocks and threads to simultaneously provide
a relatively simple view of the architecture to developers while still allowing a low-level
abstraction of the hardware for performance reasons. One can generally think of each thread
as being computed on a virtual processor. The block abstraction is necessary to provide the
concept of a virtual microprocessor. Threads within a block are capable of more interaction
than threads in separate blocks, mainly due to the fact that all threads in a block will be executed
on the same microprocessor. As such, they have access to very fast, dynamically allocated, on-
chip memory and can perform simple barrier synchronization. In Section 2.1, this advanced
functionality is not required by the example kernel.

2.3 GPU Parallelizable Algorithms

In general, if a computing task is well-suited to SIMD parallelization then it will be well-suited
to computation on a GPU. In particular, data-parallel computations with high arithmetic
intensity (computations where where the ratio of arithmetic operations to memory operations
is high) are able to attain maximum performance from a GPU. This is because the volume of
very fast arithmetic instructions can hide the relatively slow memory accesses. It is crucial to
determine whether a particular computation is data-parallel on the instruction level when
determining suitability. From a statistical simulation perspective, integration via classical
Monte Carlo or importance sampling are ideal computational tasks in a SIMD framework. This
is because each computing node can produce and weight a sample in parallel, assuming that
the sampling procedure and the weighting procedure have no conditional branches. If these
methods do branch, speedup can be compromised by many computing nodes running idle while
others nish their tasks. This can occur, for example, if the sampling procedure uses rejection
sampling.

In contrast, if a computing task is not well-suited to SIMD parallelization then it will not be
well-suited to computation on a GPU. In particular, task-parallel computations where one
executes different instructions on the same or different data cannot utilize the shared flow
control hardware on a GPU and often end up running sequentially. Even when a computation
is data-parallel, it might not give large performance improvements on a GPU due to memory
constraints. This can be due to the number of registers required by each thread (see Sections

J Comput Graph Stat. Author manuscript; available in PMC 2011 October 12.

s1duosnuBIA Joyiny sispund DN edoin3 g

s1dLIOSNUBIA JoLINy sispund DN 8doin3 ¢

Lee et al.

Page 6

4.2 and 5) or due to the size and structure of the data necessary for the computation requiring
large amounts of memory to be transferred between the host and the graphics card.

Many statistical algorithms involve large data sets, and the extent to which many-core
architectures can provide speedup depends largely on the types of operations that need to be
performed on the data. For example, many matrix operations derive little speedup from
parallelization except in special cases, e.g. when the matrices involved are sparse Whiley and
Wilson (2004). 1t is difficult to classify concisely the types of computations amenable to
parallelization beyond the need for data-parallel operations with high arithmetic intensity.
However, experience with parallel computing should allow such classifications to be made
prior to implementation in most cases.

2.4 Parallel Random Number Generation

One important aspect of any Monte Carlo simulation is the generation of pseudorandom
numbers. Fortunately, many uniform pseudorandom number generators can be implemented
efficiently in parallel. The key idea is that each thread computes a contiguous block of numbers
within a single overall stream. The thread can jump to the start of its block of humbers using
a“skip-ahead” algorithm which enables it to skip n places in O(log n) operations (e.g. see
L’Ecuyer etal. (2002)). The uniform pseudorandom numbers can then be transformed to match
various different output distributions as needed. In our applications we use a parallelized
version of the multiple recursive generator MRG32k3a presented in L’Ecuyer (1999) as well
as a parallelized version of a xorshift random number generator Marsaglia (2003). In the case
of the xorshift random number generator, more time must be spent to compute the seeds for
each thread before any computation is done but the random number generation itself is faster
and the initialization can be done offline. Generating random numbers on the GPU allows us
to avoid copying blocks of random numbers from the CPU to the GPU. However, one must be
careful using parallel random number generation algorithms not to exceed the period of the
overall algorithm but for most applications there are methods with a long enough period such
that this is not an issue.

3 Parallelizable Sampling Methods

In this section we consider a number of sampling methods for which parallel implementations
can be produced without significant modification. There is an abundance of statistical problems
that are essentially computational in nature, especially in Bayesian inference. In many such
cases, the problem can be distilled into one of sampling from a probability distribution whose
density sz we can compute pointwise and up to a normalizing constant, i.e. we can compute
72*(-) where 7(x) = *(x)/Z. A common motivation for wanting samples from r is so we can

compute expectations of certain functions. If we denote such a function by ¢', the expectation
of interest is

2 f\g9_¢(x)n(x)dx.

The Monte Carlo estimate of this quantity is given by

_ 1 & .
Ly = Nz‘p (X(’))
i=1

N
where {X }i:I are samples from .

J Comput Graph Stat. Author manuscript; available in PMC 2011 October 12.

s1duosnuBIA Joyiny sispund DN edoin3 g

s1dLIOSNUBIA JoLINy sispund DN 8doin3 ¢

Lee et al.

Page 7

Clearly, we need samples from in order to compute this estimate. In practice, however, we
often cannot sample from rdirectly. There are two general classes of methods for dealing with
this. The first are importance sampling methods, where we generate weighted samples from
7t by generating N samples according to some importance density) proportional to »* and
then estimating | via

N
1, Zw(i)¢(x<i))
i=1

where W) are normalized importance weights

e w (x(i)) o (x(i)) :n* (x(i))

I w9 ¥ (x0)

The asymptotic variance of this estimate is given by C(¢', 7, ¥)/N, i.e. aconstant over N.
For many problems, however, it is difficult to come up with an importance density) such that

C(¢', 7, y) is small enough for us to attain reasonable variance with practical values of N.

