Table 2.
generalized functional for piec ewise constant noise removal | ||
---|---|---|
| ||
existing methods | function Λ | notes |
linear diffusion | (1/2)|mi − mj|2I(i − j = 1) | solved by weighted mean filtering; cannot produce PWC solutions; not PWC |
step-fitting (Gill 1970; Kerssemakers et al. 2006) |
(1/2)|xi − mj |2I(i − j = 0) | termination criteria based on number of jumps; PWC |
objective step-fitting (Kalafut & Visscher 2008) |
(1/2)|xi − mj|2I(i − j = 0) +λ|mi − mj|0I(i − j = 1) |
likelihood term the same upto log transformation; regularization parameter λ fixed by data; PWC |
total variation regularization (Rudin et al. 1992) |
(1/2)|xi − mj|2I(i − j = 0) + γ|mi − mj|I(i − j = 1) |
convex; fused Lasso signal approximator is the same; PWC |
total variation diffusion | |mi − mj|I(i − j = 1) | convex; partially minimized by iterated 3-point median filter; PWC |
mean shift clustering | min((1/2)|mi − mj|2, W) | non-convex; PWC |
likelihood mean shift clustering |
min((1/2)|xi − mj|2, W) | non-convex; K-means is similar but not a direct special case (see text); PWC |
soft mean shift clustering | 1 − exp(−β|mi − mj|2/2)/β | non-convex; PWC |
soft likelihood mean shift clustering |
1 − exp(−β|xi − mj|2/2)/β | non-convex; soft-K-means is similar but not a direct special case (see text); PWC |
convex clustering shrinkage (Pelckmans et al. 2005) |
(1/2)|xi − mj|2I(i − j = 0) + γ|mi − mj| |
convex; PWC |
bilateral filter (Mrazek et al. 2006) | [1 − exp(−β|mi − mj|2/2)/β] ×I(|i − j| ≤ W) |
non-convex |