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Abstract
Objective—Responses to therapies, either with regards to toxicities or efficacy, are expected to
involve complex relationships of gene products within the same molecular pathway or functional
gene set. Therefore, pathways or gene sets, as opposed to single genes, may better reflect the true
underlying biology and may be more appropriate units for analysis of pharmacogenomic studies.
Application of such methods to pharmacogenomic studies may enable the detection of more subtle
effects of multiple genes in the same pathway that may be missed by assessing each gene
individually.

Methods—A gene set analysis of 3,821 gene sets is presented assessing the association between
basal mRNA expression and drug cytotoxicity using ethnically defined human lymphoblastoid cell
lines for two classes of drugs: pyrimidines (dFdC and AraC) and purines (6-TG and 6-MP).

Results—The gene set nucleoside-diphosphatase activity was found to be significantly
associated with both dFdC and AraC, while gene set gamma-aminobutyric acid catabolic process
was associated with dFdC and 6-TG. These gene sets were significantly associated with the
phenotype even after adjusting for multiple testing. In addition, five associated gene sets were
found in common between the pyrimidines and two gene sets for the purines (3′,5′-cyclic-AMP
phosphodiesterase activity and gamma-aminobutyric acid catabolic process) with p < 0.0001.
Functional validation was attempted with 4 genes each in gene sets for thiopurine and pyrimidine
anti-metabolites. All four genes selected from the pyrimidine gene sets (PSME3, CANT1,
ENTPD6, ADRM1) were validated, but only one (PDE4D) was validated for the thiopurine gene
sets.

Conclusions—In summary, results from the gene set analysis of pyrimidine and purine
therapies, used often in the treatment of various cancers, provide novel insight into the relationship
between genomic variation and drug response.
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1. INTRODUCTION
Many drug-related phenotypes are expected to involve complex relationships of gene
products within the same molecular pathway or functional gene set. Therefore, pathways or
gene sets, as opposed to single genes, may better reflect the true underlying biology and be
more appropriate units for analysis of pharmacogenomic studies[1]. Pathway or gene set
methods for analysis of expression data incorporate prior biological knowledge into the
statistical analysis by evaluating the overall evidence of association of a phenotype with
expression of all genes in a given pathway or gene set[2,3]. Application of such methods
may enable the detection of more subtle effects of multiple genes in the same pathway that
may be missed by assessing each gene individually. Moreover, incorporation of biological
knowledge in the statistical analysis may aid researchers in the interpretation of results.

In the field of pharmacogenomics, use of gene set analysis or gene set enrichment analysis
have been utilized in the past, as responses to therapies are thought to be the results of a
complex relationship of multiple genes within the same pathway or gene set. For example,
an enrichment analysis identified cellular pathways associated with resistance to
chemotherapy[4], while another study report that variants associated with response to
chemotherapeutic drugs are enriched in expression quantitative trait loci (eQTLs)[5].
Therefore, analysis was completed to determine if expression patterns in pre-defined gene
sets were associated with response to two classes of drugs: pyrimidines (gemcitabine (dFdC)
and cytosine arabinoside (AraC)) and purines (6-mercaptopurine (6-MP), 6-thioguanine (6-
TG)).

The drugs dFdC and AraC have been used to treat many cancers [6,7], and they share
similar chemical structures, metabolic pathways, and mechanisms of actions [8,9,10]. Both
are prodrugs that must be transported into the cell and activated by kinases to form active di-
and tri-phosphorylated metabolites. Although gemcitabine and AraC are both a type of
pyrimidine (cytidine analogues), gemcitabine is used to treat solid tumors, [7,11]; while
AraC is a major agent for the treatment of acute myelogenous leukemia (AML) [7,9,12].
Clinical response to both drugs varies widely [8,13,14,15]. Nearly all previous studies of
gemcitabine and AraC have focused on variation in the expression of genes within their
known metabolism and activation pathway [16,17,18]. However, very little information is
available with regard to genes outside of that pathway.