The second general class of methods are MCMC methods, in which we construct an ergodic
rt-stationary Markov chain sequentially. Once the chain has converged, we can use all the
dependent samples to estimate I. The major issue with MCMC methods is that their
convergence rate can be prohibitively slow in some applications.

There are many ways to parallelize sampling methods that are not the focus of this work. For
example, naive importance sampling, like classical Monte Carlo, is intrinsically parallel.
Therefore, in applications where we have access to a good importance density » we can get
linear speedup with the number of processors available. Similarly, in cases where MCMC
converges rapidly we can parallelize the estimation of | by running separate chains on each
processor. While these situations are hoped for, they are not particularly interesting from a
parallel architecture standpoint because they can run equally well in a distributed system.
Finally, this paper is not concerned with problems for which the computation of individual
MCMC moves or importance weights are very expensive but themselves parallelizable. While
the increased availability of parallel architectures will almost certainly be of help in such cases,
the focus here is on potential speedups by parallelizing general sampling methods. Example
of recent work in this area can be found in Suchard and Rambaut (2009) and Suchard et al.
(2010), in which speedup is obtained by parallelizing evaluation of individual likelihoods.

Much work in recent years has gone into dealing with the large constants in the variance of
importance sampling estimates and slow convergence rates in MCMC and it is in these
‘advanced’ Monte Carlo methods that we direct our interest. This is mainly because while they
are parallelizable, they are not trivially so and stand to benefit enormously from many-core
architectures. In the remainder of this section we briefly review three such methods: population-
based MCMC, SMC and SMC samplers.

3.1 Population-Based MCMC

A common technique in facilitating sampling from a complex distribution 7 with support in
Z isto introduce an auxiliary variable a € o7 and sample from a higher-dimensional
distribution - with support in the joint space ./ x .2, such that 7 admits sz as a marginal
distribution. With such samples, one can discard the auxiliary variables and be left with samples

J Comput Graph Stat. Author manuscript; available in PMC 2011 October 12.

s1duosnuBIA Joyiny sispund DN edoin3 g

s1dLIOSNUBIA JoLINy sispund DN 8doin3 ¢

Lee et al.

Page 8

from 7. Note that in this section, a kernel will generally refer to a Markov chain transition
kernel as opposed to a CUDA kernel.

This idea is utilized in population-based MCMC, which attempts to speed up convergence of
an MCMC chain for 7 by instead constructing a Markov chain on a joint space 2™ using M
— 1 auxiliary variables each in 2. In general, we have M parallel ‘subchains’ each with
stationary distribution z, i e .7 £ {1,..., M} and my = 7. Associated with each subchaini is
an MCMC kernel L; that leaves r; invariant, and which we run at every time step. Of course,
without any further moves, the stationary distribution of the joint chain is

_ M
T (Xle) = 1,1:—1177'1‘ (x)

and so if x, ,,~ 7, then xyy ~ 7z. This scheme does not affect the convergence rate of the
independent chain M. However, since we can cycle mixtures of 2-stationary MCMC kernels
without affecting the stationary distribution of the joint chain Tierney (1994), we can allow
certain types of interaction between the subchains which can speed up convergence (Geyer
1991; Hukushima and Nemoto 1996). In general, we apply a series of MCMC kernels that act
on subsets of the variables. For the sake of clarity, let us denote the number of second-stage
MCMC kernels by Rand the MCMC kernels themselves as Ky, ... ,Kg, where kernel K operates

on variables with indices in .#; c .. The idea is that the R kernels are executed sequentially
and it is required that each K; leave Il.» i invariant.

Given r, there are a wide variety of possible choices for M, 7y.m-1, L1:v, R, .Z, . and Kq.r
which will affect the convergence rate of the joint chain. For those interested, Jasra et al.
(2007) gives a review of some of these. It is clear that the first stage of moves involving
Ly.mis trivially parallelizable. However, the second stage is sequential in nature. For a parallel
implementation, it is beneficial for the .#;’s to be disjoint as this allows the sequence of
exchange kernels to be run in parallel. Of course, this implies that .7, should vary with time
since otherwise there will be no interaction between the disjoint subsets of chains. Furthermore,
if the parallel architecture used is SIMD (Single Instruction Multiple Data) in nature, it is
desirable to have the K;j’s be nearly identical algorithmically. The last consideration for
parallelization is that while speedup is generally larger when more computational threads can
be run in parallel, it is not always helpful to increase M arbitrarily as this can affect the
convergence rate of the chain. However, in situations where a suitable choice of M is dwarfed
by the number of computational threads available, one can always increase the number of
chains with target r to produce more samples.

3.2 Sequential Monte Carlo

SMC methods are a powerful extension of importance sampling methodology that are
particularly popular for sampling from a sequence of probability distributions. In the context
of state-space models, these methods are known as particle filtering methods; Doucet and
Johansen (2010) and Liu (2008) give recent surveys of the field. In this context, let {X}t>q be
an unobserved Markov process of initial density Xg ~ po(+) and transition density x; ~ f(:|X¢-1)
for t = 1. We only have access to an observation process {Y;}t-1; the observations are
conditionally independent conditional upon {X:}>o of marginal density y; ~ g(:|x;) fort = 1.
SMC methods are used to approximate recursively in time the filtering densities p(Xo-t|yo-t)

which are proportional to p (Xo.r, yo.r) £ po (xo) IT._, f (xilxi-1) TT_, g (yilx;) for r=1,...,T.
These distributions are approximated with a set of random samples called particles through

J Comput Graph Stat. Author manuscript; available in PMC 2011 October 12.

s1duosnuBIA Joyiny sispund DN edoin3 g

s1dLIOSNUBIA JoLINy sispund DN 8doin3 ¢

Lee et al.

