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Abstract
Isoprostanes are prostaglandin (PG)-like compounds generated in vivo following oxidative stress
by non-enzymatic peroxidation of polyunsaturated fatty acids, including arachidonic acid. They
are named based on their prostane ring structure and by the localization of hydroxyl groups on the
carbon side chain; these structural differences result in a broad array of isoprostane molecules with
varying biological properties. Generation of specific isoprostanes is also regulated by host cell
redox conditions; reducing conditions favor F2-isoprostane production while under conditions
with deficient antioxidant capacity, D2- and E2-isoprostanes are formed. F2-isoprostanes (F2-isoP)
are considered reliable markers of oxidative stress in pulmonary diseases including asthma.
Importantly, F2-isoP and other isoprostanes function as ligands for PG receptors, and potentially
other receptors that have not yet been identified. They have been reported to have important
biological properties in many organs. In the lung, isoprostanes regulate cellular processes affecting
airway smooth muscle tone, neural secretion, epithelial ion flux, endothelial cell adhesion and
permeability, and macrophage adhesion and function. In this review, we will summarize the
evidence that F2-isoP functions as a marker of oxidative stress in asthma, and that F2-isoP and
other isoprostanes exert biological effects that contribute to the pathogenesis of asthma.
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Introduction
Isoprostanes are PG-like compounds derived from free radical peroxidation of
polyunsaturated fatty acids (primarily arachidonic acid) in tissues. They are isomers of
enzymatically-derived PGs, but in contrast to PGs, cyclooxygenases (COX-1 and COX-2)
are not required for isoprostane formation. Such peroxidation reactions lead to the formation
of many different structures named for the prostane ring structure they most closely
resemble, and regioisomers are named for the location of a hydroxyl group on the alkyl
chain [1]. One class of isoprostanes in particular, the F2-isoprostanes (F2-isoP) are stable
molecules that are formed in vivo under conditions of oxidative stress. F2-isoPs are
considered reliable markers of oxidative stress in disease, but in addition, they have
important biological properties in many tissues [2] including the lung [3]. In this review, we
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will summarize the evidence that F2-isoP functions as a marker of oxidative stress in asthma,
and that F2-isoP and potentially other isoprostanes exert biological effects that contribute to
the pathogenesis of asthma.

Isoprostane Biochemistry
The first class of isoprostanes discovered was the F2-isoprostanes (F2-isoP) named because
they have the same F-type prostane ring as PGF2α. Since this discovery, several other classes
of isoprostanes were discovered and named for the PG with a common prostane ring
structure including D2-isoP, E2-isoP, J2-isoP, and A2-isoP [1]. There are a few key
distinctions between isoprostanes and PGs. Isoprostane side-chains are mainly cis to the
cyclopentane ring, while PG side chains are trans isomers [1, 4]. Isoprostanes are formed
from polyunsaturated fatty acids including arachidonic acid in situ in lipid membranes and
the isoprostanes are then released by phospholipases. In contrast, PGs are formed from free
arachidonic acid. Recently, it has been reported that isoprostanes may be formed from
docosahexaenoic acid or eicosapentaenoic acid in addition to arachidonic acid [5–7].

Isoprostane structure is dictated not only by the substrate polyunsaturated acid but also by
cellular conditions during the peroxidation process. The net formation of F2-isoP versus D2-
isoP and E2-isoP is controlled by the reduction-oxidation status of the cell, the presence or
absence of glutathione, and by the presence of oxidative stress [8]. Under reducing
conditions, F2-isoP is favored, while under oxidizing conditions, isoprostane formation is
shifted to produce D2- and E2-isoP. We have recently reported that host genetic factors also
regulate F2-isoP generation in response to ozone. The loss of NADPH quinone
oxidoreductase 1 (NQO1), an enzyme that reduces cellular hydroquinones, results in
decreased F2-isoP formation following ozone exposure [9]. Importantly, a shift in
isoprostane production from F2-isoP to D2- and E2-isoP may have profound effects on
cellular functions. D2- and E2-isoP are highly reactive and undergo dehydration to form
cyclopentenones, J2-isoP and A2-isoP respectively [4] (Figure 1). The cyclopentenone ring
is highly reactive and forms Michael adducts with Cys residues in proteins or glutathione;
these modifications may affect enzyme activities resulting in several different biological
effects including augmenting antioxidant capacity [10] and inhibiting inflammatory cascades
[10, 11].