In contrast to these two pyrimidines, the purine drugs of 6-mercaptopurine (6-MP) and 6-
thioguanine (6-TG) are used to treat acute lymphoblastic leukemia (ALL) of childhood and
autoimmune disorders[19]. Several genes within the known “thiopurine pathway” can
contribute to individual variation in thiopurine response. For example, inherited variation in
thiopurine S-methyltransferase (TPMT) activity is a major factor responsible for individual
variation in 6-TGN concentrations and thiopurine response.[20] Patients homozygous for
TPMT alleles associated with very low enzyme activity are at greatly increased risk for the
development of life-threatening bone-marrow suppression.[20] However, level of TPMT
activity does not account for all of the variation observed during thiopurine therapy.[21]
Thus, assessment of variation across the genome, in the form of gene set analysis, might
provide novel candidate genes and pathways that could help explain individual response to
thiopurine drugs.

To determine if variation in basal gene expression within pre-defined gene sets is associated
with response to chemotherapeutic agents, a lymphoblastoid cell line model system,
consisting of cell lines from the Coriell Human Variation Panel, was used. This model
system consists of ethnically-defined cell lines for which gene expression data using
Affymetrix U133 Plus 2.0 GeneChips and drug-related cytotoxicity phenotypes has been
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obtained, as previously described[22,23]. In this study, two pyrimidines, gemcitabine
(dFdC) and cytosine arabinoside (AraC), and two purine drugs, 6-mercaptopurine (6-MP)
and 6-thioguanine (6-TG), were used to test whether individual variation in basal gene
expression for known pathways and gene sets might influence drug sensitivity. Gene set
analysis of these four drugs will provide novel gene sets implicated in the response to the
individuals drugs or possibly, the class of drugs.

2. METHODS AND MATERIALS
2.1. Cell Lines, Drug and Cell proliferation Assays

The study is based on 175 EBV-transformed B lymphoblastoid cells derived from
Caucasian-American (CA), African-American (AA) and Han Chinese-American (HCA)
were purchased from the Coriell Institute (Camden, NJ). The dFdC was provided by Eli
Lilly (Indianapolis, IN). AraC and the thiopurines, 6-TG and 6-MP, were purchased from
Sigma Aldrich (St Louis, MO). dFdC and AraC were dissolved in PBS and frozen at −80°C,
while 6-MP and 6-TG were prepared in DMSO immediately before use and then further
diluted with media. Cells were plated at a density of 5 × 104 cells per well in triplicate in 96-
well plates (Corning, NY). One hour after plating, cells were treated with dFdC, AraC, 6-
MP or 6-TG. The CellTiter96 Aqueous Non-Radioactive Cell Proliferation Assays
(Promega, Madison, WI) were performed as described by the manufacturer after 72 h
incubations. Plates were read in a Safire2 microplate reader (Tecan AG, Switzerland), with
subsequent cytotoxicity measurements recorded at various doses of dFdC, AraC, 6-MP and
6-TG for the cell lines. For the pyrimidine studies, drug dosages of 10 μl at concentrations
ranging from 0.1 nM to 1 mM where used cytotoxicity studies involving dFdC and 1 nM to
10 mM for cytotoxicity studies involving AraC, as previously described[22]. The doses used
in the purine studies were 0.01, 0.1, 0.5, 1, 2.5, 5, 10 and 100 μM for 6-MP and 0.005, 0.05,
0.25, 0.5, 1, 2.5, 5, and 50 μM for 6-TG.

To determine IC50 and AUC values for each drug, a logistic function (was fitted to the
cytotoxicity data using the R package drc (http://cran.r-project.org/)[24]. Let Rj represent the
response for a cell line at dose j (Dj) of the drug, j =1,…, 8 with Rj ~ N(ηj, σ2) and

, β1, β2 > 0. The responses at infinite and zero concentration
are represented by β1i and β2i, respectively. The parameter β3i represents the log(IC50) and
β4 represents the slope of the dose-response curve[25,26]. From the fitted logistic dose-
response curve for each subject, the IC50 phenotype (effective dose that kills 50% of the
cells) was estimated based on the estimate of β3i and AUC phenotype (area under the dose-
response curve) was determined by numerically computing the area under the estimated
dose-response curve. This procedure for estimating the IC50 and AUC for each subject was
completed for each of the four drugs. Cytotoxicity data for gene set analysis of dFdC, AraC,
6-TG and 6-MP was available for 172, 174, 171 and 171 cell lines, respectively.