Page 9

use of asequential version of importance sampling and a special particle-interaction step known
as resampling.

Parallelization of SMC methods is reasonably straightforward. The importance sampling step
used at each time step is trivially parallelizable as it involves only the local state of a particle.
The resampling step, in which some particles are replicated and others destroyed depending
on their normalized importance weights, comprises the construction of an empirical cumulative
distribution function for the particles based on their importance weights followed by sampling
from this N times, where N is the fixed number of particles used throughout the computation.
While neither of these tasks is trivially parallelizable, they can benefit moderately from
parallelization. The bulk of the speedup will generally come from the parallelization of the
evolution and weighting steps. As such, using criteria like effective sample size (Liu and Chen
1995) to avoid resampling at every time step is beneficial.

3.3 Sequential Monte Carlo Samplers

SMC samplers (Del Moral et al. 2006) are a more general class of methods that utilize a
sequence of auxiliary distributions g, .. , rr, much like population-based MCMC as
discussed in Jasra et al. (2007). However, in contrast to population-based MCMC, SMC
samplers start from an auxiliary distribution g and recursively approximate each intermediate
distribution in turn until finally =t = r is approximated. The algorithm has the same general
structure as classical SMC, with differences only in the types of proposal distributions, target
distributions and weighting functions used in the algorithm. As such, parallelization of SMC
samplers closely follows that of SMC.

The difference between population-based MCMC and SMC samplers is subtle but practically
important. Both can be viewed as population-based methods on a similarly defined joint space
since many samples are generated at each time step in parallel. However, in population-based
MCMC the samples generated at each time each have different stationary distributions and the
samples from a particular chain over time provide an empirical approximation of that chain’s
target distribution. In SMC samplers, the weighted samples generated at each time approximate
one auxiliary target distribution and the true target distribution is approximated at the last time
step (see also Section 4.1.3).

4 Canonical Examples

To demonstrate the types of speed increase one can attain by utilizing GPUs, we apply each
method to a representative statistical problem. We use Bayesian inference for a Gaussian
mixture model as an application of the population-based MCMC and SMC samplers, while we
use a factor stochastic volatility state-space model to gauge the speedup of our parallel SMC
method. We ran our parallel code on a computer equipped with an NVIDIA 8800 GT GPU, a
computer equipped with an NVIDIA GTX 280 GPU and we ran reference single-threaded code
on a Xeon E5420/ 2.5 GHz processor. The resulting processing times and speedups are given
in Tables 1 - 3. We justify the comparison with single-threaded CPU code by observing that
we are less interested in comparing GPUs with CPUs than we are in investigating the potential
of many-core processors for statistical computation. Moreover, as noted in the introduction
one advantage of GPU-based simulation is that it provides researchers outside traditional,
expensive high-performance computing centres with access to a powerful parallel processing
architecture.

The applications we discuss here are representative of the types of problems that these methods
are commonly used to solve. In particular, while the distribution of mixture means given
observations is only one example of a multimodal distribution, it can be thought of as a
canonical distribution with multiple well-separated modes. Therefore, the ability to sample

J Comput Graph Stat. Author manuscript; available in PMC 2011 October 12.

s1duosnuBIA Joyiny sispund DN edoin3 g

s1dLIOSNUBIA JoLINy sispund DN 8doin3 ¢

Lee et al.

Page 10

points from this distribution is indicative of the ability to sample points from a wide range of
multimodal distributions. Similarly, performance of a latent variable sampler in dealing with
observations from a factor stochastic volatility model is indicative of performance on
observations from reasonably well-behaved but non-linear and non-Gaussian continuous state-
space models.

4.1 Mixture Modelling

Finite mixture models are a very popular class of statistical models as they provide a flexible
way to model heterogeneous data (McLachlan and Peel 2000). Let y = y;.,, denote i.i.d.
observations where y; e R for j £ {1, ... ,m}. A univariate Gaussian mixture model with k
components states that each observation is distributed according to the mixture density

k

4 (yjl,ul:k, 1k Wl:k—l) =sz'f (yjl,ui, O'i)

i=1

where f denotes the density of the univariate normal distribution. The density of y is then equal
to 172, p (V71 01k Wrikn).

For simplicity, we assume that k, wy.k-1 and oy are known and that the prior distribution on
A is uniform on the k-dimensional hypercube [-10, 10]K We setk=4, o= o = 0.55, w; =
w=1/kfori E{1, ..., k}. We simulate m= 100 observations for gz = p1.4 = (-3, 0, 3, 6). The
resulting posterior distribution for w is given by

P @lY) < p (V) T (u € [-10,101%).

The main computational challenge associated with Bayesian inference in finite mixture models
is the nonidentifiability of the components. As we have used exchangeable priors for the
parameters p1.4, the posterior distribution p(uly) is invariant to permutations in the labelling
of the parameters. Hence this posterior admits k! = 24 symmetric modes, which basic random-
walk MCMC and importance sampling methods typically fail to characterize using practical
amounts of computation (Celeux et al. 2000). Generating samples from this type of posterior
is therefore a popular method for determining the ability of samplers to explore a high-
dimensional space with multiple well-separated modes.

