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Abstract

Evidence from the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study suggests that vitamin E and

b-carotene supplement use may influence the risk of several cancers. Vascular endothelial growth factors (VEGF) are

proteins involved in angiogenesis, an important requirement for tumor growth and metastasis. Thus, vitamin E and

b-carotene may influence cancer risk through one or more VEGF. The ATBC Study was a randomized, double-blind,

placebo-controlled, primary cancer prevention trial in which participants were assigned to 1 of 4 supplementation groups

based on a 2 3 2 factorial design: 1) a-tocopherol (vitamin E); 2) b-carotene; 3) both; or 4) placebo. For the present study,

100 cancer-free participants with follow-up serum available were randomly selected from each intervention group. VEGF-A,

-C, and -D concentrations weremeasured by ELISA in serum obtained at baseline and after at least 2 y of supplementation.

Differences in change in VEGF levels from baseline to follow-up between intervention groups were assessed using

the ANOVA test. Change in VEGF-A and VEGF-C concentrations between baseline and follow-up did not differ by

intervention group (P = 0.45 and 0.29, respectively). The decrease in the serum VEGF-D concentration was greater in the

men supplemented with a-tocopherol (29.7 ± 2.5%) or b-carotene (28.5 ± 2.7%) and tended to be greater in those

supplemented with both (26.8 ± 2.4%) compared to the placebo group, in which there was no change (20.4 ± 3.0%) (P =

0.03). In this population of male smokers, supplementation with a-tocopherol or b-carotene was associated with a

decrease in VEGF-D levels over time. Although the mechanism through which these supplements affect cancer etiolog

remains unclear, our results support the hypothesis that vitamin E and b-carotene may influence cancer progression

through VEGF-mediated lymphangiogenesis. J. Nutr. 141: 2030–2034, 2011.

Introduction

Evidence from the Alpha-Tocopherol, Beta-Carotene Cancer
Prevention (ATBC) Study intervention suggests that vitamin E
and beta-carotene supplement use may influence the risk of
several cancers. For example, the ATBC Study reported that
vitamin E supplement use was associated with a decreased risk

of prostate cancer, particularly more aggressive disease (1), al-
though 2 recent trials did not confirm that finding (2,3), and that
b-carotene supplement use increased lung and possibly prostate
cancer incidence (1,4). However, the mechanisms through which
these micronutrients might exert their effects remain unclear.
The vascular endothelial growth factors (VEGF) are a family of
proteins involved in normal and pathological vascularization.
VEGF-A, commonly referred to in the literature as VEGF, is
primarily involved in angiogenesis and VEGF-C and VEGF-D
have both angiogenic and lymphangiogenic functions (5,6).
Given the importance of angiogenesis in tumor growth and
metastasis (7), it is possible that a biological impact of vitamin E
and b-carotene on one or more VEGF is responsible for their
influence on the risks of prostate and lung cancers.

Animal and cell culture experiments indicate that a-tocopherol
and other vitamin E compounds inhibit VEGF-A–mediated
angiogenesis (8–15). Fewer studies have examined b-carotene,
with 2 studies suggesting that b-carotene also reduces VEGF ex-
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pression (16,17) and others showing increased VEGF-mediated
angiogenesis (18,19). An earlier analysis from the ATBC Study
found that VEGF-A levels decreased during the intervention in
men randomized to receive the trial a-tocopherol supplement
(i.e. the intervention group that experienced lower prostate
cancer incidence) compared to those who received the placebo
(the impact of b-carotene was not examined) (20). The influence
of vitamin E and b-carotene on the other members of the VEGF
family has not been studied despite a growing understanding of
angiogenesis in cancer growth, metastasis, and treatment (5). To
address this, we examined the effect of supplementation with
vitamin E (a-tocopherol, 50 mg) and b-carotene (20 mg) during
the trial on circulating VEGF-A, -C and -D concentrations in the
ATBC Study.