2.2. Genome-wide mRNA Expression Data
Whole Genome expression data for cell lines was obtained with Affymetrix U133 plus 2.0
expression array chip. The RNA extraction and the expression array assays were performed
following the Affymetrix GeneChip® expression technical manual (Affymetrix, Inc., Santa
Clara, CA). Before the assay, RNA quality was tested using an Agilent 2100 Bioanalyzer.
The Affymetrix GeneChip® contains over 54,000 probe sets whose design is based on build
34 of the Human Genome Project. The mRNA expression array data were normalized on the
log2 scale using GCRMA methodology[27,28]. The mRNA expression data for the entire set
of cell lines (96 CA, 96 AA and 96 HCA) has been assigned a GEO number GSE23120 is
available at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE23120.
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2.3. Gene Sets Definitions and Analysis
Gene sets were determined based on four categories: Gene Ontology (GO) Biological
Process, GO Cellular Component, GO Molecular Function and known pathways (e.g.,
KEGG, PharmGKB). The mapping of expression array probe sets to gene sets was provided
by Affymetrix, resulting in 6,849 gene sets. All probe sets were included in the analysis,
regardless of whether or not multiple probe sets occurred for a given gene. The distribution
of the gene set sizes was highly skewed with the mean (median) number of probe sets within
a gene set be 47.34 (6.00) (Minimum = 1.00, first quartile = 2.00, third quartile = 15.00,
maximum = 13500). For the gene set analysis of the four drugs, analyses was restricted to
gene sets with 5 to 5,000 genes, resulting in 3,821 gene sets for analysis (removed 7 gene
sets with more than 5,000 genes with the remaining 3,021 gene sets removed having 4 or
less genes).

To assess association of gene set expression values with drug IC50, the self-contained gene
set method, termed the “global model”, of Goeman et al[29] was utilized,. Based on
previous research, the global model has been shown to be more powerful than alternative
approaches for conducting gene set analysis for expression studies for a variety of situations
(e.g., size of gene set, correlation between mRNA values within a gene set, number and size
of individual mRNA effects on the phenotypes)[30]. The global modeling approach is based
on a linear random effects model in which the continuous drug phenotype IC50 (Y) is
modeled as a function of the expression values for the genes within the gene-set of interest.
That is, Y is modeled as Y|X ~ N(Xβ, σ2) with the gene expression effects, β, having a
common distribution with mean 0 and variance τ2. Under the null hypothesis of no gene
expression effects on the phenotype, the variance of the expression effects is zero (τ2 = 0),
which can be tested with a score test [29]. Instead of relying on asymptotic determine p-
values for association, empirical p-values based on 500,000 permutations were computed.

Prior to analysis, the normalized expression data were then regressed on gender and race.
Residuals from this regression were then standardized by subtracting the mean residual for
individual probe sets and dividing by the standard deviation to derive a “standardized
adjusted expression value”, as previously described[22,31]. The phenotypes IC50 and AUC
values were log transformed for dFdC and AraC and rank transformed (i.e., Van der
Waerden transformation) for 6-TG and 6-MP and adjusted in a fashion similar to that
described for the expression data. All gene set analyses were based on adjusted standardized
expression array data and the IC50 and AUC phenotypes using the R library “globaltest”
available for download in Bioconductor
(http://bioconductor.org/packages/2.6/bioc/html/globaltest.html).