4.1.1 Population-Based MCMC—We select the auxiliary distributions ry.-1 following
the parallel tempering methodology, i.e. 7;(x) 2 (x)8 with 0 < B; < .. < By =1and use

M = 200. This class of auxiliary distributions is motivated by the fact that MCMC converges
more rapidly when the target distribution is flatter. For this problem, we use the cooling
schedule 4 = (i/M)? and a standard s (0, I,) random walk Metropolis-Hastings kernel for the
first stage moves.

For the second stage moves, we use only the basic exchange move (Geyer 1991; Hukushima
and Nemoto 1996): chains i and j swap their values with probability min{1, a;j} where

”_ﬂ,' (Xj)ﬂ'j (X,‘)
a/lj_ﬂ',' (X,’)ﬂ'j (Xj)'

J Comput Graph Stat. Author manuscript; available in PMC 2011 October 12.

s1duosnuBIA Joyiny sispund DN edoin3 g

s1dLIOSNUBIA JoLINy sispund DN 8doin3 ¢

Lee et al.

Page 11

Further, we allow exchanges to take place only between adjacent chains so that all moves can
be done in parallel. We use R=M/2 and .7, is either {{1, 2}, {3, 4}, ... , {M -1, M}} or {{2,
3}, {4,5}, ... ,{M-2M -1}, {M, 1}}, each with probability half. We emphasize that all first
stage MCMC moves are executed in parallel on the GPU, followed by all the exchange moves
being executed in parallel.

To test the computational time required by our algorithms we allow the number of chains to
vary but fix the number of points we wish to sample from the marginal density my = rrat 8192.
Assuch, an increase in the number of chains leads to a proportional increase in the total number
of points sampled. Processing times for our code are given in Table 1, in which one can see
that using 131072 chains is impractical on the CPU but entirely reasonable using the GPU.
Figure 5 shows the estimated posterior density p(u.,ly) from an increased set of 220 MCMC
samples from myy with M = 32768, which is nearly identical to the estimated marginal posterior
densities of any other pair of components of g. This marginal density has 12 well-separated
modes in R? but it is worth noting that the joint density p(z1.4ly) has 24 well-separated modes
in R*. Figure 6 shows the number of points from each mode for various values of M. We also
computed the average number of iterations taken for the samplers to traverse all modes for the
different values of M. For M =1 and M = 2, the sampler did not traverse all the modes at all,
while for values of M between 4 and 32 the traversal time decreased from 80000 to 10000,
after which it was unchanged with increases in M. These numbers should be compared to 24
x Hy4 ~ 91 - the expected number of samples required to cover every mode if one could sample
independently from r - where H; is the ith harmonic number.

4.1.2 SMC Sampler—As with population-based MCMC, we use a tempering approach and
the same cooling schedule, i.e. r(x) © (x)At with B, = (/M)2 and M = 200. We use the uniform

prior on the hypercube to generate the samples {XE,“N) } and perform 10 MCMC steps with the
standard _y" (0, 1,) random walk Metropolis-Hastings kernel at every time step. We use the
generic backwards kernel suggested in Neal (2001) and Del Moral et al. (2006) for the case
where each kernel is m-stationary so that the unnormalized incremental importance weights
are of the form (X¢-1)/ m—1(Xt—1). Processing times for our code are given in Table 2. The
estimated posterior density p(q.2ly) using the SMC sampler is almost indistinguishable from
that shown in Figure 5. Figure 7 shows the number of points from each mode for various values
of N.

In this case, the GPU parallelization of the method is slightly more complex, as noted in Section
3.2. The MCMC steps are performed trivially in parallel whilst the resampling step, while
implemented in a parallel fashion, benefits very little from parallelization due to the cumulative
sum and multinomial sampling steps. These same issues are present in the implementation of
the factor stochastic volatility example in Section 4.2 since the particle filtering and sequential
Monte Carlo sampling algorithms are nearly the same.

4.1.3 Comparison—While both methods are capable of exploring the posterior distribution
for u, there are important differences in how the methods make use of parallelization. In
particular, the SMC sampler parallelizes across particles approximating the same auxiliary
distribution whilst the MCMC sampler parallelizes across auxiliary distributions at the same
iteration. As such, to make full use of the graphics card the SMC sampler requires many
particles while the MCMC sampler requires many auxiliary distributions. In most cases,
however, one will be happy to use in excess of 8192 particles for SMC but one may not want
to use in excess of 32768 auxiliary distributions. Indeed, for the application described above
there seems to be no benefit in increasing the number of chains beyond 128, although this might
also be due to the choice of cooling schedule and random walk variances. However, there are

J Comput Graph Stat. Author manuscript; available in PMC 2011 October 12.

s1duosnuBIA Joyiny sispund DN edoin3 g

s1dLIOSNUBIA JoLINy sispund DN 8doin3 ¢

Lee et al.

Page 12

situations in which a large number of intermediate temperatures are required for exchange
acceptance probabilities to be greater than some preset value, for example when the dimension
of the distribution of interest increases Predescu et al. (2004).

The SMC sampler appears to be more efficient than the MCMC sampler for this problem.
Indeed, with only 8192 particles the SMC sampler gives a reasonable representation of the
posterior, taking only 597ms. The MCMC sampler requires around 229 samples to give a
reasonably uniform number of samples per mode, and this takes just over 2 minutes.