The production and metabolism of isoprostanes have been reported in most detail for 15-F2t-
isoP. Arachidonic acid is exposed to oxygen radicals resulting in the abstraction of a
bisallylic hydrogen atom, and formation of a lipid peroxide radical and endocyclization. An
additional oxygen molecule is added to form an unstable bicyclic endoperoxide
intermediate. After reduction, four potential F2-isoP families are formed, which are
designated as 5-, 8-, 12-, or 15-series regioisomers based on the location of the side chain
hydroxyl residue [12] (Figure 1). Each regioisomers has 16 stereoisomers yielding a large
variety of structures. The esterified isoprostanes are released as free molecules by
phospholipase A2 or platelet activating factor acetylhydrolase activity, and are rapidly
released into the circulation, and excreted into the urine. F2-isoP is metabolized by an
enzymatic process similar to the PG degradation pathway. Beta-oxidation and reduction
result in F2-isoP degradation products including 2,3-dinor-8-isoPF2α and 2,3-dinor-5,6-
dihydro-8-PG F2α; these degradation products and the parent molecule F2-isoP can be
detected and quantified in urine [12, 13]. Of all of the F2-isoP regioisomers, 15-F2t-isoP
(also known as 8-iso-PGF2α or 8-epi-PGF2α) has received most attention due to its utility as
a biomarker of oxidative stress [12, 14].

15-F2t-isoP can be quantified by EIA, RIA, and by GC-MS or by LC or UPLC followed by
tandem MS [12, 15]. Urinary 15-F2t-isoP and its oxidation/ reduction metabolites require
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GC-MS or LC-tandem MS for quantitation of all three isoP species. Immunoassays are
validated to exclude other isoprostanes or PGs but are less specific and sensitive than MS
[12]. GC-MS or LC-MS permits high throughput analysis with little derivatization of
samples but is more expensive and requires skilled technicians [12]. Interpretation of F2-
isoP as a biomarker of oxidative stress requires consideration of the disease process to
determine whether the timing of sample collection, and the source of the biological sample
will provide an accurate reflection of oxidative stress [16].

15-F2t-isoP, a Biomarker of Oxidative Stress
15-F2t-isoP is increased following exposure to environmental pollutants or during
exacerbations of inflammatory diseases, and can be quantified in many tissues and body
fluids including urine, bronchoalveolar lavage, exhaled breath condensate (EBC), and
plasma. Ozone and tobacco smoke increase lung oxidative stress as detected by 15-F2t-isoP
even in healthy individuals. In healthy young adults, acute laboratory exposures of ozone
(0.40 ppm, 2 h) immediately decreased airflow (FEV1), and at 4 h post-exposure, increased
EBC levels of 15-F2t-isoP [17]. Similar results were obtained by Alfaro and colleagues [18],
except that they demonstrated that in addition to the healthy subjects susceptible to ozone,
there is another group of healthy subjects who are not sensitive to ozone and thus are
resistant to developing airway obstruction or elevated 15-F2t-isoP in EBC. Importantly, in
healthy individuals, cumulative ozone exposure (average 0.043 ppm per month) in
association with increased particulate matter with an aerodynamic diameter of ≤ 10 microns
(PM10) and nitrogen dioxide, is associated with increased plasma F2-isoP [19]. In healthy
individuals, tobacco smoking increases sputum F2-isoP [20], plasma F2-isoP, and urinary
metabolites of F2-isoP [21]. Cumulative exposure of non-smokers to second-hand tobacco
smoke exposure (30 cigarettes smoked/ h; 1 h exposure per day for 12 days) results in
increased plasma F2-isoP [22].