2.4. Functional validation studies
Human pancreatic cancer SU86 and human glioma U251 cell lines were obtained from the
American Type Culture Collection (ATCC, Manassas, VA) and were cultured in RPMI
1640 and DMEM medium containing 10% FBS, respectively. Pools of 4 specific siRNAs
for the candidate genes and negative non-targeting control siRNA pools were purchased
from Dharmacon (Chicago, IL). Reverse transfection with siRNA was performed in 96-well
plates with SU86 (pyrimidines) and U251 (thiopurines) cells, using 0.2 μL of lipofectamine
RNAi-MAX reagent (Invitrogen, Carlsbad, CA) and siRNA pools at final concentrations of
30 nM for 24 hours. The cells were then treated with a series of drug concentrations. After
72 hours, cytotoxicity assays were performed using the CellTiter 96 AQueous Non-
Radioactive Cell Proliferation Assay kit (Promega Corporation, Madison, WI), followed by
absorbance measurements at 490 nm in a Safire2 microplate reader (Tecan AG,
Switzerland).
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Total RNA was isolated from the cultured cells using the Quick-RNA™ MiniPrep kit (Zymo
Research, Orange, CA), followed by qRT-PCR performed with the Power SYBR® Green
RNA-to-CTTM 1-Step Kit (AB Foster CA). Specifically, primers purchased from QIAGEN
were used to perform qRT-PCR using the Stratagene Mx3005P Real-Time PCR detection
system (Agilent Technologies, Santa Clara, CA). All experiments were corrected by using
beta-actin as an internal control.

Cytotoxicity for AraC and dFdC in SU86 cell lines was compared between cells treated with
negative control siRNA and gene-specific siRNAs, and similar comparisons were made for
6-TG using U251 cells.

3. RESULTS
3.1. Gene Set Analysis

The correlation between IC50 and AUC for dFdC, AraC, 6-MP and 6-TG was 0.20, 0.68,
0.39, and 0.49, respectively. Statistically significant gene sets, at a Bonferroni adjusted
significance level (0.05/3821), for the four drugs and two drug related phenotypes (IC50 and
AUC) are presented in Tables 1 and 2. Figure 1 displays the relationship between gene set
size and significance of the gene set. As the figure illustrates, the gene sets with more genes
had larger p-values, indicating that these gene sets may contain a diverse set of genes (probe
sets) that “waters-down” the association. The drug dFdC had the most significant gene sets
associated with the phenotypes IC50 (36) and AUC (13), while AraC only had a single
significant gene set associated with IC50 (nucleoside-diphosphatase activity). In contrast,
the purine 6-MP had no gene sets significantly associated with either IC50 or AUC while 6-
TG had three gene sets associated with IC50 and four associated with AUC. Figure 2 shows
the histograms of the p-values for the various drug/phenotype combinations. As Figure 2
illustrates, for each drug/phenotype combination, there appears to be deviation from the null
hypothesis of no association of gene sets with the phenotype, with the most striking results
for the drug dFdC and IC50.

For the statistically significant gene sets, there was some overlap in findings between the
various drugs. The gene set nucleoside-diphosphatase activity was found to be associated
with both dFdC and AraC IC50, while gene set gamma-aminobutyric acid catabolic process
was associated with dFdC and 6-TG AUC. Next, for gene sets with p-values < 0.0001,
trends between the two drug classes were investigated. The relationship between the
−log10(p-values) between the pyrimidines and the purines is displayed in Figure 3. For the
pyrimidines (dFdC and AraC), five gene sets were found to overlap for the phenotype IC50:
regulation of cell shape, dorsal/ventral pattern formation, nucleoside-diphosphatase activity,
secretory granule, and regulation of axon extension. However, for the phenotype AUC, no
gene sets were found to be in common between dFdC and AraC. For the purines (6-TG and
6-MP), one associated gene set was detected for both IC50 and AUC; gene set 3′,5′-cyclic-
AMP phosphodiesterase activity and gamma-aminobutyric acid catabolic process for IC50
and AUC, respectively. No other gene sets detected were in common between the two drug
classes.

Finally, the amount of overlap between the significant gene sets of potential
pharmacogenomic relevance for the pyramides and purines was assessed. For the
statistically significant gene sets detected for 6-TG, gene sets melatonin biosynthetic process
and acetylserotonin O-methyltransferase activity contained the same set of genes and both
gene sets were completely contained within gene set O-methyltransferase activity. In
addition to this overlap in gene sets, gene sets choline transmembrane transporter activity
and choline transport contained the same set of genes. No other overlap in the top gene sets
for the two thiopurine drugs was observed. In contrast, for the statistically significant gene
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sets for dFdC and AraC, there was limited overlap in the gene sets with only pair of gene
sets sharing one gene.