Materials and Methods

Study population. The ATBC Study was a randomized, double-blind,
placebo-controlled, primary prevention trial conducted to determine the

effects of supplementation with a-tocopherol and b-carotene on cancer

incidence (21). Male smokers (n = 29,133) were recruited between 1985

and 1988 in southwestern Finland. As part of the enrollment criteria,
men were between 50–69 y old at baseline and smoked at least 5

cigarettes/d and were ineligible if they previously had cancer or another

serious illness at enrollment or if they reported current use of sup-
plements containing vitamin E (.20 mg), vitamin A (.20.9 mmol), or b-

carotene (.6mg). Trial participants were assigned to 1 of 4 groups based

on a 2 3 2 factorial design: 1) a-tocopherol (dl-a-tocopheryl acetate,
50 mg/d); 2) b-carotene (20 mg/d); 3) both supplements; or 4) placebo.
Supplementation was ongoing for 5–8 y until the trial ended on April 30,

1993. Although the intervention trial was completed, follow-up

continues through the Finnish Cancer Registry and the Register of

Causes of Death. Written informed consent was obtained from all trial
participants and the ATBC Study was approved by institutional review

boards at both the US National Cancer Institute and the Finnish

National Public Health Institute. For the present analysis, 100 cancer-
free participants were randomly selected from each trial arm from

among those who had both a baseline and a follow-up blood sample

available and who had been taking supplements for at least 2 y (range:

2–8 y) at the time the follow-up specimen was obtained.

Data collection. At enrollment, ATBC Study participants completed

questionnaires about general risk factors, smoking, and medical history,
as well as a FFQ. Participants also underwent a physical examination by

registered nurses to measure their height and weight and to collect an

overnight fasting blood sample. Starting in the second year of the trial,

follow-up serum samples were collected annually from a random sample
(n = 800) of the trial participants. All samples were stored at –708C.

Serum VEGF-A, -C, and -D concentrations were measured for the

400 participants with follow-up serum samples selected for the present

analysis by SAIC-Frederick using ELISA kits according to the manufac-
turer’s instructions (VEGF-A: Thermo Scientific/Pierce Biotechnology;

VEGF-C and VEGF-D: R&D Systems). Duplicates of each sample were

analyzed and the average of the 2 values was used for data analysis. Each
batch contained quality control serum samples from the ATBC Study and

4 healthy male donors who were recruited through the NCI-Frederick

Research Donor Program. This program stores blood samples from

employees of the NCI-Frederick and Fort Detrick communities for
research purposes; the program requirements are similar to those in

place for the American Red Cross Blood Bank (22). Two batches were

excluded because of technical errors and 6 study participants (8 for

VEGF-C)were excluded because their duplicate values deviated by.20%.
The median quality control CV percents for the 5 QC samples were 21.5,

15.8, and 11.5% for VEGF-A, -C, and -D, respectively. The final analytic

data set included 354 participants (352 with VEGF-C).

Statistical analysis. Differences in change in VEGF levels from baseline

to follow-up between intervention groups were assessed using ANOVA.

In addition to the ANOVA approach, we conducted pair-wise compar-

isons between each trial arm and placebo using the t test. As expected
based on the randomized study design, multivariable linear regression

showed no evidence of confounding by any of the following factors: age,
BMI, serum total cholesterol, baseline serum a-tocopherol, baseline

serum b-carotene, number of cigarettes smoked per day or years smoked,

physical activity, or intake of total energy, fruits, vegetables, red meat, or

alcohol. Sensitivity analyses were conducted using multivariable linear
regression to adjust for baseline values. Secondary analyses were

conducted stratifying by baseline age at randomization (,60 vs. $60

y), BMI (,26 vs.$26 kg/m2), cigarettes smoked per day (,20 vs.$20),

and serum total cholesterol (,6.18 and $6.18 mmol/L) as well as by
time between baseline and follow-up blood collections (,4 vs. $4 y).

Statistical interaction was assessed using the likelihood ratio test. All

analyses were conducted using SAS v. 9.1.