For Bayesian inference in mixture models, there are many ways of dealing with the identiability
of the mixture parameters; Jasra et al. (2005) includes a review of these. It is worth mentioning
that for this type of model, we can permute samples as a post-processing step or within an
MCMC kernel so traversal of the modes can be achieved trivially. The speedup of both methods
is unaffected by the use of such mechanisms. We note that the speedup is unaffected by
increases in the number of observations since this affects computation time by a constant and
the modes are already well-separated. In this formulation, the speedup decreases only linearly
in the number of mixture components since these components are stored in registers and the
memory required per thread dictates the number of threads that can be run in parallel.

4.2 Factor Stochastic Volatility

Many financial time series exhibit changing variance. A simple multivariate volatility model
that allows us to capture the changing cross-covariance patterns of time series consists of using
a dynamic latent factor model. In such models, all the variances and covariances are modelled
through a low dimensional stochastic volatility structure driven by common factors (Liu and
West 2000; Pitt and Shephard 1999). We consider here a factor stochastic volatility model most
similar to that proposed in Liu and West (2000) with y,~_4" (Bf;, ¥), f,~.# (0, H,) and

X~ N (Dx,_;, U), Where ¥ £ diag (yq,...,¥,,), H; £ diag (exp (x,)) and @ 2 diag (¢1, ..., d,)-

Here, f; is K-dimensional, y; is M-dimensional and B is an M x K factor loading matrix with
zero entries above the diagonal for reasons of identifiability. The latent variable at each time
step t is the K-dimensional vector x;. The likelihood of the data, y;, given x; is Gaussian with

yilxi~" (0, BH,B” +¥).

We generate data for timest=1, ... , T=200,M=5,K=3,%x3=0, 3 =0.5,i E{1, ... M},
¢ =09, E{L, ... K},

1 0 0

05 1 0 0.5 02 0.1
B=| 05 05 1 and U:[02 05 02]

02 06 03 0.1 02 05

0.8 0.7 05

This is asimple example of a multivariate, non-linear and non-Gaussian continuous state-space
model for which particle filters are commonly employed to sample from the posterior p(Xg:T|
y1.1). Processing times for our code are given in Table 3. In Figure 8 we plot the filter means
for each component of x with +1 sample standard deviations alongside the true values of x
used to generate the observations.

J Comput Graph Stat. Author manuscript; available in PMC 2011 October 12.

s1duosnuBIA Joyiny sispund DN edoin3 g

s1dLIOSNUBIA JoLINy sispund DN 8doin3 ¢

Lee et al.

Page 13

The speedups obtained in this application are considerably less than for mixture model
inference problem. This can be explained by lower arithmetic intensity, higher space
complexity in each thread and increased resampling rate as compared to the SMC sampler
example above. The mixture model likelihood calculation contains a compute-intensive
product-sum operation involving 104 values whilst the factor stochastic volatility likelihood
consists mainly of matrix operations. In the latter case, the speedup is independent of T but not
the dimension of the observations since the amount of memory required per thread increases
quadratically in the dimension of each observation. For example, we attained a speedup of 80
on the GTX 280 when running a particle filter for a multivariate stochastic volatility model
with M = K = 2. The frequency of resampling is an issue with respect to speedup because it
can typically only attain around 10 to 20 fold speedup for practical values of N, mainly due to
the parallel scan operation. This potentially gives rise to tradeoffs in speedup between the
transition and weighting steps and the time between resampling steps for some models, since
more sophisticated proposal distributions that parallelize less cleanly might reduce the
resampling rate. This type of performance, however, still provides considerable speedup and
may be more representative of what practitioners can expect in general.

4.3 Floating Point Precision

For all three algorithms discussed above, we ran identical algorithms with the same random
numbers on the CPU using double precision floating point numbers and the resulting estimates
of expectations of interest were affected by an order of magnitude less than the Monte Carlo
variance of the estimates.

5 Discussion

The speedup for the population-based MCMC algorithm and the SMC sampler is tremendous.
In particular, the evaluation of p(y|g) for the mixture-modelling application has high arithmetic
intensity since it consists of a product-sum operation with 400 Gaussian log-likelihood
evaluations involving only 104 values. In fact, because of the low register and memory
requirements, so many threads can be run concurrently that SIMD calculation of this likelihood
can be sped up by 500 times on the 8800 GT and 800 times on the GTX 280. However, the
speedup attained for the standard SMC algorithm may be more representative of the kinds of
gains one can expect in most applications with only reasonable arithmetic intensity. Even so,
speedups of 10 to 35 make many problems tractable that previously were not by reducing a
week’s worth of computation to a few hours. For example, estimation of static parameters in
continuous state-space models or the use of SMC proposals within MCMC can require
thousands of runs, so a speedup of this scale can substantially reduce the computation time of
such approaches (see e.g. Andrieu et al. (2010)). It is worth noting also that we can expect
speedups in the vicinity of 500 with SMC if few resampling steps are required and each
weighting step has small space complexity and moderate time complexity.

The GTX 280 outperforms the 8800 GT by a factor of about 2 in all situations in which the
GPUs are used to capacity. This is the case in all but the population-based MCMC algorithm,
in which the number of threads is determined by the number of auxiliary distributions. The
reason for this is simple: the algorithms presented are register-bound on the inputs given, in
that the number of registers required by each thread is the critical quantity that bounds the
number of threads that can be run concurrently. The GTX 280 has twice the number of registers
per multiprocessor and more than twice the multiprocessors compared to the 8800 GT. Hence,
one could expect more speedup on many-core chips with even more registers. In fact, further
improvements could be made using multiple cards with large amounts of memory,
configurations of which are now available in NVIDIA’s Tesla line. These Tesla “personal

J Comput Graph Stat. Author manuscript; available in PMC 2011 October 12.

s1duosnuBIA Joyiny sispund DN edoin3 g

s1dLIOSNUBIA JoLINy sispund DN 8doin3 ¢

Lee et al.