3.2. Functional Validation Studies
Since statistical significance does not always lead to functional relevance (e.g., false positive
associations), using the gene set results shown in Tables 1 to 4 we selected gene sets based
on both statistical significance and biological relevance to attempt functional validation. For
dFdC and AraC, we selected four novel genes (CANT1, ENTPD6, ADRM1, PSME3) within
the nucleoside-diphosphatase activity, proteasome activator activity and proteasome
activator complex gene sets for functional validation (Table 3). Unlike dFdC and AraC,
which shared common genes of interest, only 6-TG showed statistically significant gene sets
for the thiopurine drugs. Therefore, we selected four genes (ABAT, ASMTL, PDE4D, and
SLC44A1) for functional validation based on the 6-TG results in the gene sets 3′-5′-cyclic-
AMP phosphodiesterase activity, choline transport (which overlaps with gene set choline
transmembrane transporter activity) and O-methyltransferase activity (Table 4).

The human pancreatic cancer SU86 cell line was chosen to test dFdC and AraC because
dFdC is first-line therapy for pancreatic cancer, and the genes of interest were expressed in
that cell line. Knockdown of all four genes (PSME3, CANT1, ENTPD6, ADRM1) in SU86
cells significantly desensitized the cells to dFdC and AraC (Figure 4), confirming the results
of the gene set analysis. Knockdown efficiency of specific siRNAs against the four genes
was confirmed using real-time QRT-PCR assays (Figure 4).

For 6-TG, 4 candidate genes were tested in the U251 cell line. That cell line expressed all
four of these genes. Knockdown of PDE4D, ABAT and ASMTL resulted in a shift in the
cytotoxicity curves (Figure 5), but only PDE4D showed a shift compatible with the direction
of drug effect observed during the initial gene expression studies (Table 4). Therefore, in the
case of 6-TG, only the PDE4D results among the four genes tested were validated.

4. DISCUSSION
With the advent of high-throughput technologies, such as microarrays, complete genome-
wide studies of genomic predictors for response to therapies are becoming commonplace.
Responses to therapies, either with regard to toxicities or efficacy, are expected to involve
complex relationships of gene products within the same molecular pathway or functional
gene set. Therefore, pathways or gene sets, as opposed to single genes, may better reflect the
true underlying biology and be more appropriate units for analysis for pharmacogenomic
studies. Application of such methods to pharmacogenomic studies may enable the detection
of more subtle effects of multiple genes in the same pathway that may be missed by
assessing each gene individually. Moreover, the incorporation of biological knowledge in
the statistical analysis may aid researchers in the interpretation of results from genome-wide
pharmacogenomic studies. However, results from our gene set analysis are limited to the
current definition of gene sets and pathways, realizing that knowledge about the genome and
definitions of GSs are evolving and that no single definition of a GS exists. In addition,
Gene Ontology (GO) uses a hierarchical ontology that classifies genes and therefore a level
of the hierarchy (or specificity) must be specified for defining gene sets. For this analysis,
we chose level 4 to determine genes sets as a compromise between specificity and
sensitivity. In this manuscript, a gene set analysis is presented to assess the impact of mRNA
expression on drug cytotoxicity for two classes of drugs: pyrimidines (dFdC, AraC) and
purines (6-TG and 6-MP).