15-F2t-isoP levels are significantly increased in diverse human disease conditions which
share increased oxidative stress as a common pathologic feature including cardiovascular
diseases, chronic liver disease, chronic renal disease, neurodegenerative diseases, type 2
diabetes mellitus, obesity, and inflammatory diseases such as arthritis [12]. Elevated 15-F2t-
isoP has also been a consistent biomarker of inflammatory pulmonary diseases including
ARDS, CF, pulmonary hypertension, chronic obstructive pulmonary disease, interstitial lung
disease, and asthma [12].

Asthma and Oxidative Stress
Asthma is one of the most common chronic pulmonary diseases, affecting approximately
10% of the population. It is characterized by reversible airflow obstruction, airway
remodeling, and inflammation which is biased toward Th2 cytokine production and involves
mast cells, eosinophils, lymphocytes, macrophages and neutrophils [23]. An important
pathogenic feature of the disease is the imbalance of oxidative stress and antioxidant
capacity resulting in the generation of reactive oxygen species and reactive nitrogen species
that are both biomarkers of disease activity and effectors of disease progression [24].

15-F2t-isoP has been consistently elevated in exhaled breath condensate, plasma and urine in
asthma compared to healthy controls (Table 1). Importantly, these results have been
confirmed by other biomarkers of oxidative stress in respiratory secretions, plasma and urine
including nitrotyrosine, 3-bromotyrosine [25], NO [24], and GSH: GSSG ratio [26] and
leukotrienes (Table 1). 15-F2t-isoP has been reported to be increased in children with asthma
and not affected by inhaled corticosteroid (ICS) therapy [27, 28]. 15-F2t-isoP is increased
following allergen challenge [29], following bacterial bronchitis [30], following eosinophilic
inflammation [31], and in exercise-induced bronchospasm [32]. 15-F2t-isoP varies by
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asthma severity [25]; it increases during exacerbations of asthma [27] and decreases when
allergen triggers such as house dust mite (HDM) are avoided [33]. Overall, elevated levels
of 15-F2t-isoP in asthma may reflect acute exposures to oxidants that trigger asthma such as
pollutants or tobacco smoke. Alternatively, elevated levels of 15-F2t-isoP may directly
reflect the inflammation associated with exacerbations of asthma due to infections or
allergens. Increased levels of 15-F2t-isoP or the urinary metabolite, 2,3-dinor-8-epiPGF2α
are stable markers that reflect oxidative stress. Although there is no evidence that changes in
isoprostane levels precede immediate airflow obstruction, the sustained increase in
isoprostanes may regulate longer-term airway remodeling or airway smooth muscle
function.

Asthma and the Biological Impact of Isoprostanes
Asthma is defined as recurrent exacerbations of reversible airflow obstruction related to
bronchospasm in response to allergen exposures, infections, or pollutant exposures. Over
time, asthmatic airways undergo remodeling that contributes to impaired physiology; these
airway changes are characterized by mucous cell metaplasia and regions of epithelial loss;
subepithelial influx of myofibroblasts and collagen deposition resulting in basement
membrane thickening; and angiogenesis. During exacerbations of asthma, inflammatory
cells in the airway, including eosinophils, Th2 lymphocytes, neutrophils, macrophages and
mast cells, are activated and release mediators that interact with structural cells to trigger
airway hyperresponsiveness and remodeling [34]. Interactions between environmental
triggers, inflammatory cells and structural cells result in the generation of reactive oxygen
species including the generation of isoprostanes. Recent reports suggest that isoprostanes
have biologic functions that contribute to pathophysiologic changes in asthma.

Isoprostanes and Airway Smooth Muscle Signaling
Given the structural similarity of isoprostanes to prostanoids, it is predicted that isoprostanes
can influence ASM function through activation of prostanoid receptors. 15-F2t-isoP activates
thromboxane receptor (TP) [35, 36] and possibly a distinct yet uncharacterized specific
receptor [37], while 15-E2t-isoP activates TP, PGF receptor (FP), and PGE1–4 receptors
(EP1–4) [38]. EP1–4 receptors compete for ligand binding and stimulate distinct signaling
pathways, resulting in a broad range of physiologic effects from bronchoconstriction to
bronchial smooth muscle relaxation depending on the concentration of the activating ligand
[39].