Page 14

supercomputers’ comprise 3 or more high-performance GPUs, each with 4GB of memory and
a CPU with at least as much memory as the GPUs’ combined.

It should be noted that while we have used CUDA to implement the parallel components of
algorithms, the results are not necessarily specific to this framework or to GPUSs. It is expected
that the many-core processor market will grow and there will be a variety of different devices
and architectures to take advantage of. However, the SIMD architecture and the sacrifice of
caching and flow control for arithmetic processing is likely to remain since when it is well-
suited to a problem it will nearly always deliver considerable speedup. For users who would
like to see moderate speedup with very little effort, there is work being done to develop libraries
that will take existing code and automatically generate code that will run ona GPU. Anexample
of this is Accelereyes’ Jacket engine for MATLAB code.

The speedups attainable with many-core architectures have broad implications in the design,
analysis and application of SMC and population-based MCMC methods. With respect to SMC,
it allows more particles to be used for the same or even less computation time, which can make
these samplers viable where they previously were not. When faced with designing a population-
based MCMC sampler, the results expectedly show that there is little cost associated with
increasing the number of auxiliary distributions until the GPU reaches the critical limit of
threads it can run concurrently. In our application, this does not occur until we have around
4096 auxiliary distributions. One might notice that this number is far larger than the number
of processors on the GPU. This is due to the fact that even with many processors, significant
speedup can be attained by having a full pipeline of instructions on each processor to hide the
relatively slow memory reads and writes. In both SMC and MCMC, it is also clear from this
case-study that it is beneficial for each thread to use as few registers as possible since this
determines the number of threads that can be run simultaneously. This may be of interest to
the methodology community since it creates a space-time tradeo that might be exploited in
some applications.

A consequence of the space-time tradeo mentioned above is that methods which require large
numbers of registers per thread are not necessarily suitable for parallelization using GPUs. For
example, operations on large, dense matrices that are unique to each thread can restrict the
number of threads that can run in parallel and hence dramatically affect potential speedup. In
cases where data is shared across threads, however, this is not an issue. In principle, it is not
the size of the data that matters but the space complexity of the algorithm in each thread that
dictates how scalable the parallelization is.

The parallelization of the advanced Monte Carlo methods described here opens up challenges
for both practitioners and for algorithm designers. There are already an abundance of statistical
problems that are being solved computationally and technological advances, if taken advantage
of by the community, can serve to make previously impractical solutions eminently reasonable
and motivate the development of new methods.

Acknowledgments

The authors acknowledge support from the Oxford-Man Institute for Quantitative Finance and the Medical Research
Council. Anthony Lee is additionally funded by a Clarendon Fund Scholarship and Christopher Yau is funded by a
UK Medical Research Council Specialist Training Fellowship in Biomedical Informatics (Ref No. G0701810). We
also acknowledge constructive comments from an associate editor and two referees.

References

Andrieu C, Doucet A, Holenstein R. Particle Markov Chain Monte Carlo (with discussion). J. Royal
Statistical Soc. B. 2010 To appear.

J Comput Graph Stat. Author manuscript; available in PMC 2011 October 12.

s1duosnuBIA Joyiny sispund DN edoin3 g

s1dLIOSNUBIA JoLINy sispund DN 8doin3 ¢

Lee et al.

Page 15

Brockwell AE. Parallel Processing in Markov chain Monte Carlo Simulation by Pre-Fetching. J. Comp.
Graph. Statist. 2006; 15(1):246-261.

Celeux G, Hurn M, Robert CP. Computational and Inferential Difficulties with Mixture Posterior
Distributions. Journal of the American Statistical Association. 2000; 95:957-970.

Del Moral P, Doucet A, Jasra A. Sequential Monte Carlo Samplers. J. Royal Statistical Soc. B. 2006; 68
(3):411-436.

Doucet, A.; Johansen, AM. A Tutorial on Particle Filtering and Smoothing: Fifteen years later. In: Crisan,
D.; Rozovsky, B., editors. Handbook of Nonlinear Filtering. Oxford University Press; 2010. To appear

Friedrichs MS, Eastman P, Vaidyanathan V, Houston M, Legrand S, Beberg AL, Ensign DL, Bruns CM,
Pande VS. Accelerating molecular dynamic simulation on graphics processing units. Journal of
Computational Chemistry. 2009; 30(6):864-872. [PubMed: 19191337]

Geyer, CJ. In: Kerigamas, E., editor. Markov Chain Monte Carlo Maximum Likelihood; Computing
Science and Statistics: Proceedings of 23rd Symposium on the Interface Interface Foundation; Fairfax
Station. 1991; p. 156-163.

Hukushima K, Nemoto K. Exchange Monte Carlo Method and Application to Spin Glass Simulations.
J. Phys. Soc. Jpn. 1996; 65:1604-1608.

Jasra A, Holmes CC, Stephens DA. Markov Chain Monte Carlo Methods and the Label Switching
Problem in Bayesian Mixture Modeling. Statistical Science. 2005; 20(1):50-67.

Jasra A, Stephens DA, Holmes CC. On Population-based Simulation for Static Inference. Statistics and

Computing. 2007; 17(3):263-279.