Gene set analysis of the drug dFdC detected the gene set of the gemcitabine metabolic
pathway to be significantly associated with dFdC AUC (p = 1.2 × 10−5), which confirmed
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the confidence of the gene set methods for incorporating the known biological knowledge
into the statistical analysis. The gene set of nucleoside-diphosphatase activity was also found
to be associated with both dFdC (p = 1.2 × 10−5) and AraC (p = 4 × 10−6) IC50. It is well-
known that these two cytidine analogues share similar chemical structures, metabolic
pathways, and mechanisms of action. Both are prodrugs that must be transported into cells,
activated by kinases to form active diphosphorylated and triphosphorylated metabolites, and
inactivated by dephosphorylation[6,7]. One of nucleotidase family members, NT5C3, that
catalyzes the dephosphorylation of nucleoside monophosphates, has been previously
demonstrated to be associated with sensitivity to dFdC and AraC[22], with these results
indicating the possible involvement of other genes in the nucleoside-diphosphatase activity
gene set in the inactivation of these cytidine analogues. In particular, we hypothesize that
nucleoside diphosphatases might convert nucleoside diphosphate to nucleoside
monophosphate, and consequently to decreased bioactive metabolite levels of the cytidine
analogues, dFdC- or AraC- triphosphorate. Therefore, it is plausible that genes in this gene
set might be associated with the clinical response to these two drugs. Functional validation
by siRNA knockdown of CANT1 and ENTPD6, followed by dFdC and AraC cytotoxicity
assay in SU86 cells, validated our gene set results (lowest p = 7.21E-04 and r = − 0.26 for
CANT1, while lowest p = 3.58E-04 and r = − 0.27 for ENTPD6). These results suggest that
CANT1 and ENTPD6 might be involved in the mechanism of response to dFdC and AraC in
pancreatic cancer cells.

Additionally, two of the gene sets statistically associated with dFdC IC50 were proteasome
activator activity (p<2.0E-06) and proteasome activator complex (p<2.0E-06). The survival
genes are very likely to contribute to tumor cell proliferation and chemotherapy, as well as
the variation in drug response. The ubiquitin-proteasome system is involved in degradation
of many intracellular proteins and is necessary for proper functioning of the cell under
normal conditions and its survival under stress conditions[32]. The genes within the gene set
of survival genes product activity might be negatively regulated and consequently
dysfunction through the proteasome pathway. Some part of survival genes were components
of the 20S and 26S proteasome complexes[33]. It is possible to hypothesize that those genes
involved in proteasome activator complex and activity might also play roles in the regulation
of the drug response to these two cytidine analogues. In follow-up functional validation
studies, we demonstrated that deceased expression of PSME3 and ADRM1 in SU86 cells
resulted in resistance to dFdC and AraC. These observations confirmed the gene set results
(lowest p = 5.58E-07 and r = − 0.37 for PSME3, while p = 4.53E-04 and r = − 0.26 for
ADRM1), suggesting possible roles for PSME3 and ADRM1 in response to dFdC and AraC.

In contrast to the results from the gene set analysis of the pyrimidines, gene set analysis for
the two purine antimetabolites, 6-MP and 6-TG, identified gene sets 3′, 5′-cyclic-AMP
phosphodiesterase activity and gamma-aminobutyric acid catabolic process in common
between 6-TG and 6-MP for IC50 and AUC phenotypes, respectively. In addition, the
analysis identified 7 gene sets that are uniquely associated with 6-TG cytotoxic phenotypes
(4 for IC50 and 3 for AUC). The similarity and uniqueness of gene sets detected for the two
drugs was not surprising, as 6-MP and 6-TG are anticancer purine analogues that shares
similar structure and metabolomic pathways but different mechanism of actions to inhibit
the growth of cancer cells. Specifically, after metabolomic activation by hypoxanthine-
guanine phosphoribosyl transferase (HGPRT), the active metabolites of 6-MP and 6-TG
(TIMP and TGMP) will function as inhibitor for de novo purine biosynthesis and inhibitors
for DNA/RNA synthesis, respectively[34]. The gene set for 3′, 5′-cyclic-AMP
phosphodiesterase activity includes 26 genes that may influence intracellular level of cAMP.
A previous study has demonstrated that efflux of nucleotide (especially cyclic nucleotides,
e.g. cAMP) through nucleotide efflux transporters that alters the concentration of
intracellular cyclic nucleotide and their signaling and could confer resistance to cytotoxic
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thiopurine nucleotides[35]. These findings provide further evidence on the importance of
intracellular level of cAMP in chemosensitivity of the cells to purine analogues. Only one of
the 6-TG related genes, PDE4D, could be functionally validated (Figure 5). PDE4D encodes
a cAMP-specific 3′, 5′-cyclic phosphodiesterase and is involved in purine metabolism. By
selectively degrading cGMP and cAMP to the corresponding nucleotide
monophosphates[36,37], PDE4D regulates their cellular concentrations, localization and
duration of action. Therefore, PDE4D is a biologically plausible candidate to modify 6-TG
response.