Results

Characteristics of the analytic cohort according to low and high
baseline concentrations of the 3 measured VEGF are shown in
Table 1. Overall, baseline characteristics varied little by VEGF-
A, -C, or -D. There were no differences by VEGF-A, whereas
those with higher VEGF-C had a lower baseline serum b-
carotene concentration (P = 0.045), were more physically active
(P = 0.10), and ate slightly more fruit (P = 0.05) than did those
with lower VEGF-C concentrations (Table 1). Men with higher
VEGF-D concentrations smoked for longer than men with lower
VEGF-D (P = 0.03) (Table 1).

There were no significant differences in change between
baseline and follow-up concentrations for either VEGF-A or
VEGF-C across the 4 trial intervention groups (Table 2). By
contrast, the change between baseline and follow-up VEGF-D
concentrations differed among the 4 groups (Table 2). Men
randomized to either a-tocopherol alone or b-carotene alone had
a significantly greater reduction in VEGF-D during supplemen-
tation compared to men who received placebo, among whom
there was no change in VEGF-D concentration (Table 2). Men
randomized to receive both supplements tended to have a greater
reduction (P = 0.07) in the VEGF-D during the intervention
compared to men who received the placebo (Table 2). These
findings were unchanged when we adjusted for baseline levels
using a linear modeling strategy; the estimated mean change in
serum VEGF-D (ng/L) was greater in the men who received
a-tocopherol alone (235.2 6 16.1; P = 0.004), b-carotene alone
(228.3 6 16.4; P = 0.02), or both supplements (223.1 6 16.4;
P = 0.06) compared to those who received the placebo (21.1 6
16.5). Similarly, we found no relation between change in serum
concentration of either a-tocopherol or b-carotene and change in
VEGF-A or -C concentrations. There tended to be an inverse as-
sociation between the change in serum a-tocopherol and VEGF-D
(b = 21.88; P = 0.08) but not between the change in serum
b-carotene and VEGF-D (b = 20.002; P = 0.44).

There were no significant interactions between changes
in VEGF during the intervention and age, BMI, number of
cigarettes smoked per day, baseline serum total cholesterol,
or time between baseline and follow-up blood collections (all
P-interaction $ 0.30).

Discussion

In this analysis, we found that men supplemented with either a-
tocopherol or b-carotene (or both) for 2–8 y had a greater
reduction in circulating VEGF-D concentrations compared to men
who were randomized to receive placebo, in whom there was no
change. There was no difference across supplementation groups in
changes in serum VEGF-A or -C during the intervention, however.

Vitamin E, b-carotene, and vascular growth factors 2031
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A great deal of research has focused on factors influencing
VEGF-A levels, including members of the vitamin E family and
b-carotene (8–20). By contrast, relatively little is known about
modifiers of VEGF-D. One study demonstrated that inhibition
of NF-kB, a DNA transcription factor, decreased production
of VEGF-D (23), and there is evidence that both vitamin E and
b-carotene inhibit NF-kB (24,25). Thus, inhibition of NF-kB is
one mechanism through which vitamin E and b-carotene
supplementation may influence VEGF-D concentrations.

The present findings are consistent with the ATBC Study
intervention finding of men receiving a-tocopherol supplements
having lower prostate cancer incidence, particularly more ag-
gressive prostate cancer (1). Our data also contradict the in-
creased risk of lung and prostate cancers observed among men
who received the trial b-carotene supplement, however (1,4).
One possible explanation may have to do with the association
between serumVEGF-D and lymph-node metastasis being organ
specific. For example, several studies show that greater expres-
sion of VEGF-D or its receptor by the tumor cells is associated
with increased prostate cancer lymph node metastasis (26–28).
By contrast, the association between VEGF-D and lung cancer is
less clear, with some studies showing that higher VEGF-D levels
in lung tumor tissue were correlated with increased lymph node
metastasis and poorer prognosis (29–31) and others finding the
opposite (32–35). One hypothesis regarding how VEGF-D might
have diverse effects across tumor types involves the degree to
which it undergoes postsecretion proteolytic processing in specific
tumors (5). Of course, vitamin E and b-carotene exert biologic
effects on many pathways other than those related to VEGF; the
way in which these effects balance out and interact with one
another is likely to influence the ultimate cancer outcome. Thus,
although our findings may not be consistent with all of the trial
findings, they likely represent one component of the complex sys-
tem that contributes to cancer etiology. Alternatively, it is possible
that our findings are due to chance.