Kontoghiorghes, EJ., editor. Handbook of Parallel Computing and Statistics. Chapman & Hall; 2006.

L’Ecuyer P. Good parameter sets for combined multiple recursive random number generators. Operations
Research. 1999; 47(1):159-164.

L’Ecuyer P, Chen EJ, Kelton WD. An object-oriented random-number package with many long streams
and substreams. Operations Research. 2002; 50(6):1073-1075.

Liu, J.; West, M. Combined Parameter and State Estimation in Simulation-based Filtering. In: Doucet,
A.; deFreitas, N.; Gordon, N., editors. Sequential Monte Carlo Methods in Practice. Springer-Verlag;
New York: 2000.

Liu, JS. Monte Carlo Strategies in scientific Computing. Springer; 2008.

Liu JS, Chen R. Blind Deconvolution via Sequential Imputations. Journal of the American Statistical
Association. 1995; 90:567-576.

Marsaglia G. Xorshift RNGs. Journal of Statistical Software. 2003; 8(14):1-6.

McLachlan, G.; Peel, D. Finite Mixture Models. Wiley; New York: 2000.

Neal RM. Annealed Importance Sampling. Statistics and Computing. 2001; 11(2):125-139.

Pitt, MK.; Shephard, N. Time-Varying Covariances: A Factor Stochastic Volatility Approach. In:
Bernardo, JM.; Berger, JO.; Dawid, AP.; Smith, AFM., editors. Bayesian Statistics. VVol. 6. Oxford
University Press; 1999. p. 547-570.

Predescu C, Predescu M, Ciobanu CV. The incomplete beta function law for parallel tempering sampling
of classical canonical systems. Journal of Chemical Physics. 2004; 120(9):4119-4128. [PubMed:
15268578]

Robert, CP.; Casella, G. Monte Carlo Statistical Methods. Second Edition. Springer-Verlag; New York:
2004.

Rosenthal JS. Parallel computing and Monte Carlo algorithms. Far East J. Theor. Stat. 2000; 4:207-236.

Stone JE, Phillips JC, Freddolino PL, Hardy DJ, Trabuco LG, Schulten K. Accelerating Molecular
Modeling Applications with Graphics Processors. Journal of Computational Chemistry. 2007; 28
(16):2618-2640. [PubMed: 17894371]

Suchard M, Wang Q, Chan C, Frelinger J, Cron A, West M. Understanding GPU programming for
statistical computation: Studies in massively parallel massive mixtures. Journal of Computational
and Graphical Statistics. 2010; 10(2)

Suchard MA, Rambaut A. Many-Core Algorithms for Statistical Phylogenetics. Bioinformatics. 2009;
25(11):1370-1376. [PubMed: 19369496]

Tierney L. Markov Chains for Exploring Posterior Distributions. The Annals of Statistics. 1994; 22(4):
1701-1762.

J Comput Graph Sat. Author manuscript; available in PMC 2011 October 12.

s1duosnuBIA Joyiny sispund DN edoin3 g

s1dLIOSNUBIA JoLINy sispund DN 8doin3 ¢

Lee et al.

Page 16

Whiley M, Wilson SP. Parallel algorithms for Markov chain Monte Carlo methods in latent spatial
Gaussian models. Statistics and Computing. 2004; 14(3):171-179.

J Comput Graph Sat. Author manuscript; available in PMC 2011 October 12.

s1duosnuBIA Joyiny sispund DN edoin3 g

s1dLIOSNUBIA JoLINy sispund DN 8doin3 ¢

Lee et al.

memory

memory

CPU cores

host

Figure 1.

GPU cores

graphics card

Page 17

Link between host and graphics card. The thicker lines represent higher data bandwidth while

the squares represent processor cores.

J Comput Graph Sat. Author manuscript; available in PMC 2011 October 12.

s1duosnuBIA Joyiny sispund DN edoin3 g

s1dLIOSNUBIA JoLINy sispund DN 8doin3 ¢

Lee et al.

__global _ void importance_sample(int N, floatx d_array, float d_array_out)
// thread id = threads per block + block id + thread id within block
const int tid = blockDim.x * blockIdx.x + threadIdx.x;

// total number of threads = threads per block * number of blocks
const int tt = blockDim.x * gridDim.x;

int i;

float w, x;

for (i = tid; i < N; i += tt) {

x = d_array[i];
w = target_pdf(x) / proposal_pdf (x);
d_array_out [i] = phi(x) * w;

Figure 2.
Kernel that evaluates an importance weight and test function

J Comput Graph Sat. Author manuscript; available in PMC 2011 October 12.

Page 18

s1duosnuBIA Joyiny sispund DN edoin3 g

s1dLIOSNUBIA JoLINy sispund DN 8doin3 ¢

Leeetal. Page 19

__device _ float target_pdf (float x) {
return 1.0f / sqrtf(2 * PI) * exp(-(x — 1.5) * (x - 1.5) /
+ 1.0f / sgrtf(2 + PI) % exp(-(x + 1) * (x + 1) /

0.5£)
0.5f);

__device float proposal_pdf (float x) {
return 1.0f / sqrtf(2 * PI) * exp(-x » x / 2.0f);

device float phi (float x) {
return x * Xx;

Figure 3.

Device functions for evaluating the target density, the proposal density and the test function.
The target is an equally weighted, two-component mixture of normals with equal variances of
0.25 and means at —1 and 1.5 while the proposal is a standard normal distribution. The test
function squares its input so that the integral that is estimated is the expectation of the second
moment of a random variable distributed according to the target density.