One-carbon metabolism that includes the Methionine and the Folate cycles, is a major
resource of one carbon unit for many essential cellular events, including de novo
biosynthesis of purines and thymidylates[38]. The Methionine and the Folate cycles are
coupled through remethylation of homocysteine that also generates methionine. S-
Adenosylmethionine (SAM) that is converted from methionine is a high-energy methyl
group donor and is required for most SAM-dependent methyltransferases for metabolisms of
many neurotransmitters. A recent study by Ross et al. demonstrated that genetic variation in
two SAM-dependent methyltransferase, TPMT and catechol O-methyltransferase (COMT)
are significantly associated with cisplatin-induced hearing loss in children[39], linking the
essential one-carbon metabolism to cytotoxicity of chemotherapeutic agents. Of interest,
gene set analyses discovered several gene sets associated with 6-TG cytotoxic profiles (both
IC50 and AUC) that could relate to the One-carbon metabolism process. Gene sets for o-
methyltransferase activity could influence the balance of the Methionine cycle by regulating
level of SAM, and thus its precursor, methionine, as well as the remethylation process of
methionine, therefore, indirectly influence the Folate cycle and further, the purine
biosynthesis. Since choline is converted to betaine, which is the substrate of the betaine-
homocysteine methyltransferase, the primary enzyme catalyzes the homocysteine
remethylation in liver; gene sets for choline transport could also indirectly affect the folate
pathway and the purine synthesis through the homocysteine remethylation step. However,
knockdown of SLC44A1 and ASMTL were not functionally validated.

In summary, a comprehensive gene set analysis of two commonly used therapeutic drug
classes, pyrimidines and purines, used in the treatment of cancer found novel gene sets
associated with IC50 and 5 of the 8 genes chosen for functional studies were validated.
These findings provide insight into the relationship between genomic variation and drug
response. The results of this analysis also illustrate the usefulness of gene set analysis
methods for the development of novel hypotheses that can then be followed-up with
additional clinical or functional studies. The strengths of this study are: (1) the extensive
amount of information available for multiple drugs within the same class of drugs; allowing
for the comparison of results between the drugs within the same class and across drug
classes; and (2) the functional validation of genes detected from the gene set analysis.
Moreover, application of gene set methods to these pharmacogenomic studies detected
significant gene sets (and the corresponding genes within these gene sets) that impact drug
cytotoxicity.
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Figure 1.
Scatterplot of the size of the genes sets versus the −log10(p-values) for association with
IC50 for the 4 drugs.
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Figure 2.
Histogram of association p-values from gene set analysis for the four drugs and two
phenotypes. (A) dFdC & IC50, (B) dFdC & AUC, (C) AraC & IC50, (D) AraC & AUC, (E)
6-TG & IC50, (F) 6-TG & AUC, (G) 6-MP & IC50, (H) 6-MP & AUC.
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Figure 3.
Scatterplot of the relationship between the −log10(p-values) for the pyrimidines (dFdC,
AraC) and purines (6-TG, 6-MP). (A) dFdC & IC50 &. AraC & IC50, (B) dFdC & AUC &
AraC & AUC, (C) 6-TG & IC50 & 6-MP & IC50, (D) 6-TG & AUC & 6-MP & AUC
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Figure 4.
dFdC and AraC functional validation in human SU86 cells. siRNA knockdown was
performed, followed by drug cytotoxicity (left panels) and real-time QRT-PCR assays (right
panels). SU86 cells were transfected with control siRNA or specific siRNA for PSME3,
ADRM1, CANT1, and ENTPD6. 24 h after siRNA transfection, cells were treated with either
dFdC or AraC for an additional 72 h.
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Figure 5.
6-TG functional validation in U251 cells. siRNA knockdown was performed, followed by
drug cytotoxicity (left panels) and real-time QRT-PCR assays (right panels). U251 cells
were transfected with control siRNA or specific siRNA for ABAT, ASMTL, PDE4D, and
SLC44A1. 24 h after siRNA transfection, cells were treated with 6-TG for an additional 72
h.
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Table 1

Statistical significant gene sets associated with IC50.