Isoprostanes regulate human airway smooth muscle (ASM) tone and hyperresponsiveness to
stimuli [38, 40]. Both 8-iso-PGE2 and 8-iso-PGF2α induce airway smooth muscle
contractions; although 8-iso-PGE2 is reported to be 10–100 fold more potent than 8-iso-
PGF2α. In human and guinea pig airways, ASM contraction to 8-iso-PGF1α (5.9 µM) 8-iso-
PGF2α (6.2 µM), and 8-iso-PGE2 (7.0 µM) is mediated through TP but not through EP
receptors [41, 42]. TP receptor activation is functionally coupled to calcium influx [35, 36]
and signaling through monomeric G-protein RhoA and its downstream effector RhoA-
associated kinase [36, 42, 43]. However, a different isoprostane, 8-iso-PGF3α (logIC50=4.9)
relaxes human ASM, suggesting that this isoP activates a non-TP receptor [42]. In canine
and porcine ASM, activation of specific EP receptors results in bronchodilation [44]. In
canine and porcine trachea, E-ring isoprostanes, 8-iso-PGE1 and 8-iso-PGE2 with logIC50
values of 6.9 and 6.9 respectively, activate EP receptors, and relax ASM following pre-
contraction with carbachol [45]. Thus the isoprostane species and the receptor subtypes
expressed determine the airway smooth muscle physiologic response.

There are species differences in the action of isoPs to regulate ASM contraction that are
regulated by differences in receptor expression. Bovine ASM contracts in response to 8-iso-
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PGE2, but these responses are mediated through a non-TP, non-EP receptor [46]. In canine
airways, neither 8-iso-PGE2 nor 8-iso-PGF2α isoprostanes have an excitatory effect. Neither
dog nor porcine airways express TP receptors, therefore none of the isoprostanes evoke
constrictor responses in these species [42] [45].

Isoprostanes also regulate ASM tone by regulating prejunctional neuronal acetylcholine
secretion. 8-iso-PGF2α acts at the prejunctional neuron to inhibit electrical field stimulated
(EFS)- acetylcholine release in guinea pig trachea [47]. E-ring isoprostanes also inhibit EFS-
acetylcholine release from prejunctional neurons in guinea pig trachea; this neural effect is
inihibited by an EP3-receptor specific inhibitor [48]. In contrast, in bovine trachea, 15-E2t-
isoP augments EFS-acetylcholine release via FP receptors [49]. The effect of isoprotanes on
neutrally-mediated ASM contraction has not yet been evaluated in human airway.

Finally, isoprostanes also regulate chemokine production in ASM cells that contribute to the
inflammatory cascade. 8-iso-PGE1 and -E2 augment IL-1β-induced G-CSF in human ASM
via cAMP signaling and specific EP2 and EP4 receptor activation [50]. This report adds to
the growing body of evidence that ASM secrete inflammatory cytokines and contribute to
the inflammatory milieu in the airway [51].

Isoprostanes and Inflammatory cells
Macrophages are sentinel immune cells in the lower respiratory tract detecting
environmental stress. They play a major role in regulating the innate immune response to
environmental pollutants by secreting cytokines to enhance neutrophil chemotaxis [52].
Exposure of human alveolar macrophages to elemental carbon in ultrafine particles induces
8-iso-PGF2α production [53]. Isoprostane (8-iso-PGF2α) stimulates human macrophage
binding to human venous endothelial cells [54] and increases macrophage IL-8 expression
by activating Erk1/2 and p38 MAP kinase signaling [55]. Isoprostanes (8-iso-PGF2α and 8-
iso-PGE2) may further contribute to neutrophilic inflammation by increasing neutrophil
adhesion to human venous endothelial cells [56], and by increasing endothelial cell
permeability in response to oxidative stress [57].