J Comput Graph Sat. Author manuscript; available in PMC 2011 October 12.

sduosnuBIA Joyny sispund ONd 8doin3 g

s1dLIosNUBIA JoyIny sispund DN adoin3 g

Leeetal.

int N = 16777216;

float h_sum, result;
floats d_array;
floatx d_array_out;

floats array = (floats) malloc(N * sizeof (float));
cudaMalloc((void =+) &d_array, N * sizeof (float));
cudaMalloc((void +) &d_array_out, N + sizeof (float));

populate_randn(array, N);

cudaMemcpy (d_array, array, N x sizeof (£loat), cudaMemcpyHostToDevice);
importance_sample<<<64,128>>>(N, d_array, d_array_out);

h_sum = reduce(N, d_array_out);

result = h_sum / N;

free (array);

cudaFree (d_array) ;
cudaFree (d_array_out) ;

Figure4.
Host code

J Comput Graph Sat. Author manuscript; available in PMC 2011 October 12.

Page 20

s1duosnuBIA Joyiny sispund DN edoin3 g

s1dLIOSNUBIA JoLINy sispund DN 8doin3 ¢

Lee et al.

Empirical Density

Figureb5.
Estimated marginal posterior density p(iq.2ly) from MCMC samples.

J Comput Graph Sat. Author manuscript; available in PMC 2011 October 12.

Page 21

s1duosnuBIA Joyiny sispund DN edoin3 g

s1dLIOSNUBIA JoLINy sispund DN 8doin3 ¢

Leeetal. Page 22

x10° x10° x 10 x 10°
10) 6
4
15 4
5 1
5 2
0.5
=1 w2 % m=a 0 s
x 10° x 10° x 10*

x 10°
4
2
0" M=32
x 10*
6
4 4 4 4
2 5 2 2
0 0 0 0

X
4
2
0 M=128 M=512 M=2048 M=8192 M=32768

Figure6.
Number of MCMC samples from each mode. M is the number of auxiliary variables or chains.

J Comput Graph Stat. Author manuscript; available in PMC 2011 October 12.

s1dLosnuep JoyIny sispung DN adoin3 o

s1dLIOSNUBIA JoLINy sispund DN 8doin3 ¢

Lee et al.

150 400
100 300
200

%0 100

N=1024 N=2048 N=8192

800 1500

600 4000

1000

400

500 2000

200

0 N=16384 0 N=32768 0 N=65536 ON=131072

Figure?.
Effective number of SMC samples from each mode. N is the number of particles.

J Comput Graph Stat. Author manuscript; available in PMC 2011 October 12.

s1duosnuBIA Joyiny sispund DN edoin3 g

s1dLIOSNUBIA JoLINy sispund DN 8doin3 ¢

Lee et al.

Page 24

——real
——filter mean
+/-1 S.D.

Figure8.
Estimated and real values of the first component of x

J Comput Graph Sat. Author manuscript; available in PMC 2011 October 12.

Page 25

Lee et al.

‘IN Sureyg Jo siaquinu snoltea J1oj Jajdwes JINDIN paseg-uonendod ay1 4oy sswn Buiuuny

® Europe PMC Funders Author Manuscripts

T 3lqel

2.8 6v€'82 6.2 92285 €0LZ ZL0TET
12§ 62L'L 892 15617 L'99 89/2€
0gY €2€C 0€Z erasnd ¥9'9T 7618
ST L2t 891 a8yt 9Ty 8102
18 GeTT 09 V0T 70T X
T 00T'T LT €26'0 2920 821
4 860'T v 060 95900 €
60 €80'T TT 1880 99100 8
dnpeads | (s99s) 082X 1O | dnpsads | (so8s) 190088 | (Suiw) NdD N

® Europe PMC Funders Author Manuscripts

J Comput Graph Sat. Author manuscript; available in PMC 2011 October 12.

Page 26

Lee et al.

® Europe PMC Funders Author Manuscripts

"N 10 sanjeA snolieA Joj Jajdures ojreD ajuoA [enuanbas ayl Joj sswn Buluuny

c?9lqel

(44 61297 1.2 81T'IE 154" y¥1292
TA 5L0'8 0.2 TL9'ST 90L 2L0TET
96Y oLy 892 688, €'Ge 9€559
205 Y112 992 G66°€ LT 89/2€
Gl vITT 6v¢ 1212 288 89T
ovy 1650 §€ze 2671 'y 2618
dnpeads | (s99s) 082X 1O | dnpsads | (so8s) 190088 | (Suiw) NdD N

® Europe PMC Funders Author Manuscripts

J Comput Graph Sat. Author manuscript; available in PMC 2011 October 12.

Page 27

Lee et al.

"N 1O SanjeA SnoLIeA 10) poylall ofJeD aluoly [enusnbas ayl 1oy (spuoass ur) awn Buluuny

® Europe PMC Funders Author Manuscripts

€3lqel

1€ 626' o1 981'e gve | 2L0TET
L€ S97°0 01 SLLT | SeriT | 9ess9
ve 620 6 7260 | evs'8 | 89/2€
> w10 6 e6v'0 | Seev | v8e9l
9z 2800 8 €920 | 29TC | 2618

dnpsads | 08zx 19 | dnpsads | 190088 | NdO N

® Europe PMC Funders Author Manuscripts

J Comput Graph Sat. Author manuscript; available in PMC 2011 October 12.