Our study has many strengths, including the randomized,
placebo-controlled, double-blind design and the .2-y duration

of supplementation. Although we did not replicate the findings
from an earlier analysis conducted in this population that found
reduced VEGF-A levels in response to supplemental a-tocopherol,
this discrepancy may be explained by use of a different VEGF-A
kit in the prior study that may have influenced performance,
including, e.g., the fact that the 2 antibodies were raised dif-
ferently (36). Also, the kit used in the present analysis is known
to have ~20% cross-reactivity with human VEGF/placental
growth factor heterodimer (37), whereas the kit used previously
did not cross-react with this heterodimer (38). This could have
led to measurement error, preventing us from replicating our
previous result, which was consistent with experimental data
supporting a role for vitamin E in reducing VEGF-mediated
angiogenesis (8–15). Future studies comparing the results from
different measurement techniques may shed light on the most
sensitive method of detecting VEGF in serum and whether they
robustly reflect local tissue concentrations. One weakness of our
present analysis was the relatively high CV percent for VEGF-A
(21.5%), which could have prevented us from observing a true
association for this isoform. However, it seems unlikely that this
could explain the discrepancy with the earlier ATBC report,
because the CV percent was actually higher for VEGF-A in that
analysis (34%) (20). Another consideration in comparing these
2 analyses is that the storage time for the samples was longer for
the current analysis than for the previous one. Given that the
VEGF isoforms we measured have nearly identical molecular
structure and weight, however, we would expect storage time to
affect all isoforms to a similar degree. Thus, our observation of
an association for VEGF-D argues against storage time-dependent
degradation of our serum specimens.

In this population of male smokers, supplementation with
either a-tocopherol or b-carotene was associated with a signif-
icant decrease in serum VEGF-D concentrations. Although the
mechanism through which these supplements may affect cancer
etiology remains unclear, our results support the hypothesis that
vitamin E and b-carotene may influence cancer progression
through VEGF-mediated lymphangiogenesis.

TABLE 2 Serum VEGF-A, -C, and -D concentrations in male smokers supplemented with placebo,
a-tocopherol, b-carotene, or both for at least 2 y1

Intervention group

Placebo a-Tocopherol b-Carotene a-Tocopherol and b-carotene P value2

VEGF-A, ng/L

n 86 89 90 90

Baseline 136 6 13 132 6 10 134 6 11 120 6 10

Follow-up 127 6 12 127 6 10 120 6 9 120 6 11

Change 28.8 6 6.4 25.2 6 5.2 213.5 6 6.9 0.6 6 6.7 0.45

% Change 26.5 23.9 210.1 0.1

VEGF-C, ng/L

n 85 90 87 90

Baseline 4,300 6 157 4,450 6 157 4,160 6 140 3,920 6 130

Follow-up 4,180 6 165 4,080 6 138 4,100 6 121 3,920 6 148

Change 2120 6 169 2370 6 117 260.0 6 137 0.0 6 149 0.29

% Change 22.8 28.3 21.4 0.0

VEGF-D, ng/L

n 87 91 88 88

Baseline 314 6 12 364 6 14 331 6 14 337 6 13

Follow-up 313 6 13 329 6 14 303 6 14 314 6 12

Change 21.1 6 9.4 235.2 6 8.3** 228.3 6 8.3* 223.0 6 7.5 0.03

% Change 20.4 29.7 28.5 26.8

1 Values are mean 6 SE. Asterisks indicate the change differed from that in the placebo group: *P , 0.05, **P , 0.01.
2 P value from ANOVA. VEGF, vascular endothelial growth factors.
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