In contrast to the effects of 8-iso-PGF2α to enhance neutrophilic inflammation in the airway,
cyclopentenone isoprostanes blunt NF-κB activated inflammatory cascades. Exposure of
macrophages to 15-A2t-isoP inhibits lipopolysaccharide-stimulated NF-κB transcriptional
activity, by impairing IκBα degradation [11]. Cyclopentenone isoprostanes inhibit IκK
enzyme activity by forming a direct adduct to a susceptible Cys residue [58].
Cyclopentenone isoprostanes may attack susceptible Cys residues on any molecule affecting
protein or enzyme function. For example, cyclopentenone isoprostanes modify a Cys
domain in Keap1, a protein that sequesters the transcription factor, NF-E2 related factor-2
(Nrf2) in the cytoplasm. Oxidation of Keap1, results in release of Nrf2, translocalization to
the nucleus and activation of antioxidant response element (ARE) domains in promoters of
Phase II response genes which enhance antioxidant enzyme activities [10]. Together, the
mechanisms of cyclopentenone isoprostanes formed under cellular oxidant conditions may
stimulate macrophages to respond paradoxically to air pollutants by enhancing antioxidant
capacity and inhibiting inflammation [59].

Isoprostanes and Epithelial cells
There are a few reports that isoprostanes regulate anion conductance across epithelial cells.
The E-ring isoprostane, 8-iso PGE2, regulates anion efflux in Calu-3, an epithelial cancer
cell line, in part though the activation of the TP receptor [60] and also in part by the
activation of the EP4 prostanoid receptor via PKA and PI3 kinase activation [61]. This
conductance is regulated by CFTR [61]. 8-iso PGE2 regulates chloride transepithelial
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conductance in primary bovine tracheal epithelial cells [62] via the EP4 receptor coupled to
adenylate cyclase and soluble guanylate cyclase. In contrast, F-ring isomers do not regulate
changes in epithelial short circuit current [62]. Ionic currents at the apical plasma membrane
affect airway surface fluid balance and mucus hydration and clearance; all of these factors
are important components of the pathophysiology of asthma and CF. Given the potential
differences in isoprostane generation and PG receptor expression between these model
systems and primary human airway epithelial cells, the function of isoprostanes in primary
human airway epithelial cells still needs to be evaluated.

Summary
Isoprostanes are upregulated in asthma under conditions that cause asthma exacerbations
such as allergen exposure, infections and air pollutant exposures. It is well established that
8-isoPGF2α is a stable biomarker of oxidative stress that can be detected in BAL, sputum,
EBC, blood and urine, and is upregulated in asthma exacerbations following exposures to
triggers. However, 8-isoPGF2α is not only a biomarker; this and other isoprostanes have
biological functions that have been reported in most airway cells and that potentially
contribute to the pathophysiology of asthma. The generation of specific isoprostanes varies
depending on the native redox status of the cell and the quantity and duration of
environmental oxidative stress. Importantly, different isoprostanes may have opposite
functions within a tissue and these functions also vary by the isoprostane receptors present
in the tissue. Therefore further investigation is warranted to determine the function of
isoprostanes in primary human airway tissues under normal homeostatic conditions and
under the stress of triggers that exacerbate asthma.

Research Highlights

• Isoprostanes are non-enzymatic peroxidation products of polyunsaturated fatty
acids.

• F2-isoprostane, a stable biomarker of oxidative stress, is increased in asthma.

• Isoprostanes activate receptors to regulate airway and immune functions in
asthma.

Abbreviations

ARE antioxidant response element

ASM airway smooth muscle

COX Cyclooxygenase

EFS electrical field stimulation

F2-isoP F2-isoprostanes

GC Gas chromatography

HDM House dust mite

ICS inhaled corticosteroids

LC liquid chromatography

MS mass spectrometry

Nrf2 NF-E2 related factor-2
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PG prostaglandin

RIA radioimmunoassay

EIA enzyme-linked immunoassay

UPLC ultraperformance liquid chromatography
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Figure 1.
Isoprostane structure. Four major regioisomers of isoprostanes are formed defined by the
location of the hydroxyl group on the alkyl chains. The 15- and 5-hydroxyl forms are the
most abundant compared to the 8- and 12- series. The 15- regioisomer is depicted here. F2-
and D2- and E2 are all formed from an endoperoxide intermediate derived from peroxidation
of arachidonic acid. The D2 and E2-isoprostanes have a ketone and hydroxyl group on the
cyclopentane ring that are reduced to form the J2 and A2-isoprostanes respectively with
cyclopentenone rings.
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Table 1

F2-Isoprostane Levels in Asthma

Study Design F2-isoP Levels Reactive oxygen species Ref.