Drug IC50 p Gene Set Size Gene Set

dFdC 1.2E-05 14 Wnt receptor activity

1.2E-05 21 proton-transporting ATP synthase complex, catalytic core F(1)

1.2E-05 7 negative regulation of Ras protein signal transduction

<2.0E-06 13 regulation of mitochondrial membrane permeability

2.0E-06 5 antigen process/presentation, exogenous lipid antigen via MHC class Ib

2.0E-06 5 positive regulation of NK T cell differentiation

1.0E-05 14 regulation of mitochondrial membrane potential

<2.0E-06 27 diacylglycerol kinase activity

1.0E-05 52 protein kinase inhibitor activity

4.0E-06 81 small GTPase regulator activity

<2.0E-06 17 FK506 binding

4.0E-06 9 laminin-5 complex

8.0E-06 15 caveola

8.0E-06 11 mitochondrial electron transport, ubiquinol to cytochrome c

<2.0E-06 8 DNA ligation

2.0E-06 8 eye pigment biosynthetic process

2.0E-06 196 protein kinase cascade

2.0E-06 12 phosphatidylinositol transporter activity

<2.0E-06 6 proteasome activator complex

<2.0E-06 7 proteasome activator activity

<2.0E-06 12 negative regulation of survival gene product activity

2.0E-06 32 dorsal/ventral pattern formation

<2.0E-06 15 ATP hydrolysis coupled proton transport

4.0E-06 5 phosphatidylinositol-3,4-bisphosphate 4-phosphatase activity

<2.0E-06 37 protein processing

8.0E-06 12 cyclin-dependent protein kinase regulator activity

4.0E-06 9 flotillin complex

1.2E-05 12 nucleoside-diphosphatase activity

4.0E-06 30 stress fiber

6.0E-06 7 L-ascorbic acid metabolic process

4.0E-06 154 diacylglycerol binding

2.0E-06 30 secretory granule

1.2E-05 20 estrogen receptor activity

<2.0E-06 45 estrogen receptor signaling pathway

1.0E-05 8 blastocyst development

6.0E-06 63 forebrain development

AraC 4.0E-06 12 nucleoside-diphosphatase activity
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Drug IC50 p Gene Set Size Gene Set

6-TG <2.0E-06 26 3′,5′-cyclic-AMP phosphodiesterase activity

8.0E-06 14 O-methyltransferase activity

2.0E-06 8 acetylserotonin O-methyltransferase activity

2.0E-06 8 melatonin biosynthetic process
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Table 2

Statistical significant gene sets associated with AUC.

Drug AUC p Gene Set Size Gene Set

dFdC 6.0E-06 15 neurotransmitter catabolic process

1.2E-05 31 Gemcitabine Pathway

<2.0E-06 12 peptide-aspartate beta-dioxygenase activity

6.0E-06 5 ribonucleoside-diphosphate reductase activity

1.0E-05 8 thymidine kinase activity

<2.0E-06 160 nucleobase, nucleoside, nucleotide and nucleic acid metabolic process

<2.0E-06 19 mRNA catabolic process

6.0E-06 24 mitotic chromosome condensation

8.0E-06 39 condensed chromosome

4.0E-06 54 transaminase activity

2.0E-06 5 gamma-aminobutyric acid catabolic process

<2.0E-06 9 peptidyl-amino acid modification

2.0E-06 70 heterogeneous nuclear ribonucleoprotein complex

6-TG 6.0E-06 5 gamma-aminobutyric acid catabolic process

<2.0E-06 10 choline transmembrane transporter activity

<2.0E-06 10 choline transport
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