Adults: [63]

    10 Healthy* 15.8±1.6(pg/ml)a eNO(ppb)b:6.5±0.6

    12 Mild Asthma* 33.7±2.8 22.6±2.9

    17 Moderate* 38.3±3.7 11.9±1.3

    15 Severe* 49.1±5.0 10±1.8

Adults: [29]

    9 Mild Atopic Asthma

    Segmental allergen challenge

      BAL-pre 0.9±0.2 (pg/ml)c, d

      24h after 11.4±3

      Urine-pre 1.5±0.2 (ng/mg creat)

      2–8h after 2.6±0.3

Adults: [25]

    38 Healthy# 23.9 (17.2–48.9)g, e eNO(ppb)b:15.9(12–21)

    57 Asthma# 46.9 (28.6–71.5) 41.6(16.4–83.1)

Children: [64]

    15 Healthy+ 139 (109–174)(pg/ml)e

    15 Asthma+ 213 (122–455)

Children: [65]

    12 Healthy* 34.2±4.5 (pg/ml)f PGE2(pg/ml)f:46.8±5.3

    12 Asthma/non-steroid* 56.4±7.7 44.6±5.0

    30 Asthma/steroid-treated* 47.2±2.3 51.5±4.0

Children: LTC4/D4/E4
e [27]

    10 Healthy* 2.6 (2.1–3.0)(pg/ml)a,e 4.3(2–5.7)

    15 Asthma-Exacerbation* 12.0 (9.4–29.5) 12.7 (5.4–15.6)

    Post- prednisone* 8.4 (5.4–11.6) 5.2 (3.9–8.8)

Children: LTC4/D4/E4
a [33]

    12 Asthma, + HDM* 17.47±3.18 (pg/ml)a 14.24±4.53

    HDM avoidance, 3 months*. 7.36±3.26 4.65±0.68

Children: LTC4/D4/E4
e [66]

    19 Healthy* 3.5 (2.6–7.9) (pg/ml)e 4.3 (2–8.3)
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Study Design F2-isoP Levels Reactive oxygen species Ref.

    14 Asthma/ non-steroid* 16.2 (11.7–19.1) 10.8 (9.3–13.1)

    13 ICS-treated Asthma* 18.1 (14.8–20.5) 12.7 (9.9–15.1)

     9 Unstable Asthma* 29.7 (4.8–35.1) 106.0 (4.2–218)

Children: LTE4
a,e [67]

    20 Healthy* 15.5 (14.1–17.5)f,e 12.5 (11.6–14.7)

    20 Atopic/non-Asthma* 15.8 (13.9–20.1) 15.9 (12–17.5)

    30 Atopic/Asthma* 29.8 (26–34.3) 28.2 (24.9–35.7)

    25 Atopic/Asthma/ICS* 33 (28.5–35.8) 29 (25–36.6)

Children: [28]

    11 Healthy* 3.8±0.6 (pg/ml)a

    13 Asthma/ non-steroid* 9.3±1.7

    12 ICS-treated Asthma* 6.7±0.7

Children: [32]

    Asthma Pre-exercise (pg/ml)f

      34 non-EIB* 32.3 (27.6–37)

      12 EIB* 44.9 (38.3–51.5)

a
EIA (Cayman Chemical);

b
Chemiluminescence analyzer;

c
Gas chromatography/negative-ion chemical ionization mass spectrometry (GC/NICI/MS);

d
No immediate release of F2-isoP into BAL after allergen challenge;

e
median and quartile range;

f
RIA;

g
2,3-dinor-8-epiPGF2α, a urinary metabolite of F2-isoP, determined by HPLC/NICI/MS.

Source of analysis:

*
EBC,

+
Plasma,

#
Urine.
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